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Abstract 

Background: Controlling the transmission of respiratory infections such as influenza and 

COVID-19 is a critical public health priority. Non-pharmaceutical intervention policies such as 

community quarantines, closures and travel bans are often implemented in emergencies but 

many of them are disruptive and difficult to maintain for extended periods of time. A promising 

alternative recommended by the CDC for influenza is requiring individuals showing fever 

symptoms to remain isolated at home until they are fever-free for at least one day, but there is 

limited evidence to support the effectiveness of such symptom-based isolation policies. 

Methods: Here we introduce a computational model of symptom-based isolation that accounts 

for the timing of symptoms, viral shedding and the population structure. It was validated on 

outbreaks of influenza in schools and modified to account for COVID-19. It was then used to 

estimate the outbreak curves and the attack rates (the proportion of the population infected) 

under one or more days of fever-based isolation. 

Results: Using the model we find evidence that symptom-based isolation policies could reduce 

the attack rates of both influenza and COVID-19 outbreaks, and flatten the outbreak curves. 

Specifically, we found that across a range of influenza scenarios, a CDC-recommended policy of 

one day isolation following fever can reduce the attack rate from 27% of the population to 12%, 

and to 3% if the isolation is extended to two days. In COVID-19 transmission, we estimate that 
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implementing one day post-fever isolation would reduce the attack rate from 79% to 71%, and 

there is possible benefit from isolation for six days. In both influenza and COVID-19, the 

policies are predicted to reduce the peak number of infected but not shorten the outbreak 

duration. 

Conclusions: Symptom-based isolation could be an important tool to control influenza and 

COVID-19 outbreaks in schools, and potentially other settings. We recommend that schools 

implement a post-fever isolation policy of two days for influenza and six days for COVID-19. 

Keywords: influenza, COVID-19, 2019-nCoV, SARS-CoV-2, mathematical model, SEIR, 

non-pharmaceutical intervention, fever, schools, isolation policy, absenteeism policy, viral 

shedding, coronavirus, epidemiology, infections 
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Introduction 

Respiratory infections are the leading cause of death in low- or middle-income countries (LMICs) 

and account for an estimated four million deaths annually [1] . Before the recent emergence of 

SARS-CoV-2, much research focused on influenza, which causes worldwide annual epidemics of 

seasonal resulting in 3 to 5 million cases of severe illness, and approximately 250,000 to 500,000 

deaths [2] . In the US, influenza causes on average of 226,000 hospitalizations and 3,000 to 49,000 

deaths each year [3,4] . Control of influenza in children is an acute public health problem because 

attack rates (i.e., the proportion of the population infected) in unvaccinated children are estimated 

to average 12.7% [5]  and exceed 30% during pandemic years [6] . Children also amplify the 

outbreak as they infect their peers and families, creating greater opportunities for further 

transmission in the community.[7,8] 

 

For rapidly emerging outbreaks such as novel strains of influenza or SARS-CoV-2, 

pharmaceutical measures may be unavailable or less effective, and non-pharmaceutical 

intervention measures (NPIs) need to be used [9,10] . NPIs are divided by the World Health 

Organization into categories of personal protection, social distancing, travel and environment 

measures [11] . However, when the WHO systematically reviewed all studies supporting each NPI 

for controlling pandemic influenza, it found gaps in the evidence base for many of the measures 

[11] . In this study, our goal is to use a computational model to examine the policy of 

symptom-based isolation - a form of social distancing. Under this NPI, individuals who are 

showing fever due to a respiratory infection are required to remain in isolation until their 

symptoms subside, normally followed by an additional period of one day free of fever (or 

antipyretic medications or steroids). The CDC currently recommends this NPI for controlling 

pandemic influenza and controlling influenza in schools [12,13] . The buffer period of 1 day helps 

reduce transmission by keeping people in isolation when their fever symptoms temporarily 

subside. It also prevents transmission from viral shedding that often continues past the last 

episode of fever[14] . This NPI is often referred to as fever absenteeism or return-to-school policy 

in the context of schools.  
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To evaluate this NPI, our model computationally simulates outbreaks of influenza and COVID-19 

