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Abstract 18 
SARS-CoV2 spread is hard to control, as asymptomatic people contribute to transmission. 19 
Currently, Covid-19 mitigation imposes social distancing and isolates the diseased. This slows 20 
down virus spread, eases stress on health care systems and thereby reduces the death toll. 21 
However, this strategy takes a high economic toll, and virus transmission will surge again if 22 
measures are lifted. App-based contact tracing of symptomatic cases and isolating their 23 
contacts has been proposed as an alternative, but may not suffice for mitigation, as 24 
asymptomatic infections remain unidentified. Here, we evaluate complementary mitigation 25 
strategies relying on virus-RNA testing to detect and quarantine both, symptomatic and 26 
asymptomatic cases. Epidemic dynamics modeling shows that stopping the pandemic by mass 27 
testing alone is unrealistic, as we lack enough tests. However, realistic numbers of tests may 28 
suffice in a smart-testing strategy, e.g. when biasing tests towards people with exceptionally 29 
high numbers of contacts. These people are at particularly high risk to become infected (with 30 
or without symptoms) and transmit the virus. A mitigation strategy combining smart testing 31 
with contact counting (STeCC) and contact tracing in one app would reduce R0 by 2.4-fold (e.g. 32 
from R0=2.4 to R0=1) with realistic test numbers (≈166 per 100'000 people per day) when a 33 
realistic fraction of smartphone owners use the app (≈72%, i.e. ≈50% in total population). 34 
Thereby, STeCC expands the portfolio of mitigation strategies and may help easing social 35 
distancing without compromising public health. 36 
 37 
Main 38 
The Covid-19 pandemic has evaded initial containment measures. Current responses have 39 
therefore shifted towards mitigating the effects. However, proven vaccines and therapies are 40 
lacking and the current capacity for detecting the virus via its genomic RNA is limited  (1). 41 
Thus, mitigation in many countries relies on extreme social distancing and diagnosing virus 42 
(SARS-CoV2) infections in infected people showing mild to severe symptoms. In combination, 43 
these two measures slow down pandemic spread and avoid overburdening healthcare 44 
systems, thus easing the demand for intensive care. However, this strategy has three major 45 
shortcomings. First, the limitation of testing to diseased people handicaps the efficiency 46 
assessment of current mitigation measures (i.e., reduce the basic virus reproduction number 47 
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R0<1). Second, it leaves many infected people with mild or no symptoms undetected (2), and 48 
therefore renders them more likely to infect others. Third, as social distancing measures limit 49 
non-essential business, it imposes severe economic consequences, which worsen over time. 50 
A broad social-distancing-based approach is therefore not sustainable, but mitigation 51 
measures need to stay in place until effective therapies or vaccines become available to avoid 52 
a second wave of virus spread. As these options are still months away, we need to consider 53 
alternative mitigation strategies. 54 
 Smartphone apps for Bluetooth-based contact tracing, such as the European PEPP-PT 55 
project, the British NHSX, or the Swiss D3PT, can help to identify individuals that have recently 56 
had an infection-relevant contact (i.e. one that confers a risk of transmission) with known 57 
Covid-19 cases and might therefore have benn infected. This can help to mitigate the 58 
pandemic (3, 4). However, quantitative modeling suggests that this may not suffice to replace 59 
social distancing completely, i.e. if some of the assumptions about the disease dynamics turn 60 
out to be unrealistic. Specifically, this approach may fail if <56% of the average population 61 
use the app, if the epidemic doubling time is <3.5 days, if >35% of the infected people are 62 
asymptomatic, or if they were more than 0.3-fold as infectious as symptomatic cases ((3); Fig. 63 
S5). Infectiousness of asymptomatic cases has been estimated to be between 10% and 100% 64 
of symptomatic cases (4-6). The asymptomatic cases are a particular problem, as app-based 65 
contact tracing detects such cases insufficiently. Therefore, we have looked for an alternative 66 
approach, based on testing for virus RNA, a marker for active infections with or without 67 
symptoms (Fig. 1, highlighted in dark or light blue). 68 

First, we asked how well mass testing random samples of the population could 69 
complement or replace social distancing. In theory, this can be achieved by testing large 70 
fractions of the population at regular intervals, and isolating people who test positive. Using 71 
a deterministic modeling approach that explicitly considers infected cases with and without 72 
symptoms, we can estimate how many tests per 100'000 people per day would suffice to 73 
achieve the same effect as current social distancing measures which have reduced R0 from 74 
2.4-3 to less than 1, e.g. in Germany or Switzerland ((7, 8); for technical details, see 75 
supplementary text, table S2). We will first present our findings and then discuss how testing 76 
could be realistically implemented, e.g. by combining it with serological testing or app-based 77 
technologies. 78 
 79 
  80 
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 81 
 82 
Figure 1. Graphical illustration of the modeling approach showing the dependencies within the system 83 
describing the dynamics of the susceptible, undetected and detected infected populations. It is crucial that the 84 
model distinguishes between individuals detected by symptoms (with or without testing; light blue), and those 85 
detected by virus testing (dark blue). 86 
 87 
 To estimate how mitigation strategies affect R0, we use a mathematical model that 88 
employs a set of ordinary differential equations to describe the dynamics of the infection of 89 
a susceptible population (Fig. 1, supplementary text section 1, Fig. S1, table S1). To obtain 90 
realistic simulations, we parametrize our model using published data ((5, 9-14); table S2; 91 
supplementary text section 2). Infection of susceptible people will lead to a latency phase 92 
(Fig. 1, exposed). The exposed will later become transmissive, and either remain 93 
asymptomatic and recover or become pre-symptomatic and later develop mild symptoms 94 
(Fig. 1, dark blue; see parameters in table S2). These two transmissive groups do not know 95 
that they are infected, and remain unidentified in current mitigation approaches. Some 96 
people with mild symptoms of disease will self-isolate (Fig. 1, light blue). Due to self-isolation, 97 
they will have a reduced probability to infect others (we assume a 90% reduction). Infected 98 
people with severe symptoms are hospitalized, immediately isolated under strict quarantine 99 
and do not infect others (Fig. 1, light blue). The same applies for anyone else who is tested 100 
virus-positive. In addition, we consider the effect of overloading the health system. After all 101 
intensive care units (ICUs) are occupied, additional cases requiring intensive care will suffer 102 
an elevated death rate (Fig. 1; supplementary text, section 2). As our model consists of a set 103 
of ordinary differential equations, which become linear in the early stages of the pandemic 104 
(when nearly the whole population still is susceptible), we can now analytically test how 105 
particular mitigation strategies affect R0 (supplementary text, sections 3, 4 and 5).   106 
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 In order to compare different mitigation strategies to a baseline, we first describe 107 
what the model predicts if we omit any mitigation. Here, we assume a value for R0 that is in 108 
the mid-range of published estimates, i.e. that one infected person infects 2.4 others in 109 
average (R0=2.4; Fig. 2A; alternative R0 values are tested in Fig. S2A,B). Under these 110 
circumstances, 87% will either recover or die from the disease within ≈250 days, which 111 
compares well to the 81% predicted by (5) for UK and US populations in the absence of 112 
mitigation plans. We also predict more than 4% of the population to be killed by the virus, 113 
and ICUs to be at maximum capacity for ≈150 days of that year. For the unmitigated case 114 
these numbers are going to change only by 2-fold or less, if alternative plausible values are 115 
assumed for R0 (1.9 or 2.9; Fig. S2A,B) or for the availability of ICU beds (Fig. S2C). Thus, our 116 
basic predictions are robust, even if input parameters for the virus infection dynamics (table 117 
S2) might be subject to change when more precise parameters became available. Please note 118 
that Fig. 2A depicts the worst-case scenario, which can be improved by mitigation. 119 
 We then compare the effects of extreme social distancing with those of extensive 120 
mass testing. Extreme social distancing is imposed for a period of 150 days (day 50-200 of the 121 
pandemic), reducing R0 to 0.7 (table S1). This is achieved if the rate of infection of susceptible 122 
people is reduced by 71% (Fig. 2B; data for R0=1, as recently achieved in Switzerland (8), is 123 
shown in Fig. S4A). In line with current observations, extreme social distancing dramatically 124 
decreases the fraction of people experiencing an infection and reduces the number of deaths 125 
(< 0.0001% in Fig. 2B), at least if social distancing is initiated early on (e.g. by day 50) and 126 
strictly adhered to for months. The fraction of the infected population declines during 127 
extreme social distancing. This is in line with other modeling studies (3). However, once these 128 
measures are abandoned, the infection starts spreading again, leading to a similar death toll 129 
and ICU overloading as in the case without mitigation (Fig. 2B, days 200-600). 130 
  131 

 132 
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Figure 2. Social distancing and extensive mass testing alone have qualitatively equal mitigating effects. We 133 
used the model described in the supplementary text. (A) Model outcome if no mitigation strategies are in place 134 
(R0=2.4; see table S3 for additional input parameters). (B) Model outcome if extreme social distancing (71% 135 
lower infection rate, leading to R0=0.7; table S2) is in place between days 50 and 200 of the outbreak. After day 136 
200, social distancing is discontinued. (C) Model outcome if mass testing with isolation of detected cases is 137 
applied between days 50 and 200 of the outbreak (as shown in A). The shown effect is achieved if 37’300 people 138 
per 100’000 are tested every day (5% false negative rate; test speed = 1 day). Tables S2 and S3 show all other 139 
model parameters. Testing is discontinued after day 200. Dashed blue lines represent recovered plus infected 140 
plus deceased, dashed-dotted green lines infected, and solid red lines deceased people. Lower panels show the 141 
same data as upper panels, but with a log10-scale for Y-axes. 142 
 143 
 Next, we analyze a mitigation strategy that is based on mass testing alone 144 
(supplementary text section 3). We would test random samples of the population with 145 
concomitant isolation of detected cases. The test is assumed to take one day to process, to 146 
yield 5% false negative results (discussed below), which is technically reasonable, and to result 147 
in immediate quarantine of the virus-positive cases. Figure S3A shows the factor by which R0 148 
changes as a function of number of tests and for different test processing times; the same is 149 
shown in Fig. S3B for a higher false negative rate. Again, we assume that the mitigation 150 
strategy is implemented during days 50-200 of the pandemic. Applying 37'300 tests per 151 
100'000 people per day yields the same outcome as extreme social distancing (R0=0.7; Fig. 152 
2C, compare to Fig. 2B; supplementary text section 3 for details). Reducing the mass testing 153 
to 12'600 tests per 100'000 people per day is sufficient to keep the number of infections 154 
constant (R0= 1, Fig. S4B) and yields equivalent results as a moderate form of social distancing 155 
(Fig. S4A). Both interventions can dramatically slow the epidemiological dynamics, but 156 
similarly to the previously discussed social distancing, the number of infections and deaths 157 
will start to rise again after the testing regime is abandoned (Fig. 2C, days 200-600). 158 

