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Summary

The purpose of the present paper is to present simple estimation and prediction methods
for basic quantities in an emerging epidemic like the ongoing covid-10 pandemic. The
simple methods have the advantage that relations between basic quantities become more
transparent, thus shedding light to which quantities have biggest impact on predictions,
with the additional conclusion that uncertainties in these quantities carry over to high
uncertainty also in predictions.

A simple non-parametric prediction method for future cumulative case fatalities, as well
as future cumulative incidence of infections (assuming a given infection fatality risk f),
is presented. The method uses cumulative reported case fatalities up to present time as
input data. It is also described how the introduction of preventive measures of a given
magnitude ρ will affect the two incidence predictions, using basic theory of epidemic
models. This methodology is then reversed, thus enabling estimation of the preventive
magnitude ρ, and of the resulting effective reproduction number RE. However, the effects
of preventive measures only start affecting case fatalities some 3-4 weeks later, so estimates
are only available after this time has elapsed. The methodology is applicable in the early
stage of an outbreak, before, say, 10% of the community have been infected.

Beside giving simple estimation and prediction tools for an ongoing epidemic, another
important conclusion lies in the observation that the two quantities f (infection fatality
risk) and ρ (the magnitude of preventive measures) have very big impact on predictions.
Further, both of these quantities currently have very high uncertainty: current estimates
of f lie in the range 0.2% up to 2% ([9], [7]), and the overall effect of several combined
preventive measures is clearly very uncertain.

The two main findings from the paper are hence that, a) any prediction containing f ,
and/or some preventive measures, contain a large amount of uncertainty (which is usually
not acknowledged well enough), and b) obtaining more accurate estimates of in particular
f , should be highly prioritized. Seroprevalence testing of random samples in a community
where the epidemic has ended are urgently needed.
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Methods

Many papers use advanced models combined with extensive simulations to analyse and
predict the outcome of the ongoing covid-19 pandemic (e.g. [3], [5] [6]). Here we comple-
ment this important literature with much simpler methods. Most likely this has the effect
that estimation and prediction is less accurate than more advanced well-motivated meth-
ods. On the other hand, the methods presented here are much simpler and hence more
transparent, thus allowing any reader to apply the methods to quickly obtain ball-park
estimates for the most important parameters/quantities. For a more thourough statistical
investigation we propose that the simple analysis presented here should be complemented
with more realistic advanced models.

Early stage predicting case fatalities and number of infected

Suppose the data at hand is the cumulative deaths ΛD(t), starting some calendar time
t0 and ending at t1 at which still only a small community fraction has been infected. As
a rule of thumb we define ”early stage” by meaning that no more than 10% of the com-
munity have been infected. Mathematical theory, as well as empirical evidence for many
infectious diseases, suggest that ΛD(t) grows approximately according to an exponential
rate meaning that ΛD(t) ≈ const∗ert for some rate factor r. The exponential rate factor r
relates to the more commonly used and easy-to-estimate doubling-time d by the relation
r = ln(2)/d.

The growth of ΛD(t) will continue in the same manner until either some intervention is put
in place, or until a significant community fraction have been infected. Here we consider
predictions up until, say, 10% have become infected. Before this population immunity is
very marginal. As a consequence, unless additional preventive measures are put in place,
a very natural prediction of the cumulative number of deaths some date t after the final
observation point t1 is given by

Λ̂D(t1 + t) = ΛD(t1) ∗ er(t−t1) = ΛD(t1) ∗ 2(t−t1)/d.

A very important quantity is how the number of infected people (n.b. not only reported!)
increases over time, because this quantity carries information about how immunty builds
up and when the growth rate will start declining due to partial population immunity.
We hence let ΛI(t) denote the total number of infected individuals up until time t. This
cumulative number is never observed. What can be observed is the cumulative number
of reported cases, but since this number is very sensitive to testing procedures which may
vary over time, we refrain from using this data and stick to the more reliable reported
deaths ΛD. If the infection fatality risk f is known, and if the typical time sd between
getting infected and dying (for those who die) is known (or estimated) from some other
source of information, then it is straight forward to estimate ΛI(t) by simply back-tracking
the number of ”to-die” infected sd days earlier and upscaling by the factor f :

Λ̂I(t) =
ΛD(t+ sd)

f
, t = t0 − sd, . . . , t1 − sd.