in school settings, and then looks at the effect of symptom-based isolation policies. The benefit of 

using a model is the ability to clarify and quantify the possible effects of many different policy 

choices. Our work builds upon numerous previous studies that have applied mathematical models 

to model influenza transmission in schools (see e.g. [15–21] ). Several studies also modeled 

non-pharmaceutical interventions such as closures but not absenteeism policies [19,21–32] ). We 

performed a systematic analysis of studies that evaluated isolation policies by using a broad 

search on PubMed. We found a variety of policies involving isolation of infected individuals, 

particularly isolation for a fixed interval following diagnosis. For example, the large modeling 

consortium on pandemic influenza [18]  assumed students with influenza symptoms would isolate 

themselves but did not examine the duration of isolation. We also found several comprehensive 

computational studies of school closures and isolation of infected students (e.g. [18,33] ), but did 

not find evaluation of policies that would reduce transmission caused by infectious students 

returning from home. A related policy of symptom monitoring, that isolates contacts once they 

show symptoms, has been examined computationally and shown to be sufficient for controlling 

certain outbreaks [34] . 

 

Symptom-based isolation could also contribute to the control of the current COVID-19 outbreak. 

Currently the WHO recommends a fixed 14 days of isolation [35] , but this policy may fail to 

contain transmission from the significant fraction of cases with extended courses of illness [36] . 

Indeed, evidence suggests that shedding of SARS-CoV-2 continues past the end of symptoms 

[37] . Therefore, symptom-based isolation for a period of time past the end of symptoms could 

potentially be more effective and also avoid unnecessary isolation of patients who have a faster 

resolution of the disease.  

 

Despite the possible promise of this NPI for both COVID-19 and influenza, it is unclear if 

symptom-based isolation would be truly effective in controlling outbreaks because the 

CDC-recommended one day policy might not be enough to achieve a meaningful reduction in 
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transmission, and a high rate of asymptomatic infections and partial compliance might weaken 

the ability to implement the policy. When the attack rate is high, transmission might occur 

regardless of isolation and the policy might merely create a burden on the isolated individuals 

and their families, without a tangible public health benefit. If the policy is proven effective, it is 

not known whether the CDC-recommended one day of symptom-based isolation is sufficient, 

and if not, how many days would be most beneficial. At the outset of our project, we 

hypothesized that these policies would have a small beneficial effect on reducing attack rate, 

delay the peak of the outbreak and reduce the height of its peak. We did not expect these policies 

to reduce the overall incidence because there would be many other opportunities to become 

infected. Furthermore, practical barriers may reduce the strictness with which the policies are 

enforced, which would reduce the policies' effectiveness.  

 

Methods 

We use a deterministic compartmental dynamical model known as the Susceptible, Exposed, 

Infectious, Recovered (SEIR) model that tracks for each day during an outbreak the number of 

individuals of various cohorts and immunological states (Figure 1). This class of SEIR models 

has been used extensively to model influenza and COVID-19 (e.g. [15,23,38]  and [39,40] ), and 

we extended the SEIR framework in order to calculate details about the outbreak relevant to 

symptoms and isolation. 

 

 

Figure 1: Dynamics of the outbreak model and its major variables. S, susceptible, H, infected 

isolated, I, infected unisolated, R, recovered, and V, vaccinated (if a vaccine is available). The 
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infectious classes (H and I) are often stratified to cohorts (shown here is the case of a single 

cohort), and n  daily disease stages distinguished by severity of symptoms and shedding (see 

Appendix A). The cohort structure and other parameters are adjustable to model outbreaks in 

different settings and by different pathogens. Vaccination is available only for some outbreaks 

and has incomplete coverage and efficacy.  

 

A relatively novel aspect of our model is the use of compartments to stratify the population by 

both the day of their infection, their location (un-isolated in community vs. isolated at home) and 

their cohort (see Appendix A for details). The day of infection determines the rate of virus 

shedding and the probability of symptoms, which then influences the decision to stay at home or 

to return. Generally, persons in the model were assumed to return to their community when their 

symptoms became less severe. The probability of returning was based on the stage of the illness, 

as well as the isolation policy. The isolation policy had a considerable effect on preventing 

premature return during the last days of illness, but also during the middle of the course of illness 

on days when symptoms temporarily waned. We allowed a vaccine to be received by some, if the 

vaccine is available ahead of the outbreak, attaining partial protection against the pathogen. The 

population was structured into cohorts representing ages in a school. In schools, students in the 

same grade generally have closer contacts to peers in the same grade, as opposed to the students 

in the other grades who also tend to be older or younger [41,42] . 