It is easy to see that both, mass testing and social distancing, can have qualitatively 159 
identical effects on the epidemiological dynamic, but they work differently. Social distancing 160 
decreases the overall infection rate by reducing the freedom of movement for all, whereas 161 
mass testing will allow us to limit the isolation to the infected fraction of the population that 162 
would transmit the virus. The latter would have the important advantage of inflicting much 163 
smaller burdens on the economy than social distancing, as far smaller fractions of the 164 
population need to be isolated. However, the number of tests we predict to be necessary to 165 
reach R0≤1 (12'600 tests per 100'000 people per day; Fig. S4B) is clearly unrealistic for now, 166 
and >50-fold above the current testing capacities even of countries with highly developed and 167 
well-funded healthcare systems. Optimizing the test specificity or the test speed changes the 168 
required number of tests by merely <2-fold (Fig. S3). Thus, mass testing alone is not an option. 169 

We therefore analyzed mitigation strategies combining virus testing with other 170 
measures. This should reduce the number of tests needed to achieve R0 ≤1. First, we tested a 171 
mitigation strategy combining mild social distancing, which reduces the infection rate by 33% 172 
(this would yield R0=1.6, if applied alone; table S1), and mass testing (assumed test speed = 1 173 
day, 5% false negatives). This may approximate a scenario where mass testing is applied to 174 
balance the effects of easing current social distancing measures. Using this combined 175 
strategy, we would require 4'500 tests per 100'000 people per day to reach R0=1 (Fig. 3A). 176 
However, this still exceeds the current test capacities. 177 

An additional mitigation measure is serological testing to identify the subpopulation 178 
that has already recovered from the disease and is now immune (15). This could be combined 179 
with mass testing to reduce the number of tests by removing the immune subpopulation from 180 
the pool of candidates to be tested. However, we are still at a stage of this pandemic where 181 
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the fraction of immune people is likely quite small (see Fig. 2A). Therefore, serological testing 182 
could only minimally reduce the number of needed tests per 100'000 people per day. In no 183 
way are we implying, however, that serological testing is not useful: especially in the case of 184 
healthcare workers, and other essential personnel that is in close contact with the public, it 185 
is of great value to know who is immune to the disease. Also, serological testing could 186 
complement mitigation at later phases of such an epidemic when larger fractions of the 187 
population have become immune (Fig. 2A; >10% immune or deceased beyond day 140).  188 
 189 
 190 

 191 

Figure 3. Effective combinations of mass testing with other mitigation strategies can be achieved with realistic 192 
numbers of tests. (A) A combination of mild social distancing (33% reduction in infection rate; R0=1.6 if it were 193 
applied alone) and mass testing (4'500 tests per 100’000 per day; false negative rate = 5%; test speed = 1 day) 194 
during days 50-300 can reduce R0 to 1. (B) Smart selection of the tested subpopulation reduces the required test 195 
numbers, if additional information allows identifying a subpopulation with higher than average infection 196 
prevalence (details, below). The Y-axis shows the factor by which the infection prevalence increases in the tested 197 
subpopulation. This will reduce the required number of tests. Blue dashed line: smart testing alone is used to 198 
achieve R0=1 (if R0=2.4 for the case without mitigation); red solid line: smart testing combined with mild social 199 
distancing (33% reduction in infection rate by social distancing). Green and red points illustrate examples 200 
discussed, below. (C) The same effect as in A can be achieved with smart testing, assuming that we can find a 201 
subpopulation with a 27-fold increased infection prevalence. Here, we need 475 tests per 100’000 per day to 202 
reach R0=1 (green dots in panel B). (A,C): Dashed blue lines: recovered plus infected plus deceased; dashed-203 
dotted green lines: infected; solid red lines: deceased people. Inserts show the same data, but with a linear scale 204 
for Y-axes. All presented cases assume false negative rate = 5%; test speed = 1 day. 205 

  206 
 Finally, we assessed how virus testing could be combined with Bluetooth-based 207 
tracing applications (e.g. PEPP-PT (16)), which are designed to identify individuals who had 208 
recent contacts with infected people and might therefore be infected, too. Contact tracing 209 
alerts the detected contacts to encourage isolation or virus testing. However, as this strategy 210 
misses most transmission events by asymptomatically infected cases and cases with mild 211 
symptoms that remained undetected (Fig. 1, dark blue), it is unlikely to suffice alone, given 212 
the epidemiological parameters in Europe (3) (Fig. S5, supplementary text section 4). 213 
Therefore, we explored an alternative strategy that relies on smart testing. In theory, smart 214 
testing would use additional information to focus virus tests on subpopulations having a 215 
higher prevalence than the overall population. We will first analyze the theoretical principle 216 
and then discuss a practical implementation. 217 

For smart testing to work, two crucial requirements have to be fulfilled. The 218 
prevalence in the tested subpopulation has to be high enough, so that a limited number of 219 
tests will suffice to detect the necessary number of infected people. Furthermore, the traced 220 
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subpopulation featuring the desired prevalence has to be large enough. We describe the 221 
detailed derivation of the corresponding mathematical expressions in the supplementary 222 
text section 5. Smart testing alone can substantially reduce the number of virus tests needed 223 
to achieve R0=1 (Fig. 3B, dashed blue line). In fact, if we assume that smart testing identifies 224 
a subpopulation with 27-fold higher prevalence than the overall population, we can achieve 225 
R0=1 with 475 tests per 100’000 per day (Fig. 3B, dashed blue line, green dot) and thus keep 226 
the number of infections constant as long as smart testing is maintained (Fig. 3C, days 50-227 
300). Fewer tests would be needed, if we could further increase the virus prevalence in the 228 
tested subpopulation. Alternatively, one could combine smart testing with mild social 229 
distancing, e.g. to stop a surge of incidence when strong distancing measures are eased. For 230 
example, if social distancing would reduce the infection rate by merely 33%, we would only 231 
need 167 tests per 100’000 per day to reach R0=1 (Fig. 3B, red line, green dot). Sufficient 232 
testing capacity for this combined strategy would already be available today in several 233 
European countries. We conclude that smart testing could work: it could achieve the same 234 
result as mass testing (Fig. S4B), but with much fewer tests (Fig. 4B). 235 

Can we use Bluetooth-based tracing apps for identifying high prevalence 236 
subpopulations? A first attempt at achieving this would be an adaptation of app-based 237 
contact tracing to identify individuals with recent infection-relevant contact to detected 238 
Covid-19 cases (4). This contact subpopulation should have a higher prevalence than the 239 
overall population. However, such a "trace+test" approach may not suffice to achieve R0=1, 240 
at least when applied without any other mitigation strategies (3). This is explained by its focus 241 
on contacts of symptomatic individuals (while contacts to asymptomatic cases are missed), 242 
as well as the virus' infection and transmission dynamics (for details, see the supplementary 243 
text section 6). Contact tracing is therefore not sufficient to reach the requirements for smart 244 
testing to work as a standalone mitigation strategy. 245 

As many asymptomatic SARS-CoV2 carriers contribute to the transmission, we 246 
reasoned that smart testing should cover symptomatic and asymptomatic cases, alike. To 247 
solve this problem, we suggest a different strategy for identifying high-prevalence 248 
subpopulations. Importantly, this can be achieved using the same Bluetooth based 249 
technology as contact tracing. Our strategy relies on the fact that some individuals will have 250 
many more infection-relevant contacts than most others (17). For example, with realistic 251 
scale-free network model assumptions, ≈1% of the population with the most infection-252 
relevant contacts (at least 10 times more than the average) make the difference between 253 
R0=1 and R0=2.4 (see supplementary text section 6). These individuals can be identified by 254 
counting of infection-relevant contacts (i.e. contacts which could facilitate transmission), 255 
regardless, if contacts were infected or not. Their sheer number of contacts makes high-256 
contact individuals much more likely than others to become infected and to transmit the 257 
virus, and they are known to be highly important for epidemiological dynamics ((18), referred 258 
to as super-spreaders). To test if smart testing with contact counting (STeCC; Fig. 4A) works 259 
in realistic scenarios, we used a scale free network model, which can account for the 260 
heterogeneity of the number of contacts in a population (supplementary text section 6). The 261 
fraction of app-users in the population will also affect the success of STeCC. We assume that 262 
children under age 10 contribute little to transmission in the general population (19, 20) and 263 
would not use smartphones, as suggested by others (3). High-risk persons (i.e. >70 years old; 264 
20% of the overall population) would remain shielded in isolation for safety reasons and 265 
would therefore not contribute to the infection dynamics. People aged 10-70 (in particular 266 
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the high-contact subgroup) would use smartphones, and we assessed how their app-usage 267 
would affect mitigation. 268 