(Note that t, t0 and t1 denote calendar time whereas sd is days, so if e.g. t = March 4 and
sd = 21, then t+ sd = March 25.) It is also possible to predict the cumulative number of
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infected later than t1 − sd by using the same exponential growth as before:

Λ̂I(t) =
Λ̂D(t+ sd)

f
=

ΛD(t1) ∗ 2(t−(t1−sd))/d

f
, t = t1 − sd + 1, . . . .

These predictions work well up until around 10% of the community have been infected, i.e.
as long as Λ̂I(t)/N ≤ 0.1, where N is the size of the population from which death-reports
are collected.

We end this subsetion by pointing out that predictions of the number of infected are very
sensitive to the infection fatality risk f . Any error in f carry over to prediction error
multiplicatively.

Introducing preventive measures during early stage

Suppose that a new set of preventive measures are initiated on date tp, for example general
social distancing, symptomatic people isolating, closing schools, and so on. Suppose
further, that the overall effect of the preventive measures are such that the overall rate of
contacts from infectious individuals to others is reduced by a factor ρ ∈ [0, 1].

The effect of this will be that the original basic reproduction number R0 is reduced by
a factor ρ such that the new, effective reproduction number RE is given by RE = (1 −
ρ)R0 (e.g. [4]). In order to induce how the exponential growth is affected some results
from epidemic theory are needed. The exponential growth r is a function of the basic
reproduction number R0 and the generation time G, where the latter is defined as the
random variable describing the typical time between getting infected and infecting others.
The complete relation is described by the Euler-Lotka equation (e.g. [2]) but for a wide
class of epidemic models the exponential growth r will lie between the two relations given
by

r =
R0 − 1

g
, and (1)

r =
ln(R0)

g
, (2)

where g = E(G) denotes the mean generation time [8]. Relation (1) comes from the
stochastic general epidemic model which has a highly variable generation time, whereas
relation (2) comes from the Reed-Frost epidemic model for which all infections happen
exactly g times units after getting infected, so no variation at all [2].

We now describe how to derive an expression, or rather a range of rE-values, to which
the preventive measures will change the exponential growth to. We start by deriving an
expression using relation (1). First of all, the growth rate r prior to preventive measures, is
estimated from the cumulative reported deaths as described above. Suppose further that
an estimate of R0 is available (from contact tracing, prior knowledge, or other method).
Using the estimates of r and R0 we obtain an estimate g1 of g using (1). If preventive
measures are introduced, then the reproduction number changes from R0 to RE = (1 −
ρ)R0. The mean generation time remains unchanged (this might not hold if enforced
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contact tracing is included among the introduced preventive measures). As a consequence,
the new exponential growth rate satisfies

r
(1)
E =

R0(1− ρ)− 1

g1
= r − ρR0

g1
.

If exactly the same procedure is performed, but using relation (2) we get

r
(2)
E = r +

ln(1− ρ)

g2
.

The latter expression is bigger than the former, so a natural bound for the new exponential
rate rE, once preventive measures are put in place, is given by r

(1)
E ≤ rE ≤ r

(2)
E . It is clear

that the effect on the exponential growth rate depends to a great extent on the magnitude
of the preventive effects ρ. It seems in general very hard to specify what overall effect
ρ a given set of preventive measure has on reducing the rate of spread. It is hence
recommended to consider a range of values rather than a fixed hypothesized value.

The procedure described above can be reversed, thus enabling estimation of the preventive
effect ρ as follows. Suppose that the exponential growth was observed to equal r prior to
preventive measures and that, once preventive measure have been put in place the growth
rate declined to rE. If measured by reduced cumulative death rates we emphasize that
this can only be estimated sd days after the measure has been put in place (or preferably
a bit later). From this it is possible to estimate ρ by simply inverting the procedure. As
before we assume that an estimate of R0 is also available and as before we obtain two
bounds using relation (1) and (2). The resulting bounds are

ρ1 =
(r − rE)g1

R0

(3)

ρ2 = 1− e−(r−rE)g2 . (4)

Here too, the latter expression is bigger, so a natural bound for the overall effect ρ is
given by ρ1 ≤ ρ ≤ ρ2. Here we have implicitly assumed that rE ≥ 0; if rE < 0 then the
epidemic has already started to decline. In principle the equations may still be applied
(then ρ2 < ρ1) but precision quickly drops when number of newly infected is on decline.