 

We considered the effect of several control policies, most importantly symptom-based isolation 

for one or more days, but also use of smaller class sizes and vaccination. We also evaluated 

stricter compliance, which could include remote monitoring, penalty for non-compliance and 

help in maintaining home isolation. We also considered greater symptom monitoring as could be 

achieved through education and providing thermometers. Further details on the model, including 

the equations and the parameter values are provided in Appendix A. The model was validated in 

several well-monitored influenza outbreaks in schools - an outbreak of 2009 pandemic influenza 

in a UK boarding school [43]  and a US elementary school [44] , as well as a seasonal influenza 

outbreak in a UK school in 2015 [45] .  
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For our policy analysis, we defined a baseline scenario by using the parameters calculated for the 

outbreak [43]  and applying the population structure of a typical school in the US (6 grades with 

70 students each) [46] . We calibrated the transmission parameter of the model to give a 15% 

attack rate (thus matching the typical rate [5] , after accounting for incomplete detection). 

Following calibration, we evaluated the effect symptom-based isolation policies would have on 

influenza and COVID-19 outbreaks. We also considered alternative scenarios with larger schools 

(140 students per grade), higher compliance, vaccination and others described below. For 

COVID-19, we calibrated the transmission parameter to give a higher 50% attack rate and used 

symptom and shedding rates estimated for SARS-Cov-2 (Appendix A). Because there is 

conflicting data on the rates of fever symptoms with this infection, we considered two scenarios: 

a conservative where just 50% of the cases experience and detect fever, and a higher 88% (cf. 

[47–49]  and [50,51] , respectively). To ensure that the results are robust to uncertainty parameter 

values, we then simulated the epidemic 500 times per scenario, with substantially different 

values for parameters such as the start day in the year, contact rate between cohorts and others, 

and reported the median and the interquartile ranges (see Appendix B for details). All modeling 

and statistical analysis used the RStudio Integrated Development for R. RStudio, Inc., Boston, 

MA.  
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Results 

Our analysis considered the effect of symptom-based isolation policies on influenza and 

SARS-CoV-2 infections. The results are shown in Figure 2. 

 

(a)  

(b)  

Figure 2. Estimated effect of requiring isolation after the last fever event in a typical school 

experiencing an outbreak of (a) Influenza and (b) SARS-CoV-2 (at 50% rate of cases having 

fever symptoms). Ripples are due to weekends and school closures. Increasing the required days 

of isolation reduces the peak infected and the number concurrently infected. 
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In our baseline scenario, we predicted a median attack rate of 0.27 (Interquartile range, IQR: 

0.02-0.58). Implementing a policy of one and two days of home isolation following the last 

episode of fever decreases the attack rate to 0.12 (0.01-0.42) and 0.03 (0-0.26), respectively 

(Table 1). The two-day policy substantially reduced the peak infected (23 to 2 in the median), the 

outbreak duration (66 to 32 in the median) and the number of person-days spent in the 

community (143 to 43 in the median). 

 

Table 1. Influenza outbreak in a school of 420 students and the effect of symptom-based 

isolation policies in baseline scenario with no vaccine. Median (interquartile range) of all 

simulations in the baseline scenario. The duration measures the interval between the first and last 

day with at least two infected cases, and peak date is the day from January 1st. 