Then, we tested three different scenarios how STeCC could be implemented to reach 269 
R0=1. We used a progressive testing cycle, as testing the same high-contact individuals every 270 
day would seem unrealistic. On the first day, based on the number of available tests, we 271 
would identify the optimal subgroup with the highest frequency of infection-relevant 272 
contacts, and invite them to be tested (Fig. 4B; dark blue; supplementary text section 6). 273 
During the next days, we would repeat the same procedure, but exclude the groups 274 
previously identified. After 7 days, we would begin the cycle again and identify the optimal 275 
high-contact group from the entire susceptible population. Using this testing cycle, we 276 
observed that STeCC alone could reduce R0, but cannot reach R0=1 with realistic numbers of 277 
app-users and tests per day (Fig. S6). Next, we assessed a STeCC strategy, which would refer 278 
two groups of people to quarantine, i.e. the high-contact individuals that tested positive and 279 
their recent contacts. This strategy would reach R0=1, if 90% of smartphone users would use 280 
the app (63% of the overall population) and ≈397 tests per 100'000 people per day were 281 
carried out (Fig. 4C, red lines). Finally, we tested a combination of the latter STeCC approach 282 
with Bluetooth app-based contact tracing (similar to (4)), which may be possible using the 283 
same data. This would refer three groups of people to quarantine, i.e. the high-contact 284 
individuals testing positive, their recent contacts and the contacts of symptomatic individuals. 285 
If 72% of smartphone users would use the app (≈50% of the overall population) we would 286 
need ≈166 tests per 100'000 people per day to reach R0=1 (Fig. 4D, red lines). This testing 287 
capacity is currently available in several European countries, like Switzerland. Please note that 288 
our example in Fig. 4D assumes an R0=2.4, if no mitigation was applied. An identical 2.4-fold 289 
reduction is achievable for any other basic virus reproduction rate, as long as 72% of 290 
smartphone users would use the app and ≈166 tests per 100'000 people per were carried out. 291 
We have conducted sensitivity studies to study effects of the false negative rate, network 292 
parameters, test processing times and R0 for the unmitigated case. In all considered 293 
variations, STeCC with contact tracing could achieve R0=1 with reasonable fractions of app-294 
users and test numbers (see supplementary text section 6). Thus, STeCC with contact tracing 295 
could add to any mitigation policy.  296 

 297 
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 298 
 299 
Figure 4. STeCC can achieve R0=1 using a realistic number of tests and realistic rates of app-usage. (A) STeCC 300 
approach vs contact tracing. Contacts of a focal individual are logged using software. Using contact tracing, all 301 
contacts would be quarantined if the focal individual shows symptoms. Using STeCC, the focal individual is tested 302 
for infection if their contacts exceed a threshold number (e.g., if they visit a sporting event and a bar, in addition 303 
to being at home and at work), and quarantined if tested positive.  (B) Progressive test cycling approach. Example 304 
for 80% app users among smart-phone owners and the availability of 165 tests per 100'000 people per day. (C) 305 
Covid-19 mitigation by STeCC alone with quarantine of contacts of virus-positive cases. Graph showing how the 306 
number of tests per 100'000 per day relates to the percentage of app users. We assume R0=2.4 for the 307 
unmitigated case, test speed of 1 day, immediate notification and quarantine, false negative ratio 5%, 308 
asymptomatic cases (1/3 of all) are 50% as infective as symptomatic cases. Solid line: values to achieve R0=1; 309 
dashed line: values to achieve R0=0.8; dashed dotted line: values to achieve R0=1.2. (D) Covid-19 mitigation by 310 
combining STeCC with app-based contact tracing. Graph showing how the number of tests per 100'000 per day 311 
relates to the percentage of app users. We assume R0=2.4 for the unmitigated case, test speed of 1 day, 312 
immediate notification and quarantine, false negative ratio 5%, asymptomatic (1/3 of all) are 50% as infective 313 
as symptomatic cases. Solid line: values to achieve R0=1; dashed line: values to achieve R0=0.8; dashed dotted 314 
line: values to achieve R0=0.6. The coloring indicates the achievable R0 with the respective mitigation strategy in 315 
place (see supplementary text, sections 6 and 7). 316 
 317 

What are the advantages of a STeCC-based mitigation strategy? First, it includes 318 
detection and removal of asymptomatic cases and their contacts. In contrast to contact 319 
tracing alone (Fig. S6), the combination with STeCC would work when >72% of the 320 
smartphone users (≈50% of the overall population) would use the app, or if unfavorable 321 
assumptions about the pandemic's parameters would turn out to be true (Fig. S8). This 322 
synergy is attributable to the different selection processes of both approaches. Furthermore, 323 
STeCC could be implemented within the same apps as developed for contact tracing. This 324 
could offer additional choices for app-based mitigation, i.e. the parallel use of STeCC and 325 
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contact tracing, which is particularly powerful (Fig. 4D). As STeCC focusses on a small high-326 
contact group, it works with relatively small numbers of tests and would only quarantine 327 
those that are virus positive (and their contacts, e.g. Fig. 4C,D). It is realistic given the available 328 
test capacities in several countries and would affect smaller fractions of the population than 329 
other mitigation strategies (i.e. contact tracing or social distancing). Thereby, one could 330 
enhance the impact of Bluetooth-based tracing applications. Due to its key function in virus 331 
transmission, the identified high-contact subgroup would also be a promising priority for 332 
vaccination, once limited supplies of a vaccine become available. 333 

What are the limitations of STeCC? First, we cannot exclude that some assumptions 334 
used in our model may be too optimistic or that more precise information might be derived 335 
later from alternative, more detailed simulation approaches. However, modeling the impact 336 
with less favorable parameters verified that STeCC would still provide substantial benefits 337 
(Fig. S7, Fig. S8). Second, contact counting has not been a focus during the development of 338 
Bluetooth-based proximity testing applications. Thus, small adaptations might be needed, in 339 
order to enable efficient detection and notification of high-contact individuals. 340 

Strict social distancing has been successful in achieving R0<1 in many countries, but at 341 
a high economical and societal cost. Easing of these measures is presently being discussed or 342 
implemented. However, if a large fraction of the population has remained susceptible, a 343 
second wave of disease is bound to occur in the absence of effective alternative mitigation 344 
strategies. We suggest using a combination of contact tracing and STeCC, as a simple 345 
mitigation approach which relies on identifying high-contact individuals, testing them for 346 
infection, and quarantining positive cases. STeCC requires the same information as contact 347 
tracing (a list of unique contacts in a given period of time), and can be implemented using the 348 
same information as the contact tracing apps that are currently being developed or already 349 
in use. STeCC would be achievable using a number of tests that is realistic today in several 350 
European countries, and can be achieved in many others with appropriate efforts. 351 

STeCC adds to the portfolio of mitigation strategies for the Covid-19 pandemic. It could 352 
be deployed quickly in countries with sufficient testing capacities like Switzerland (capacity 353 
≈230 tests per 100'000 per day). A combination with contact tracing might be particularly 354 
powerful. Our study provides quantitative estimates for the number of tests needed by 355 
starting out with realistic assumptions about the relevant parameters, like number of app 356 
users. Once STeCC is applied, one can adjust the strategy flexibly in order to ensure the 357 
desired performance. STeCC offers a realistic approach to help relaxing broad social 358 
distancing policies in the near future without compromising health, while at the same time 359 
providing public health officials with much needed actionable information on the success of 360 
their interventions. This will be an important prerequisite for reclaiming our normal public 361 
life and initiating economic recovery. 362 
 363 
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The dynamic model was implemented with Maple 2018. The calculations for mass testing, 373 
contact tracing and smart testing were implemented with MATLAB and the Statistics Toolbox 374 
Release 2018b. They will be made available at GitHub. 375 
 376 
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Supplementary Text for:
STeCC: Smart Testing with Contact Counting Enhances Covid-19 Mitigation by

Bluetooth App Based Contact Tracing

Hossein Gorji, Markus Arnoldini, David F. Jenny, Wolf-Dietrich Hardt, Patrick Jenny

1. Model

A model is proposed to compute the numbers of infected people whose infection has not (yet) been detected and
the numbers of infected persons with a detected infection (nundet

i and ndet
i ), respectively (Fig. 1). Note that detected here

refers to persons being isolated, which comprises not only those being tested positive, but also those who feel strong
symptoms and thus stay in self-quarantine. It is further important to notice that in the case of SARS-CoV2, the unde-
tected infected people are main contributors to the spread of the pandemic [13]. The exact definitions of detected and
undetected, as well as those of all other variables and model parameters are found in Table S1. Furthermore, we com-
pute the number of fatalities (nd) and the number of people who recovered after a detected or an undetected infection.
Importantly, we assume that these people will have developed protective immunity and we assume that they cannot
be infected again in the considered time frame. The initial susceptible population n0

s is naive (i.e. it lacks immunity
against the infection) and ns is the number of persons who are susceptible at a given time t. In our model we assume
that the virus is mainly passed on by undetected asymptomatic and mild symptomatic persons; the detected population
with mild symptoms transmits at a much lower rate (because of self-isolation, hygiene precautions in hospitals and/or
quarantine). While the model does not consider age dependency, it accounts for higher mortality rates due to tempo-
rary shortage of intensive care units. The graph in Fig. 1 (main part) shows the dynamic dependencies. The Covid-19
specific parameters have to be estimated from the available data; their values are listed below. It should be noted, that
the implementation of our model allows updating our current estimates with more precise values, as new data come in.