Prediction during the main phase of the epidemic

Predicting the epidemic during the main phase when most infections happen, so after the
early stage has ended, is less straighforward and typically require a specific underlying
epidemic model. To describe how this is done does not fit into the current paper relying
mainly on non-parametric methods and robust basic results from epidemic theory.

For this reason we refrain from predicting the progress of the epidemic during this main
phase but only give the rough picture. Once the early stage of the epidemic has passed
the exponential growth rate r (or rE in case preventive measures have been introduced)
starts to decline. This goes on up until the time t at which the cumulative fraction
infected ΛI(t) exceeds 1− 1/R0 (or RE in case of preventive measures). This is the time
when the expected number of infections no longer exceeds one due to reduced community
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susceptibility. After this time the number of new infections starts dropping with time thus
eventuelly leading the epidemic to a halt. The effect of introducing preventive measures
reduces the initial growth rate as described in earlier sections. It also delays the timing
of the peak, and particular the height of the peak, closely related the maximal health-
care burdon. The amount of peak-reduction is model dependent, but for a simple model,
reducing R0 = 3 to RE = 2 reduces the height of the peak by around 50%.

Predicting final epidemic size and total number of case fatalities

We end the methodology section be given predictions of the total fraction getting infected,
and perhaps even more important, the expected number of case fatalities. We assume
that the same set of preventive measures (if any) remain constant through main part
of the epidemic. The results are not valid if the they were put in place after a few
percent had been infected, nor if they were varied during the main part of the outbreak
(the prediction problem is then much more complicated and better suited for simulation
studies). Suppose hence that reproduction number equals R (equal to R0 if no preventive
measures are put in place, or otherwise RE). The final fraction τ getting infected is known
to solve the equation 1− τ = e−R0τ [4], a solution which has to be obtained numerically.
In case the community is heterogeneous in one or several ways, the final fraction getting
infected is usually 5-20% smaller than this solution. So, given that the reproduction
number is known the final fraction getting infected is well-predicted. The estimate is of
course sensitive to R, but if R ≥ 2 then τ ≥ 75%, so it is not too sensitive to exakt values
of R in case it is above 2 or so.

If the infection fatality risk f is known, then the predicted number of case fatalities is
N ∗f ∗τ , where as before N denotes the population size. This estimate is very sensitive to
f . Since f is typically very small, possible values may well vary by a factor 10, implying
that predictions of case fatalities will also vary by a factor 10.

Illustrations

We now illustrate our simple methodology to realistic covid-19 settings. We start be
making predictions assuming no preventive measures whatsoever. In most European
countries the doubling time prior to prevntive measures lie very close to d = 3 days. A
common estimate of R0 equals 2.5, but estimates seem to go up so we use R0 = 3 in our
illustration. As our last cumulative death number we pick t1 = March 24 and assume
that the country of interest (with N = 30million) then had experienced 50 case fatalities
(ΛD(t1) = 50). A prediction for the cumulative number of deaths by t = April 3 ( 10
days later) hence equals Λ̂I(t) = ΛD(t1)2

(t−t1)/d = 50 ∗ 210/3 = 500. We assume that
sd, the typical time from getting infected to dying (assuming the individual dies from
covid-19), equals 21 days, and that the infection fatality risk equals f = 0.3%. With
these assumptions, the estimate of how many people that had been infected by t = March
3 (3 weeks earlier) equals Λ̂I(t − sd) = ΛD(t)/f = 16 700. If we want to estimate how
infected there are at t1 = March 24, this number has to scaled up using the doubling
times: ΛI(t1) = ΛD(t1) ∗ 2sd/3/f = 2.1 million, thus approaching the limit of 10% where
predictions should stop. Nedless to say, there is of course quite a lot of uncertainty in such
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a prediction: first we estimated the number of infected 3 weeks back using case fatalities
of present time and then projected this number three weeks forward in time to present
using the doubling times.

If R0 = 3 and the doubling time equals d = 3 corresponding to an exponential growth rate
of r = ln(2)/3 = 0.23. If the magnitude of the overall effect of preventive measures equals
ρ = 1/3, then using relation (1) gives a mean generation time g1 = (R0−1)/r = 8.7 days.
The new exponential growth rate after preventive measure are put in place hence equals
r
(1)
E = (RE − 1)/g1 = 0.11. If instead relation (2) is used, the mean generation time is
g2 = ln(R0)/r = 4.5 days. As a consequence, the new exponential growth rate assuming

relation (2) equals r
(2)
E = ln(RE)/g2 = 0.14. From the two bounds we hence conclude that

rE should satisfy 0.11 ≤ rE ≤ 0.14.