Isolation 
days 

Attack 
rate 

Peak 
infected 

Peak 
date 

Duration Infected 
person-days 
isolated 

Infected 
person-days 
unisolated 

0 0.27 (0.02-0.58) 23 (2-79) 53 (38-60) 66 (17-81) 141 (17-339) 848 (88-1810) 

1 0.12 (0.01-0.42) 7 (2-48) 53 (34-67) 61 (2-80) 111 (13-379) 342 (38-1241) 

2 0.03 (0-0.26) 2 (1-23) 51 (22-67) 32 (0-76) 43 (11-302) 85 (20-659) 

3 0.01 (0-0.15) 2 (1-10) 46 (18-60) 5 (0-67) 26 (10-187) 37 (13-356) 

4 0.01 (0-0.09) 2 (1-6) 39 (16-67) 3 (0-61) 22 (10-145) 24 (9-193) 

5 0.01 (0-0.05) 2 (1-4) 33 (13-67) 2 (0-50) 21 (10-101) 17 (8-101) 

6 0.01 (0-0.04) 2 (1-4) 36 (13-67) 3 (0-46) 21 (10-96) 18 (7-85) 

7 0.01 (0-0.06) 2 (1-5) 33 (13-60) 2 (0-53) 22 (11-123) 16 (6-95) 

8 0 (0-0.05) 2 (1-4) 32 (14-60) 2 (0-51) 22 (11-90) 14 (6-89) 

9 0 (0-0.05) 2 (1-4) 39 (15-74) 2 (0-51) 21 (11-111) 16 (6-105) 
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We considered a range of policies to enhance or complement symptom-based isolation (reported 

fully in Appendix B). The effectiveness of the two-day policy is maintained even in the presence 

of 80% vaccine coverage and 50% efficacy. Increasing compliance with the policy from 60% to 

75% compliance had a small effect (1-2% decrease in the attack rate) and is not effective without 

an explicit isolation policy. Measures to increase the attention to symptoms from 67% to 84% 

attention reduced the attack rate to a median 5% at 0 (this and the following reflect the baseline 

with no isolation days). Completely cutting off transmission during weekends reduced the attack 

rate by 16%. Dividing the population into groups of half the normal size reduced the attack rate 

by 16%. The two-day isolation policy was also found to be effective for large schools. 

 

We considered two COVID-19 outbreak scenarios, corresponding to different levels of detection 

of fever. The estimated attack rates were 0.79 (IQR: 0.56-0.9), 0.71 (0.43-0.86), and 0.72 

(0.43-0.86) at 0, 1 and 2 days of isolation following fever in the scenario of 50% fever (Table 2). 

With one day of isolation the peak number of infected is reduced by 20% and the duration 

increases by 6 days, thus flattening the curve.  No benefit was found from increasing the 

post-fever isolation period beyond one day. If the rate of detecting fever is a higher rate of 88%, 

implementing a 1 fever-free day achieves an 8% reduction in the attack rate (from 59% to 50% 

in the median), a 20% reduction in the peak concurrently infected and a 7 day increase in the 

duration of the outbreak. At this higher rate of symptom detection, increasing the isolation to 6 

days achieves an attack rate of 0.43 (0.03-0.82) - a 15% reduction from no policy (see data in 

Appendix B). 

 

Table 2. COVID-19 outbreak in a school of 420 students the effect of symptom-based isolation 

policies. Median (interquartile range) of all simulations. The duration measures the interval 

between the first and last day with at least two cases. Scenario where only 50% of the cases 

detect fever. 
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Isolation 
days 

Attack 
rate 

Peak 
infected 

Peak 
date 

Duration Infected 
person-days 
isolated 

Infected 
person-days 
unisolated 

0 0.79 (0.56-0.9) 148 (82-213) 87 (78-101) 139 (120-154) 1274 (692-1693) 6437 (4377-7589) 

1 0.71 
(0.43-0.86) 118 (58-184) 93 (79-106) 144 (128-159) 1631 (964-2015) 5406 (3350-6600) 

2 0.72 
(0.43-0.86) 124 (58-184) 93 (80-106) 145 (127-157) 1658 (974-2108) 5469 (3198-6604) 

3 0.71 
(0.45-0.86) 120 (59-181) 93 (80-106) 145 (128-158) 1702 (1005-2112) 5266 (3379-6451) 

4 0.72 
(0.46-0.86) 123 (63-182) 92 (80-106) 143 (128-156) 1723 (980-2180) 5459 (3536-6432) 