Initially, the entire population is susceptible and can get infected. Infected persons first get exposed and are not in-
fectious before the latency time has passed. Then, they either become asymptomatic or mild symptomatic. Asymp-
tomatic persons eventually recover without symptoms, while the others develop symptoms approximately half a day
after the end of the latency time. We assume that persons with mild symptoms isolate themselves approximately one
day after onset of symptoms and then either recover or become strong symptomatic, which requires hospitalization.
Hospitalized individuals either recover or die. Once ns becomes smaller, which happens quickly without any measures,
the infection rate slows down by a factor of ns/n0

s . This mechanism of slowing down spread of the epidemic due to
a shrinking susceptible population is equivalent to herd immunity. It is crucial for the system dynamics that detected
persons are isolated (either by self-isolation at home, by hygienic isolation in hospital setting or in other care facilities,
or by organized isolation programs for detected infected people, e.g. in hotel rooms) and thus participate at a much
smaller rate or not at all in spreading the disease. We assume that these detected infected people have a 10-fold lower
likelihood of infecting others than undetected infected people. All this leads to a dynamic system, which is governed

April 28, 2020
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terminology meaning
susceptible persons of the considered population who are susceptible and thus can potentially get infected
exposed infected persons; can not yet transmit the virus
asymptomatic infected persons without symptoms; can transmit the virus
pre- and mild sympt. (no self isol.) infected persons with no or mild symptoms; infectious, but not isolated
mild sympt. (self isol.) infected persons with mild symptoms; infectious and isolated
strong symptomatic infected persons with strong symptoms and thus hospitalized; isolated
deceased persons who died
recovered persons who recovered
detected isolated either after positive testing or after falling ill
undetected persons who are either exposed, asymptomatic or mild symptomatic, but were never contained
transmissive persons who are either asymptomatic or symptomatic
extreme social distancing R0 = 0.7, if no other mitigation measures are applied; the infection rate is reduced by 71%
moderate social distancing R0 = 1.0, if no other mitigation measures are applied; the infection rate is reduced by 58%
mild social distancing R0 = 1.6, if no other mitigation measures are applied; the infection rate is reduced by 33%
variable
ns and n0

s numbers of susceptible and initially susceptible persons, respectively
ne, ñe and ntot

e numbers of exposed persons; not tested, tested and in total, respectively
nia, ñia and ntot

ia numbers of asymptomatic persons; not tested, tested and in total, respectively
nim, ñim and ntot

im numbers of persons with mild symptoms during first day; not tested, tested and in total, respectively
nms, ñms and ntot

ms numbers of persons with mild symptoms after first day; not tested, tested and in total, respectively
nss, ñss and ntot

ss numbers of persons with strong symptoms; not tested, tested and in total, respectively
nd , ñd and ntot

d numbers of deceased persons; not tested, tested and in total, respectively
nra, ñra and ntot

ra numbers of recovered persons who had no symptoms; not tested, tested and in total, respectively
nrs, ñrs and ntot

rs numbers of recovered persons who had symptoms; not tested, tested and in total, respectively
nundet

i undetected infected persons: nie + nia + nim
ndet

i detected infected persons: nms + nss + ñms + ñss + ñie + ñia + ñim

K , Pk and µ number of contacts, its probability density and its average, respectively
K0 minimum degree of connectivity in the sub-population
parameter
α and A(τ) rate coefficient for infection and expected infectiousness τ days after infection, respectively
Q relative infection rate by outside contact (travel)
ε ratio between infection rate of self-quarantined and non-quarantined symptomatic cases
βa and βs rate coefficient for latency of asymptomatic and symptomatic cases, respectively
θ rate coefficient for mortality of hospitalized cases
γa, γms and γss rate coefficients for recovery
ξms and ξss rate coefficients for successively stronger symptoms
ke, ka and ks rate coefficients accounting for testing
R0 basic reproduction number
R

symp
0 and Rasym

0 basic reproduction number of symptomatic and asymptomatic cases, respectively
Rwt

0 , Rnn
0 ,RS T−A

0 , RS T−B
0 and RS T−C

0 reproduction number subject to testing, reshaping the network, STeCC-A, STeCC-B and STeCC-C, respectively
κ fraction of basic reproduction number related to symptomatic cases
ζ percentage of app users among smart-phone owners
θ(sat) and θ(0) rate coefficient for mortality of hospitalized cases without and with intensive care units, respectively
γ(sat)

ss and γ(0)
ss rate coefficient for recovery of hospitalized cases without and with intensive care units, respectively

N testing interval
N−1 testing frequency
η fraction of false negative test results
C(sat)/2.5 fraction of total population for which intensive care units are available
m and kc lower and higher cut-off of the connectivity distribution, respectively
γ difference between the exponent of the power law model and 2
T disease transmissibility
E, ES T−A, ES T−B and ES T−C efficacy of contact counting, STeCC-A, STeCC B and STeCC C, respectively
operator
E(·) expectation
PA and Prob{A} probability of the eventA

Table S 1. Terminology and nomenclature of model parameters and variables2
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by the following ordinary differential equations:

ṅs = −α(nia/2 + nim + εnms)
ns

n0
s
− Q

ns

n0
s
, (1)

ṅe = α(nia/2 + nim + εnms)
ns

n0
s
− (βa + βs)ne + Q

ns

n0
s
− kene, (2)

ṅia = βane − γania − kania, (3)
ṅim = βsne − ξmsnim − ksnim, (4)
ṅra = γania, (5)
ṅms = ξmsnim − (γms + ξss)nms, (6)
ṅss = ξssnms − (γss + θ)nss, (7)
ṅrs = γssnss + γmsnms and (8)
ṅd = θnss. (9)

Note that ε ∈ [0, 1] is the transmission reduction factor of the self-isolated individuals. It is assumed that those infected
persons who were detected by testing or hospitalized infect much less due to strong isolation and other precautions.
Therefore, their effect on the infection rate is neglected here. In order to parametrize the model, besides the rates α,
βa, βs, γa, γms, γss, ξms, ξss and θ, also the relative rate Q of infections from outside, i.e., by travel or from the animal
world, has to be determined. Further, the initial values of ns(t), ne(t), nia(t), nim(t), nra(t), nms(t), nss(t), nrs(t) and nd(t)
have to be chosen. The variables ñe(t), ñia(t), ñim(t), ñra(t), ñms(t), ñss(t), ñrs(t) and ñd(t) denote the respective numbers
of persons who were tested positive and thus are removed from transmission. The detection rates of exposed (ne),
asymptomatic (nia) and mild symptomatic (nim) persons due to testing are proportional to ke, ka and ks, respectively.
These individuals are then accounted for by the respective numbers ñe(t), ñia(t) and ñim(t); see Fig. S1. Note that the
graph in Fig. S1 is very similar as the one in Fig. 1, except that there is no node for susceptible persons (since by
definition a susceptible person can not be detected infected) and that there exist sources due to testing (dotted arrows)
instead of sinks. To account for the dynamics with testing, the system (1)-(9) has to be augmented by the ordinary
differential equations

˙̃ne = −(βa + βs)ñe + kene, (10)
˙̃nia = βañe − γañia + kania, (11)
˙̃nim = βsñe − ξmsñim + ksnim, (12)
˙̃nra = γañia, (13)
˙̃nms = ξmsñim − (γms + ξss)ñms, (14)
˙̃nss = ξssñms − (γss + θ)ñss, (15)
˙̃nrs = γssñss + γmsñms and (16)
˙̃nd = θñss. (17)

The effect of testing is further discussed in Section 3. Next it is described how the parameters can be estimated based
on literature data.

2. Parameter Estimation

Our devised generalized SEIR model becomes closed once we tune the rate coefficients. These coefficients were
computed mainly based on data provided in recently published reports [6, 27]. Before giving the values for transfer
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Fig. S 1. Graph showing the dependencies of the compartments describing the dynamics of the positively tested people.
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rates between different compartments, let us analyze the basic reproduction number R0 of this virus infection with
Q = 0 and ns(t) ≈ n0

s . Note that R0 represents ”the expected number of secondary cases produced, in a completely
susceptible population, by a typical infective individual” [4]. If R0 becomes < 1, virus spread will decline, and if
R0 > 1, virus spread will increase. To compute R0, we split the dynamics of the infected population into the infection
driven propagation f and the remainder V , i.e.,


ṅe

ṅia

ṅim

ṅms

ṅss

 =

f︷                     ︸︸                     ︷
0 α/2 α ε 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




ne

nia

nim

nms

nss

 −
V︷                                                  ︸︸                                                  ︷

βa + βs 0 0 0 0
−βa γa 0 0 0
−βs 0 ξms 0 0

0 0 −ξms ξss + γms 0
0 0 0 −ξss θ + γss




ne

nia

nim

nms

nss

 . (18)

Note that testing is not considered here, i.e., ke, ka and ks are zero. The R0 of this system is the spectral radius of f V−1,
that is,

R0 = ρ( f V−1) =
αβs

βa + βs

[
βa

2γaβs
+

1
ξms

+
ε

γms + ξss

]
. (19)

By inspecting Eq. (19), we observe that we can move towards a stable state (corresponding to R0 ≤ 1) by reducing
the infection rate α via mitigation policies such as social distancing. Importantly, as shown later, R0 can be reduced as
well by introducing mass testing, contact tracing, smart testing and subsequent isolation of detected infected individuals.

Next, to clarify our choice of model coefficients, we discuss the rates which appear in transmissive and non-transmissive
compartments separately. Finally, the increase of mortality due to lack of intensive care units is modeled.

1. Transmissive : We model the incubation time to be log-normally distributed with mean 5.84 (day) and standard
deviation 2.98 (day) [25, 18]. In accordance with [6] we take the latency time xl such that in average it becomes
half a day shorter than the incubation time. Similar to the incubation time, we adopt a log-normal distribution for
xl but with mean 5.34 (day) and standard deviation 2.7249 (day). We assume that 1/3 of the cases won’t have no-
ticeable symptoms and 2/3 become symptomatic half a day after latency [6]. This leads to βa = 1

3E(1/xl) = 0.078
(1/day), where E(·) denotes the expectation which gives us the average latency rate. Due to the ratio of 1/3 to 2/3
between asymptomatic and symptomatic cases we get the transfer rate from being exposed to infectious symp-
tomatic as βs = 2βa = 0.156 (1/day).

We suppose that it takes around 1 day from onset of symptoms to self-isolation [6]. Since it takes half a day
time delay from becoming infectious to symptomatic, we get ξms = 1/1.5 = 0.6667 (1/day).

The average onset to discharge time of clinical cases is around 22 days [27]. We assume that for mild-symptomatic
cases the onset to recovery time would be half of this amount, i.e., around 11 days. Therefore the average re-
covery time from end of the latency period becomes 11.5 days for mild-symptomatic cases. We set the same
recovery time for asymptomatic cases which leads to γa = 1/11.5 = 0.087 (1/day).