We now include preventive measures. We still assume R0 = 3 and a doubling time of
d = 3 days without preventions. Then preventive measures are put in place, resulting in
a prolonged doubling time of case fatalities starting (around) sd = 21 days later. Suppose
that the new observed doubling time equals dE = 5 days. These two doubling times
correspond to the exponential rates r = 0.23 and rE = ln(2)/5 = 0.14. If we first assume
relation (1) to hold, this reduced exponential rate gives a lower bound the magnitude ρ
given by ρ1 = (r − rE)g1/R0 = 0.27. If we instead consider relation (2) we obtain the
upper bound of the magnitude as ρ2 = 1 − e(r−rE)g2 = 0.35. It hence follows that the
magnitude ρ of the preventive measure giving rise to an increased doubling time from
d = 3 to dE = 5 days is estimated to lie somewhere in the interval (0.27, 0.35). The
effective reproduction RE is hence estimated to lie between R0(1 − 0.35) = 1.93 and
R0(1− 0.27) = 2.19, so a substantial reduction.

We end by predicting the final fraction infected, and the total number of case fatalities, at
the end of the outbreak. This is possible from simply knowing the reproduction number,
as described in the method section. For instance, if R0 = 3 the final size equation gives
τ = 94%. If preventive measures with magnitude ρ = 1/3 are put in place during the
early stage and kept all trough the outbreak, then the predicted final size instead equals
τE = 78% In the more likely case of a heterogeneous community the fractions should be
deflated by about 20%. Similarly, the predicted total number of case fatalities is Nfτ =
and NfτE respectively. Since communities typically are heterogeneous better estimates
would be to deflate these numbers by about 20%.

Conclusions

One of our main conclusions is that any prediction of the number of infected, using data
from cumulative case fatalities, rely heavily on accurate knowledge of the infection fatality
risk f . Without accurate knowledge of f , the prediction of the total case fatality once
the epidemic outbreak is over, is equipped with a similar multiplicative uncertainty. It
is hence of utmost importance to obtain more accurate estimates of f . The best way to
obtain such estimates, now that seroprevalence tests are becoming available, is to conduct
tests on a random sample of a community in which the outbreak is (close to) over. f is
then simply estimated as the ratio of the total number of case fatalities and the estimated
population number of people testing positive.
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Further, combinations of preventive measures typically have a very uncertain overall mag-
nitude ρ, and it was shown how this uncertainty carries over to high uncertainty in esti-
mates of the effective reproduction number RE and the corresponding decline in growth
rate rE. However, it was also illustrated how to estimate ρ if cumulative deaths are
collected a bit longer than sd days ahead before estimating.

As mentioned earlier, the main idea with the present paper is to keep methods simple
enough to make the methodology transparent. We highly recommend to complement this
simple analysis with more detailed models which might give better precision (at the price
of not being transparent).

The methodology presented used cumulative reported deaths as the main data source. A
problem with this data is that there is a delay of about 3 weeks from getting infected to
dying (for those who die). As a consequence, there is a more than 3 week delay before
effects of interventions may be estimated. The same methodology can be used for data
on cumulative number of patients having received intensive care (IC) treatment. The
time from getting infected to the start of IC treatment (for those who need it) is around
2 weeks, thus making the delay shorter. This must be weighted against the often lower
quality data for IC treatment as compared to reported deaths.

Finally we stress that in the current paper we have not at all treated statistical uncertainty
of the estimators and predictions. Deriving standard errors for these quantities is far from
easy, and are often also model-dependent. Such methodology is hence beyong the scope of
the present paper where we focus on simple methodology. We also believe the uncertainty
in f and ρ is orders of magnitude larger than statistical uncertainty.

References

[1] Anderson and May (1991)

[2] Britton and Scalia Tombda (2019)

[3] Chinazzi, Davis, Avelli et al. (2020)

[4] Diekmann, Heesterbeek and Britton (2013)

[5] Ferguson, Laydon, Nedjati-Gilani et al. (2020)

[6] Kucharski, Russell, Diamond et al. (2020)

[7] Russell, Hellewell, Jarvis et al. (2020)

[8] Wallinga and Lipsitch (2007)

[9] WHO Covid-19 Situation report 30. (2020)

7

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.27.20045575doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.27.20045575
http://creativecommons.org/licenses/by-nc/4.0/