5 0.71 
(0.44-0.86) 117 (58-184) 93 (79-106) 144 (127-157) 1670 (992-2131) 5262 (3289-6522) 

6 0.72 
(0.43-0.85) 125 (58-180) 93 (80-106) 144 (128-157) 1709 (1016-2128) 5427 (3211-6477) 

7 0.71 
(0.46-0.86) 118 (65-186) 93 (80-106) 145 (128-157) 1680 (1070-2152) 5261 (3504-6507) 

8 0.70 
(0.42-0.86) 120 (56-186) 93 (80-106) 144 (129-157) 1676 (1012-2150) 5341 (3166-6537) 

9 0.73 
(0.42-0.85) 128 (56-179) 93 (80-106) 146 (128-157) 1711 (1018-2153) 5472 (3029-6449) 

10  0.71 
(0.45-0.85) 122 (61-183) 92 (80-106) 146 (127-156) 1687 (1023-2100) 5400 (3442-6505) 

 

 

Discussion 

Outbreaks of acute respiratory infections, such as influenza and the novel COVID-19, require an 

expansion of the available control policies. Here we used a mathematical model to examine a 

little-studied, non-pharmaceutical intervention policy of symptom-based isolation. We found 

consistent evidence in support of this policy across outbreak scenarios and settings. For 

influenza, a 15% and 25% reduction in the attack rate is expected with one and two days of 
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isolation, respectively (Table 1). This indicates that the CDC-recommended policy for schools, 

based on a single day of isolation, could be enhanced by requiring an additional day of isolation. 

The result also holds in seasonal influenza in which vaccination is implemented.  The isolation 

policy could be further strengthened with increased parental education and by reducing contacts 

during weekends.  

 

For COVID-19, we find that one day of post-fever isolation would reduce the attack rate by 8% 

in the conservative scenario where only 50% of the cases detect fever (Table 2). The policy is 

expected to achieve a 20% reduction in the peak of concurrent infections and extend the duration 

by 5 days. The policy is more effective if a greater proportion of cases are aware of their 

symptoms, and a 15% reduction is possible with six days of isolation after fever. Generally, 

COVID-19 is harder to control than influenza with isolation policies in part because the peak of 

infectiousness for SARS-CoV-2 arises before the development of fever symptoms, rather than 

coinciding with them (Appendix A). 

 

Generally speaking, isolation policies, of which symptom-based isolation is a special case, are 

much more preferable to closures or general quarantines. Unlike the former, it allows healthy 

persons in the community to continue their lives. Business and critical public institutions such as 

schools and workplaces can remain open. Consequently, isolation of infected individuals until 

they recover could potentially be sustained indefinitely. It is likely that such isolation policies 

could be useful in the control of other acute respiratory diseases. These policies are expected to 

be complementary to other intervention measures, and can operate when testing resources are 

limited. 

 

While our model is driven by rich sources of virological data and calibrated to several outbreaks, 

a few limitations are inherent in our approach. First, despite our use of multiple scenarios and 

hundreds of alternative simulations, the effect of any policy depends on the context where it 

would be applied. The details of the school or institution would matter, and therefore, we provide 

an online version of the model, which can be calibrated for each situation. Because our model 

12 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.26.20044750doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.26.20044750
http://creativecommons.org/licenses/by/4.0/


 

was validated in influenza outbreaks in school settings, it should be applied to non-school 

settings and COVID-19 with caution. With appropriate adjustments, the model is designed to be 

applicable to other settings such as workplaces, prisons or even the broader community. 

However, such settings have important processes such as travel and complex population 

structures that might be less significant in the setting of schools. Lastly, symptom parameter 

information is based on average values, and it is expected that it will vary between patients. 

Future studies might attempt to evaluate symptom-based isolation policies with agent-based 

models (e.g. [17,52] ) that can capture variability in health trajectories, the network structure of 

the population [53,54]  and individual behavior.  

 

Despite these limitations, our model captures essential aspects of acute respiratory outbreaks 

including progression through stages, the population structure and symptom trajectories.  