A range of values have been suggested for infectiousness of asymptomatic cases; one finds 0.1 in [7], 2/3 in
[6] and 1 in [12]. We assume that the asymptomatic cases are 50% less infectious. Furthermore we consider
the self quarantined patients to be 90% less infectious, i.e., ε = 0.1 is adopted. To compute the infection rate α,
we assume R0 = 2.4 [6]. Following Eq. (19), the infection rate becomes α = 0.6711 (1/day). Since the basic
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reproduction number is the most important single parameter of the system, we performed sensitivity studies by
changing R0 [14].

2. Non-transmissive: The mean delay time from appearance of symptoms to hospitalization has been reported to be
around 11 days [27]. However, 80% of symptomatic cases would not require hospitalization [15]. For those who
develop strong symptoms, the delay from self-isolation to hospitalization then becomes 11− 1 = 10 days. Hence
we get ξss = 0.2 × 1/10 = 0.02 (1/day) and γms = 0.8 × 1/10 = 0.08 (1/day). Note that the latter gives onset to
recovery time of 11 days for mild cases consistent with our earlier assumption.

The average hospital treatment time is 11 days [27, 6]. In case of availability of intensive care units we as-
sume that 20% of hospitalized cases die [15]. Accordingly, we get γ(0)

ss = 0.8 × 1/11 = 0.0727 (1/day) and
θ(0) = 0.2 × 1/11 = 0.0182 (1/day).

3. Fatality increase: We assume that the case fatality ratio increases by two-fold in saturation of the health system.
This is justified by noting that the case fatality ratio has increased from approximately 5% in China [2] to roughly
10% in Wuhan while it was the epicentre of the outbreak [20]. By taking this factor into account, and assuming
that the average time of hospital treatment remains 11 days, we can compute the death rate of hospitalized cases
once saturation of intensive care units is reached as θ(sat) = 0.4 × 1/11 = 0.0364 (1/day). Note that consis-
tently one obtains γ(sat)

ss = 0.6 × 1/11 = 0.0546 (1/day). It is assumed that there exist eight intensive care beds
per 100’000 persons [6] and that 40% of the hospitalized cases need such treatment. Accordingly, saturation is
reached once the number of hospitalized cases, i.e., nss, exceeds C(sat) = 0.02% of the total population.

The adjusted rate

θ(ntot
ss ) =

n0
s

ntot
ss

(
min

{
C(sat),

ntot
ss

n0
s

}
θ(0) + max

{
0,

ntot
ss

n0
s
−C(sat)

}
θ(sat)

)
(20)

then quantifies the death rate of hospitalized cases as the weighted average of θ(0) and θ(sat); the consistently
adjusted recovery rate becomes

γss(ntot
ss ) = γ(0)

ss + θ(0) − θ(ntot
ss ). (21)

All estimates here are summarized in Table S2; note that these values can easily be adapted, if more reliable data be-
comes available. The resulting parameter values for our base case are provided in Table S3.

Figure 2A shows the model results without mitigation for a period of 600 days with R0 = 2.4. Results with R0 ∈

{1.9, 2.9} are shown in Fig. S2A,B. Dashed lines represent the immune plus deceased plus infected (n0
s − ns), dash-

dotted lines the infected (nundet
i + ndet

i ) and solid lines the deceased (ntot
d ) population. For bigger values of R0, a larger

immune population is needed to achieve herd immunity (right half of the graphs), and the peak in the number of infec-
tions is higher and sharper.

The plot in Fig. S2C shows the case with R0 = 2.4 without intensive care unit limitation; compare with Fig. 2A,
which shows the same case with intensive care unit limitation (our base case). In both cases 87% of the population will
become immune, which compares well with 81% infected people predicted by [6] for the UK and US populations in
the absence of mitigation plans. Without intensive care the chance of dying is roughly twice as high for strong symp-
tomatic people than with proper treatment (4.6% vs. 2.3%). While these numbers are subject to errors (mainly due to
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probability conditional on expression base case value
→ pre- and mild sympt. (no self isol.) asympt. S (m) 2/3, [1/2, 2/3]
→ strong sympt. (hospit.) mild sympt. (self isol.) S (s) 1/5
→ deceased hospit.; with icu M(0) 1/5
→ deceased hospit.; no icu M(sat) 2/5
char. time scale (days)
→ pre- and mild sympt. (no self isol.) exposed S (m)β−1

s 4.27
→ mild sympt. (self isol.) pre- and mild sympt. (no self isol.) tim = ξ−1

ms 1.5
→ strong sympt. (hospit.) mild sympt. (self isol.) tms = S (s)ξ−1

ss 10
→ deceased str. sympt. M(0,sat)/θ(0,sat) 11
→ recovered asymptomatic tia = γ−1

a 11.5
further parameters
basic reproduction number R0 2.4
infection rate reduction factor mild sympt. (self isol.) ε 0.1
rel. intensive care capacity C(sat)/2.5 0.00008
social distancing, contact tracing and testing
infection rate reduction factor social distancing λ 0
testing frequency (1/days) testing N−1 0
testing process time (days) testing τproc 1
fraction of false negative test results testing η 0.05, {0.5, 0.15, 0.25}
success rate of contact tracing contact tracing ζ [0.3, 1]
fraction of exposed people who develop no symptoms contact tracing r1 [1/3, 1/2]
fraction of exposed people who develop no symptoms contact tracing r2 [0.1, 0.5]

Table S 2. Estimations made for the model closure, social distancing, contact tracing and testing.

parameter value
α 0.670 (1/day)
ε 0.1
βa 0.078 (1/day)
βs 0.156 (1/day)
γa 0.087 (1/day)
ξms 0.667 (1/day)
γms 0.08 (1/day)
ξss 0.02 (1/day)
γ(0)

ss 0.072 (1/day)
θ(0) 0.0182 (1/day)
θ(sat) 0.0364 (1/day)

initial condition value
n0

s 6’384’631’490 (world population outside of China)
ne(0) 1’000

Table S 3. List of estimated parameters and initial values. Note that our model allows to easily replace any of these parameters by more precise
estimates, as more data become available. The initial values of all numbers except ne are set to zero.

uncertainties in the parameter values and efforts to increase intensive care and respirator availability), it can be expected
that the relevant dynamics is captured to a high degree. If the results are regarded with respect to the base case, much
insight can be gained, e.g. how social distancing, mass testing and smart testing can be combined most effectively.
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R0 = 1.9; with ICU capacity limit R0 = 2.9; with ICU capacity limit R0 = 2.4; without ICU capacity limit
(A) (B) (C)

Fig. S 2. Alternative model outcomes when changing R0 of the pandemic, or relaxing the assumption that ICU beds are limiting. Dashed blue
lines represent recovered and deceased, dashed-dotted green lines infected, and solid red lines deceased people. Changing R0 to (A) 1.9 and (B) 2.9
changes the outcomes quantitatively, but does not change the overall picture. (C) Model outcome if the assumption that full ICUs increase the death
rate is dropped.

3. Mass Testing - How the Number of Tests Relates to R0

Here we analyze how many tests are needed to mitigate the Covid-19 pandemic if no other mitigation strategies
were applied. If we can use more tests than that, R0 will drop below one, the incidence would decline and the pandemic
would eventually end, even if no vaccines or infection therapies become available. Therefore we studied how R0 varies
once confirmed cases get isolated (in addition to self-quarantined and hospitalized individuals). Of particular value is
the relationship between R0 and the interval of testing the susceptible population (i.e., the frequency of testing needed
for reducing R0 below one). Thereby we can determine the key technical parameter of interest, i.e., the number of tests
per 100’000 people that must be tested per day in order to achieve the desired R0 value; we chose R0 = 1 as the target
value for our analyses (if not indicated otherwise), which would suffice to keep the number of infected people constant.

To be realistic, we suppose that the processing time τproc of mass testing would be somewhere between half a day
and two days. Furthermore, a fraction η = 0.05 of false negative test results is taken into account [17]. It should be
noted, however, that this is a rough estimate. The use of standards allows for very high reproducibly of the virus RNA
detection results even between different laboratories [3]. The true rate of false negatives and false positives is currently
not known. We assume that a false negative rate of 5% is a conservative estimate. The current virus RNA testing
capacities in continental Europe reach up to 230 tests per 100’000 people per day (e.g. in Switzerland). If equipment
and supplies are not limiting for testing, e.g. by using a quantitative polymerase chain reaction (qPCR) method 1, we
estimate that up to around 1’000 samples within a time frame of eight hours can be analyzed per machine. Mass testing
(i.e., if > 500 − 1′000 tests per 100’000 perople per day would be required) could be realizable by taking advantage of
next-generation RNA extraction, reverse transcription and sequencing (combined with reverse transcription and PCR)
to detect the virus RNA of infected people. For example, in [11] a massively parallel diagnostic assay is described

1https://www.roche.com/media/releases/med-cor-2020-03-13.htm
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for testing up to 19’200 patient samples per work flow. In principle, such very high throughput approaches can be
parallelized (and potentially optimized) to provide millions of tests per day. In reality, the logistics of collecting these
millions of samples would however be a major hurdle. First, we want to assess how many tests were indeed necessary
to stop the virus spread (i.e., to reach R0 ≤ 1 if no other mitigation strategies were applied).

Obviously, the scenario that the whole susceptible population is tested perfectly at once would lead to a trivial dis-
ease free state. However, this is an unrealistic scenario, not only because of a lack of test capacity, but also due to
logistic and compliance concerns. Therefore, it is only realistic to assume that individuals would be tested at different
schedules. Let us consider a situation where each person is tested once every N days. Note that this is equivalent to
testing a random fraction of 1/N of the susceptible population every day. Therefore we focus on the set {1, ...,N} of
days. An individual is infected at some random time x. To characterize x, we assume that the likelihood of getting
infected does not vary much during these days, which is justified if testing is applied at an intensity such that R0 ≈ 1.
Hence x becomes uniformly distributed in the interval [1,N]. The time delay between infection and detection would
then be τdet = N − x + τproc. Finally, we sample the latency time xl from a log-normal distribution with 5.34 ± 2.7249
(see Section 2).

Intuitively, by conducting mass testing on individuals who are neither self-quarantined nor hospitalized, positive cases
will be detected from exposed, asymptomatic and mild-symptomatic compartments. To quantify each detection rate,
it is essential to compare detection time versus the latency period; therefore we consider the effect of testing on these
three compartments individually:

1. Exposed: Once testing occurs during the latency period of an infected individual, they would be detected from
the exposed compartment. This translates into an event set A : τdet ≤ xl. The rate of detecting individuals by
testing from the exposed population then reads

ke = (1 − η)PAEA
[
τ−1

det

]
, (22)

where PA and EA denote frequency of such events and conditional expectation, respectively.

2. Mild-symptomatic: Once testing occurs after the latency period, one has to distinguish between two types of
infection developments. According to our setting, two thirds of the infected individuals would develop symptoms
that will lead them to self-isolate. Please note, that the fraction of infected individuals that remain asymptomatic
may range between 33%-50% [6, 7, 24]; see Table S2. Therefore, we have also tested scenarios where 60%
or 50% of infected will will progress to develop symptoms; see Fig. S5. These individuals may in fact turn to
testing centers in order to detect the virus and incentivize the decision for self-quarantine. They can be detected
by testing and therefore sent into quarantine in the span of one and a half days after becoming infectious. The
relevant event set is B : (τdet ≥ xl) ∩ (τdet ≤ (xl + 3/2)), from which one obtains

ks =
2
3

(1 − η)PBEB
[
τ−1

det

]
(23)

for the test detection rate of mild-symptomatic persons.

3. Asymptomatic: This is arguably the most important group to consider, because they will not know that they are
infected and they can make up as much as 50% of the entire group of the infected people. Importantly, they
are very hard to identify using the current mitigation strategies, including app based contact tracing [7]. We
will discuss this in more detail, below. Testing may catch asymptomatic cases. These individuals won’t have

9

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.03.27.20045237doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.27.20045237


symptoms and would then recover after 11.5 days. In their first one and a half days they share same the time-line
as mild symptomatic ones. Therefore, in this scenario two event sets B : (τdet ≥ xl) ∩ (τdet ≤ (xl + 3/2)) and
C : ((τdet ≥ (xl +3/2))∩ (τdet ≤ (xl +11.5)) become relevant. We obtain the detection rate from the asymptomatic
compartment as

ka =
1
3

(1 − η)PBEB
[
τ−1

det

]
+ (1 − η)PCEC

[
τ−1

det

]
. (24)

Before finding the map from testing frequency N−1 to R0, we need to find out how R0 varies with re-
spect to the test detection rates ke, ka and ks. Hence, let us define Rwt

0 as the reproduction number sub-
ject to testing. To compute Rwt

0 , the main dynamics of the infected population, which can be described by
[ne(t), nia(t), nim(t), nms(t), nss(t), ñe(t), ñia(t), ñim(t), ñms(t), ñss(t)]T , is split into the rate of appearance f of new infected
individuals and transfer Ṽ of infected ones across different compartments, i.e.,

f =



0 α/2 α ε 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



(25)

and

Ṽ =



βa + βs + ke 0 0 0 0 0 0 0 0 0
−βa γa + ka 0 0 0 0 0 0 0 0
−βs 0 ξms + ks 0 0 0 0 0 0 0

0 0 −ξms ξss + γms 0 0 0 0 0 0
0 0 0 −ξss θ + γss 0 0 0 0 0
−ke 0 0 0 0 βa + βs 0 0 0 0
0 −ka 0 0 0 −βa γa 0 0 0
0 0 −ks 0 0 −βs 0 ξms 0 0
0 0 0 0 0 0 0 −ξms ξss + γss 0
0 0 0 0 0 0 0 0 −ξss θ + γss



, (26)

which leads to

Rwt
0 = ρ( f Ṽ−1) =

αβs

βa + βs + ke

[
βa

2(γa + ka)βs
+

1
ξms + ks

(
1 +

εξms

γms + ξss

)]
. (27)

It is important to emphasize that in contrast to social distancing the effect of testing on the reproduction number is not
through reducing the infection rate (i.e., f remains the same), but rather through transfer of infected individuals to
quarantine, either at home or in hotel rooms, or in care units with strict hygiene barriers, all of which would reduce the
likelihood of transmission (i.e., changing V to Ṽ).
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Using Monte-Carlo to estimate the test detection rates given by Eqs. (22) and (23) one can compute the ratio
Rwt

0 /R0 with respect to the testing frequency N−1. The plots in Figs. S3A,B show the number of tests required to
reach R0 = 1. It depends on the time from sampling to result (note: we assume immediate notification and immediate
implementation of quarantine measures upon notification) and on the false negative rate (5% in Fig. S3A and 15% in
Fig. S3B). The horizontal green dashed lines indicate Rwt

0 = 1, if the virus reproduction rate in the case without any
mitigation is R0 = 2.4.
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Fig. S 3. Mass testing: The number of tests required to reach R0 = 1 depends on the time from sampling to result. A mitigation strategy relying on
mass testing alone is assumed and we computed the number of tests performed per day, which are needed to achieve a particular test-speed dependent
Rwt

0 /R0 ratio; for (A) 5% and (B) 15% false negative test results are assumed. The green lines indicate Rwt
0 = 1. Test speeds were: 0.5 days (black

line), 1 day (orange line), 1.5 days (blue line) and 2 days (purple line).

One can see for example that reducing the initial R0 = 2.4 to one would require to test the entire sceptible
population roughly once every eight days, if the false negative rate is 5%, if testing results are available after one day
and quarantine of the detected individuals commences immediately. Corresponding results are depicted in Fig. S4B,
which shows model outcomes if R0 is reduced to one by testing 12’600 per 100’000 people per day. Note that this
corresponds to a testing interval of 7.92 days or equivalently to a fraction of 1/7.92 which has to be tested every day.
Figure S4A shows the outcome when social distancing is applied to reduce R0 to one, which is equivalent to a 58%
reduction of the infection rate. We define this as moderate social distancing; see Table S1. By comparing Figs. S4A
and S4B one observes that mass testing and social distancing yield qualitatively equivalent results. For half a day delay
time the testing interval can be increased to roughly twelve days and for a delay time of one and a half days it would be
five days. This information is important for optimizing technical development decisions. The overall testing capacity
needs to be larger, if the testing method requires more time (Fig. 3) or if delays in case-notification or implementation
of quarantine measures occur. This could be justified, if a low-cost technique (such as next generation sequencing)
could be devised [11]. Alternatively, one could aim for fewer tests, if they are completed in less than half a day. If
combined with social distancing, the basic reproduction number can be reduced by the factor (1 − λ)Rwt

0 /R0, where
λ ∈ [0, 1] is the intensity of social distancing (λ = 0 means no social distancing and λ = 1 means complete isolation of
everybody).

11

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.03.27.20045237doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.27.20045237


m
od

er
at

e 
so

ci
al

 d
is

ta
nc

in
g 

ph
as

e

strategy 1

m
as

s 
te

st
in

g 
ph

as
e

strategy 3

strategy 1 strategy 3

moderate social distancing mass testing 12’600 per 100’000 per day
(R0 = 1) (R0 = 1)

(A) (B)

Fig. S 4. Moderate social distancing vs. mass testing: Model outcomes if R0 is reduced to 1 by mass testing or social distancing. (A) Moderate social
distancing (R0 = 1, equivalent to a 58% reduction in infection rate) and (B) testing 12’600 per 100’000 people per day yield qualitatively equivalent
results.
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4. Contact Tracing - How Size and Infectiousness of the Asymptomatic Population Relates to R0

Contact tracing has been proposed to slow down or even stabilize the pandemic [7, 10, 8]. The strategy is that
symptomatic individuals who go into self quarantine will use an App to alert all proximity contacts of the past two
weeks. Subsequently, these identified individuals self-isolate themselves. For the following analysis we assume that
the notice-to-quarantine time delay is negligible [7, 10].

To analyze the effect of contact tracing on the basic reproduction number, the expected infectiousness A(τ) at
time τ after infection plays a central role. By knowing A(τ) we can extract the basic reproduction number as

R0 =

∫ ∞

0
A(τ)dτ. (28)

Note that the above equation is consistent with our previous computation of R0 in the linear regime [4]. In our com-
partmental setting shown in Fig. 1 one obtains the expression

A(τ) =
∑
i∈Sc

PiAi(τ), (29)

where Pi is the probability that an infected individual is in compartment ci, Sc = {s, e, ia, ra, im,ms, rs, ss, d} is the
index set of all compartments and Ai(τ) denotes the infectiousness at time τ after infection, if the individual is in ci.
Correspondingly, we denote the time spent in each compartment as ti∈Sc . From Eqs. (28) and (29), if we assume that
infectiousness is constant inside each compartment, we obtain

R0 =

R
asym
0︷  ︸︸  ︷

αr1r2tia +

R
sym
0︷                       ︸︸                       ︷

α(1 − r1)
(
tim +

1
10

tms

)
, (30)

where r1 = 1 − S (m) is the fraction of exposed people who develop no symptoms (thus remain asymptomatic), and r2
is the factor by which asymptomatic people are less infectious than symptomatic ones. For both r1 and r2 different
values are suggested in the literature. For r1 one finds 1/3 in [6], 0.4 in [7] and 0.5 in [24], and for r2 one finds 0.1
in [7], 2/3 in [6] and 1 in [12]. Based on these published numbers we consider r1 ∈ [0.3, 0.5] and r2 ∈ [0.1, 0.5].
From Eq. (30) with our base case values r1 = 1/3 and r2 = 0.5 one obtains α = 0.67 (1/day), which is consistent
with our previous parameter estimation. Based on our previous assumptions and on the values in Table S2 we obtain
tia = γ−1

a = 11.5 days, tim = ξ−1
ms = 1.5 days and tms = S (s)ξ−1

ss = 10. Interesting here is the fraction

κ =
R

sym
0

R0
=

(1 − r1) (tim + tms/10)
r1r2tia + (1 − r1) (tim + tms/10)

(31)

of infected people who got infected by symptomatic cases, since this is the maximum relative reduction of R0 which
can be achieved by tracing contacts of symptomatic individuals (by classical contact tracing or by using an app) with a
success rate of ζ = 1. Ignoring secondary infections (their probability becomes around 0.8%) we obtain the approxi-
mation

Rct
0 ≈

[
1 − ζκ

]
R0 (32)

for the basic reproduction number, if contact tracing is employed. Figures S5A and S5B show the performance of
contact tracing for different r1-, r2- and ζ-values. The numbers attached to the isolines refer to the ratio Rwt

0 /R0, and
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(A) (B)

Fig. S 5. Contact tracing: Effectiveness of contact tracing as function of relative infectiousness of asymptomatic cases (r2) and the success rate of
contact tracing (ζ). (A): 33% of infected ones are asymptomatic (r1 = 0.33); (B): 50% of infected ones are asymptomatic (r1 = 0.5). The numbers
attached to the isolines refer to the ratio Rwt

0 /R0, and the bold contours depict combinations of r2 and ζ for which R0 is reduced from 2.4 to Rct
0 = 1.

In all computations, notice-to-quarantine time was neglected and it was assumed that quarantined contacts are not infectious.

the bold contours depict combinations of r2 and ζ for which R0 is reduced from 2.4 to Rct
0 = 1. One can conclude that

the effect of contact tracing, if only applied to identify contacts with symptomatic persons, is limited to optimistic as-
sumptions concerning the parameters dictating the Covid-19 pandemic and strongly depends on size and infectiousness
of the asymptomatic population relative to size and infectiousness of the symptomatic one. Even if the most optimistic
assumptions would hold, more substantial reductions of R0 would be desirable in order to accelerate the end of the pan-
demic (e.g. even in the absence of effective therapies or vaccines). For our base parameters of r1 = 1/3 and r2 = 1/2,
the contact tracing alone would not lead to basic reproduction number of one (see Fig. S 5A at 50% infectiousness).

5. Smart Testing - How Selectivity Relates to R0

Here it is studied how the number of required tests can be reduced, if one is able to identify (and propose testing
to) a subpopulation with a prevalence higher than the overall population.

Without any additional knowledge, to achieve the discussed detection rates ke, ka and ks and corresponding re-
ductions in R0, one has to test the entire undetected population once every N days (or equivalently every day a random
fraction of 1/N). To improve the efficiency of testing, i.e., the probability per test of getting a positive result by avoiding
unnecessary testing of people who have a low likelihood of being infected, one can reduce the sample population by
the following approaches:

1. Serological testing: With serological testing one can remove the recovered population from the pool of undetected
individuals, and thus the same number of positive test results can be achieved with fewer tests. However, during
an early stage of the pandemic the relative size of the undetected recovered compared to the whole undetected
population is very small, and therefore the gain would be negligible. Nevertheless, this approach can easily be
integrated into any mass testing strategy once reliable serological tests become available. Here, we can assume
that immune individuals will remain immune for an extended period of time (e.g. up to 1-2 years; however, this
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is still subject to verification). If immune people cannot be infected for a second time (or are infected at a much
lower rate than susceptible individuals), one can collect the information on positive test results to exclude the
immune individuals from the Covid-19 RNA testing.

2. Inference from contact tracing: A more effective approach would be based on an inference model (e.g. by using
contact tracing of infected individuals), which allows to divide the sample population D into one subpopulation
D̃ with a higher and the remainder with a lower percentage of infected individuals. For the following analysis we
denote the size ofD with n and that of D̃ with ñ. Further, p̃ is the fraction of infected persons in D̃ and p that in
D. Testing every person in D̃ at a frequency of 1/N would require ñ/N tests per day; opposed to n/N tests, if the
whole sample population was tested. The respective numbers of positive test results per day, on the other hand,
would be P̃(N) = p̃ñ/N opposed to P(N) = pn/N. In order to obtain the same number of positive results from
the subpopulation D̃ as one would get fromD, one has to reduce the test interval N to Ñ, such that P̃(Ñ) = P(N).
From this one obtains Ñ = N( p̃ñ)/(pn) and one can conclude that the number of tests required to achieve the
same overall quota reduces by the factor

r =
ñ/Ñ
n/N

=
Nñ
Ñn

=
p
p̃
. (33)

In order for this result to be practically meaningful, Ñ has to be at least one, which translates into the requirement
that

ñ
n
≥

r
N
. (34)

In short, if one can identify a subpopulation D̃ ⊂ D for which the percentage of infections is higher by a factor
of r−1 than inD, and which is larger than nr/N, then the number of tests needed to obtain the same reproduction
number reduces by the factor r. The curves in Fig. 3B show the relationship between number of tests per 100’000
people per day needed to achieve R0 = 1 and the prevalence ratio between sub- and overall population; in
combination with mild social distancing (solid line) and without social distancing (dashed line).

6. Contact Counting - How to Screen Large Enough Subpopulations with High Prevalence

Here we devise a way to screen large enough subpopulations with a much higher prevalence and infectiousness
than the overall population, which is a prerequisite for smart testing.

We study three subpopulations as potential candidates for our smart testing mitigation approach; of interest are
their prevalence, their infectiousness and their size. Next we describe them and provide quantitative estimates for the
most relevant subpopulation.

1. Contacts of symptomatic cases: A straight-forward approach would be to choose the contacts of symptomatic
cases as our subpopulation. While this group is highly likely to be infected, this approach has one major draw-
back. In fact, the outcome of testing contacts of symptomatic cases would not be much different than that of
contact tracing mentioned before (and discussed in detail by Ferretti et al.[7]). Therefore, it suffers from the
same limitation of not catching sufficient numbers of asymptomatic infections. Besides tracing contacts which
potentially got infected by a symptomatic individual, one may also find the contact by whom it got infected.
That person has most likely recovered, since he/she got infected roughly 10-14 days ago. Therefore this contact
would not be tested positive (as virus titers may already be low and as we still lack reliable serological tests)
and hence testing contacts of symptomatic ones would not lead us to a larger group with a sufficient number of
asymptomatic cases.
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2. Direct and indirect contacts of symptomatic cases: One way to cope with the issue arising from lack of enough
asymptomatic cases in the contacts of symptomatic ones is to enlarge our sample population and include also
indirect contacts of symptomatic individuals in the past two weeks. This strategy, while most probably catching
enough asymptomatic cases, may not reduce the burden of mass testing, since now the size of the subpopulation
becomes simply too large. This problem has also been noted by others [10]. For example at a prevalence of 1%
in the total population, and assuming 10 contacts per person, the size of this subpopulation becomes almost as
large as the whole population.

3. High-contact individuals (Fig. 4A): In this scenario we only test those with significantly more contacts than the
average. In the following we show that indeed this strategy allows to screen a high prevalence subpopulation
which is also large enough to stop the pandemic. It is also important to emphasize that the prerequisite of this
strategy is to utilize a contact counter, which may be integrated into an existing contact tracing app that uses
bluetooth technology.

While the improvements resulting from contact counting can be estimated based on the prevalence ratio, the contact
counting scheme has a more fundamental feature that exhibits itself directly in the basic reproduction number. In
fact by cutting out the highly transmissive parts of the population network, we reduce the basic reproduction number
significantly. This reduction in R0 can be evaluated by considering the transmissibility of the disease T . In short,
considering a normalized recovery rate, T is the probability that an infected person infects one of their contacts per
unit of time. Consider K to be the degree of connectivity of a person; therefore we can compute T for a heterogeneous
network as [19, 22]

T = R0
E[K]

E[K2 − K]
. (35)

Now imagine a scenario where we halt the virus-spread among all individuals with a degree of connectivity above K0;
for example via vaccinating every person who has contact numbers aboveK0. Therefore, we get a reduction in the virus
reproduction number

Rnn
0 =

E[K2 − K|K ≤ K0]
E[K2 − K]

E[K]
E[K|K ≤ K0]

R0, (36)

where Rnn
0 denotes the basic reproduction number of the new network. For a specified size of the new network this

would be the maximum reduction one could achieve by reshaping the network, as the tail of the contact distribution
is removed (Fig. 4B). However, in practice there are failures in containing the virus-spread through highly connected
people. The efficacy E of a smart testing based on contact counting thus depends on the number of highly connected
people who would employ the contact counting app, as well as the accuracy of the tests. In the following we compute
how these boundary conditions affect STeCC. However, before proceeding, notice that we suppose that the isolated
individuals have negligible contributions to the virus-spread. Furthermore, we assume that elderly people (above 70
years of age) are shielded by isolation and that children below 10 years would not contribute to the infection dynamics
[26, 9]. Therefore our target subpopulation is considered to be in possession of smart-phones.

Let us define a testing regime, where we screen through app users with number of connections K ≥ K
(1)
0 at

day 1, K (2)
0 ≤ K0 ≤ K

(1)
0 at day 2 and so-forth until testing K (Tt)

0 ≤ K0 ≤ K
(Tt−1)
0 at day Tt. Consequently, based on

the test results, we ask the positively tested individuals to quarantine themselves. We fix the testing cycle to Tt = 7
days (see Fig. 4). Consider ζ to be the fraction of smart-phone owners who utilize the app. The portion of the
network besides the fraction ζ that we can disconnect from the population depends on the probability of the event that
a positively tested highly connected individual could pass on the virus to at least one person in the past Tt + τproc days.
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Let us denote such an event by Aout and consider the test processing time τproc. Therefore the reduction in R0 during
the whole cycle of STeCC becomes

Rnn
0 =

P
K≤K

(Tt )
0

E[K2 − K|K ≤ K
(Tt)
0 ] + (1 − E)P

K≥K
(Tt )
0

E[K2 − K|K ≥ K
(Tt)
0 ]

P
K≤K

(Tt )
0

E[K|K ≤ K (Tt)
0 ] + (1 − E)P

K≥K
(Tt )
0

E[K|K ≥ K (Tt)
0 ]

E[K]
E[K2 − K]

R0, (37)

where E is the efficacy of STeCC and can be computed via

E = 1 −
(
(PAout (1 − η) + η)ζ + (1 − ζ)

)
. (38)

Note that η is the fraction of false negative test results , PAout is the probability of the event Aout, PK≤K (Tt )
0

is the

probability that an individual has contacts below K (Tt)
0 and P

K≥K
(Tt )
0

= 1 − P
K≤K

(Tt )
0

. It is evident that Rnn
0 and E would

now depend on the network topology and latency time, respectively.

6.1. Network Topology

In order to model the heterogeneity of a population relevant for disease modeling, scale-free networks offer appro-
priate features [5, 19, 16, 22]. Scale-free networks are characterized by a power-law distribution which determines the
probability density function Pk of the degree of connectivity k per node. We employ a continuous approximation [23],
that is,

Pk = αpk−(2+γ) (m ≤ k ≤ kc) & (0 ≤ γ ≤ 1), (39)

where

αp =
(1 + γ)m1+γ

1 − (kc/m)−(1+γ) . (40)

Notice that by contacts we mean disease relevant contacts. We adopt γ = 0.3 and fix the upper and lower cut-offs by
kc = 552 and m = 4, respectively. These choices were made in order to have a realistic range for number of contacts
and obtain an average number of contacts of µ = 13.4, which is consistent with the data provided in [21]. Two extreme
choices of γ include γ = 1 and γ = 0. While the former leads to the celebrated Barabási and Albert (BA) model [1];
the latter has been used in disease spread models, e.g. see [19]. Note that we conducted a sensitivity analysis of our
results with respect to γ, see Figs. S7 and S8.

With the choice of the degree of connectivity distribution we can compute the relative size of the population
with a degree of connectivity above a certain K (Tt)

0 :

P
K≥K

(Tt )
0

=
αp

1 + γ

(
K

(Tt)
0
−(1+γ)

− k−(1+γ)
c

)
. (41)

Before proceeding further, let us mention that for the perfect efficacy E = 1, we can reach Rnn
0 = 1 with K (Tt)

0 = 138.8.
This accounts for 0.83% of the population with highest degree of connectivity. Now, to translate P

K≥K
(Tt )
0

of the
population into the equivalent number of tests, suppose we conduct Ntest per day per 100’000 people. Thus we obtain

K
(Tt)
0 =

(
(1 + γ)NtestTt

105αpζ
+ k−(1+γ)

c

)−1/(γ+1)

. (42)
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6.2. Uncontained Virus Spread

Since we test these high-contact individuals once every Tt = 7 days (test cycle depicted in Fig. 4B), there is a
chance that a virus-positive person has already transmitted the virus between two successive tests. The probability of
such events depends on the latency time τl and average number of contacts of the individual. The infection time τ0
is uniformly distributed between 0 and Tt. Now, since these individuals have contacts way above average, we take a
conservative estimation that

PAout = Prob
{

(τ0 + τ1) ≤ (Tt + τproc)
}
, (43)

which becomes 0.4296 for the case of Tt = 7 (day) and τproc = 1 (day).

6.3. Scenario Analysis

Now we are ready to consider the following scenarios and compute the reduction of the basic reproduction number
as a function of number of app users.

1. Scneario A: In this STeCC alone scenario we identify high-contact individuals in cycles of 7 days (Fig. 4B), ask
them to be tested and ask the positively tested individuals to go into self-quarantine. We compute the reduced
basic reproduction numberRS T−A

0 using Eq. (37) with the efficacy equation (38). For our base parameters together
with the network topology with γ = 0.3, m = 4 and kc = 552, Fig. S 6 shows the performance of STeCC-A.
While up to 30% reduction of R0 can be achieved with a combination of 90% app users among smart phone
users (which would only be achieved in very optimistic scenarios) and 200 tests per 100’000 per day, it is clearly
insufficient to halt the pandemic. The reason lies in the fact that we would not be able to contain the virus spread
from almost 40% of highly connected people resulting from the transmission events that occur between their
infection and the date of the virus test. Next, we introduce a combination that can significantly reduce this virus
spread.

Fig. S 6. STeCC alone scenario (STeCC-A): RS T−A
0 /R0 as function of number of smart tests per 100′000 per day and the percentage of smart-

phone owners who participate in STeCC (Scenario A). For R0 = 2.4, the dotted line indicates RS T−A
0 = 1.8, the dashed line RS T−A

0 = 1.7 and the
dashed-dotted line RS T−A

0 = 1.6.
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2. Scenario B: Here we consider a variant of STeCC in which besides the positively tested ones also their contacts
are asked to quarantine. This results in a much lower basic reproduction number of RS T−B

0 , which is obtained
from Eq. (37) with the improved efficacy

E = ES T−B = 1 −
((
PAout (1 − η)

due to quarantine︷ ︸︸ ︷
(1 − ζ) +η

)
ζ + (1 − ζ)

)
. (44)

The results shown in Fig. 4C predict a much stronger effect than STeCC alone (Fig. S 6). The combination of
90% user percentage and almost 400 tests per 100’000 per day now lead to RS T−B

0 = 1. Again, this approach
alone will likely not suffice to halt the pandemic under realistic conditions.

3. Scenario C: Since the app already provides the contacts, we can further improve the STeCC based mitigation
by combining it with conventional contact tracing (see §4). This is especially interesting since neither contact
tracing nor STeCC alone are effective enough to halt the pandemic under realistic conditions. Therefore, on top
of scenario B, we also ask the contacts of symptomatic cases to quarantine, which leads to a basic reproduction
number of

RS T−C
0 =

P
K≤K

(Tt )
0

E[K2 − K|K ≤ K
(Tt)
0 ] + (1 − ES T−B)P

K≥K
(Tt )
0

E[K2 − K|K ≥ K
(Tt)
0 ]

P
K≤K

(Tt )
0

E[K|K ≤ K (Tt)
0 ] + (1 − ES T−B)P

K≥K
(Tt )
0

E[K|K ≥ K (Tt)
0 ]

E[K]
E[K2 − K]

Rct
0 ,

(45)

where Rct
0 = (1 − ζκ)R0 and κ = R

sym
0 /R0 (see §4). The result corresponding to this scenario is shown in Fig. 4D.

Accordingly, we predict that RS T−C
0 = 1 can be achieved with 72% app users among smart phone users and 166

tests per 100’000 per day. This is very encouraging, since 72% app users among smart phone users corresponds
to only about 50% app users of the whole population. Furthermore, a testing capacity of 166 per 100’000 per day
already is available in several developed countries, including Switzerland.

6.4. Sensitivity Study

In order to gain further confidence in our STeCC related mitigation scenarios, we conducted studies to investigate the
sensitivity of the basic reproduction number R0 ∈ {1.9, 2.9, 3.4}. The parameters which we varied are γ ∈ {2, 2.5, 3.5}
in the exponent of the power-law distribution of the degree of connectivity, the ratio η ∈ {0.1, 0.15} of false negatives
and the test processing time τproc ∈ {0.5, 1.5} (day). Note that our base setting is the combination of R0 = 2.4, γ = 0.3,
η = 0.05 and τproc = 1 (day). Figures S 7 and 8 show the sensitivity of STeCC-B and-C scenarios, respectively, for
varying R0 and γ values. Figure S9 depicts the sensitivity of STeCC-C with respect to the fraction of false negatives
and test processing time. We observe that for a large range of parameters considered the combination of STeCC and
conventional contact tracing leads to stopping the pandemic with realistic app user percentage (i.e., 60% to 85%) and
number of tests per day (i.e., 50 to 350 tests per 100’000).

7. Model Implementation

The dynamic model was implemented with Maple 2018. The calculations for mass testing, contact tracing and
smart testing were implemented with MATLAB and the Statistics Toolbox Release 2018b.
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(A) (B)

(C) (D)

(E) (F)

Fig. S 7. STeCC plus isolation of contacts with positively tested individuals (STeCC-B): RS T−B
0 /R0 as function of number of smart tests per 100′000

per day and the percentage of smart-phone owners who participate in STeCC (scenario B). For (γ = 0.3, kc = 552) and (A) R0 = 1.9, (C) R0 = 2.9
and (E) R0 = 3.4; for R0 = 2.4 and (B) (γ = 0.2, kc = 227), (D) (γ = 0.25, kc = 327) and (F) (γ = 0.35, kc = 1325). A corresponding map with
R0 = 2.4 and γ = 0.3 is shown in Fig. 4C. The bold lines indicates the combinations for which RS T−B

0 = 1.
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(A) (B)

(C) (D)

(E) (F)

Fig. S 8. STeCC plus isolation of contacts with positively tested individuals plus classical contact tracing (STeCC-C): RS T−C
0 /R0 as function of

number of smart tests per 100′000 per day and the percentage of smart-phone owners who participate in STeCC (scenario C). For (γ = 0.3, kc = 552)
and (A) R0 = 1.9, (C) R0 = 2.9 and (E) R0 = 3.4; for R0 = 2.4 and (B) (γ = 0.2, kc = 227), (D) (γ = 0.25, kc = 327) and (F) (γ = 0.35, kc = 1325).
A corresponding map with R0 = 2.4 and γ = 0.3 is shown in Fig. 4D. The bold lines indicates the combinations for which RS T−C

0 = 1.
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(A) (B)

(C) (D)

Fig. S 9. STeCC plus isolation of contacts with positively tested individuals plus classical contact tracing (STeCC-C): RS T−C
0 /R0 as function of

number of smart tests per 100′000 per day and the percentage of smart-phone owners who participate in STeCC (scenario C). For (η = 0.05) and (A)
τproc = 0.5 (day) and (C) τproc = 1.5 (day); for τproc = 1 (day) and (B) η = 0.1, (D) η = 0.15. A corresponding map with η = 0.05 and τproc = 1
(day) is shown in Fig. 4D. The bold lines indicates the combinations for which RS T−C

0 = 1.
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