 

Conclusions 

In this study, we have created a model of transmission of respiratory infection and considered the 

effects of symptom-based isolation policies. We confirmed that such policies would be effective 

in controlling influenza and COVID-19 outbreaks in a variety of scenarios, and we recommend 

that isolation is maintained for at least two days following the last day of fever for influenza and 

6 days for COVID-19. Policymakers tackling the influenza and COVID-19 outbreaks should 

consider implementing these policies for controlling outbreaks in schools and other settings. An 

online version of the model is made available for epidemiologists and policymakers as a live 

dashboard. 

  

Acknowledgements 

AG was sponsored by US NIH grant R01GM121600. AG thanks Mark Dworkin for a motivating 

discussion, and the following people for comments: Alisa Ungar-Sargon, Michael Genkin, 

Michael Z. Levy, Edward A. Belongia and Sami Alhamdi. 

 

13 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.26.20044750doi: medRxiv preprint 

https://paperpile.com/c/peuiod/hJX0+eRd6
https://paperpile.com/c/peuiod/wGBe+VCy9
https://doi.org/10.1101/2020.03.26.20044750
http://creativecommons.org/licenses/by/4.0/


 

Appendix A: Model Dynamics and Parameters 

 

We use the methodology of a multi-stage stratified SEIR model that can represent complexity of 

infection transmission [23,55] . Our model uses the discrete time version with daily time steps. 

We combine it with viral shedding and symptom data for influenza and COVID-19. The 

population in the model is divided into cohorts representing subpopulations in a community, 

school grades, office departments and the like. Each cohort is represented using its own 

variables, indexed by  including susceptibles, , infected (explained below), and recovered i Si Ri

. Contact rates across cohorts and within them are described by a contact matrix, giving the 

model the ability to simulate a diverse set of institutions and communities. 

 

In order to model the disease precisely, we stratify the infected population along three 

dimensions: the cohort, the degree of isolation and the stage of disease. The letters I and H 

distinguish infected un-isolated and thus infectious (I) from infected who are isolated and cannot 

transmit (H), see Table A.1. The population is further divided, so that the first subscript indicates 

the cohort and the second indicates the days from the person’s infection. 

 

Table A.1. Variables of the models. Index  indicates the cohort (e.g. school grade,i  

department, or community ).i  

Variable Interpretation 

 
susceptible/naïve persons in cohort i 

 
Infected persons in cohort i on day d  of infection who are not isolated  

 
Similarly, but who are isolated (e.g. at home) 

 
Recovered in cohort i 
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The force of infection  experienced by persons in cohort i  depends on the number of infected 

at each stage, the rate of viral shedding ( ), and the contact matrix between all the cohorts 

.  See Eqn A.1)(ci,j  

 

Eqn A.1. Our modeling framework - the multi-state discrete time SEIR infection model stratified 

by cohort and day of infection. Variables are dependent on time t. Return rates from isolation at 

day  depend on policy p, is the Kronecker delta function (=1 if d is 1, and otherwise(p)rd δ1,d  

zero).  is the final stage of infection. The parameters are listed in Table A.2df  

S  S λ  Δ i =  − b i i  

(1 (p))(H  I )(1 δ )H i,d =  −  rd i,d − 1 +  i,d − 1 −  1,d  

 r (p)(H  I )(1 δ ) δ bS λI i,d =  d i,d − 1 +  i,d − 1 −  1,d +  1,d i i  

R  I  Δ i = H i,df
+  i,df

 

   s Iλi =  ∑
 

j
∑
 

d
ci,j d j,d  

 

We model vaccination as reduction in the initially susceptible population for each cohort, which 

depends on the vaccination rate and the vaccine efficacy: . ThisS (0)S (0) (0) vi
˜ = Si − v e i  

transformation could be used to account for any resistance to infection, whether induced, or 

arising from genetics or prior exposure to similar pathogens. 

 

Typical outbreak curves are shown in Figure A.1.  
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Figure A.1. The forecasted epidemic curve of an influenza outbreak in a typical school based on 

Department of Education data. Simulation is for the case with no isolation policy. Transmission 

is reduced during weekends resulting in visible ripples in the outbreak curves every 7 days. ILI, 

influenza-like illness. 

 

 

Contact Rates 

We assumed that persons have the most physical contact with others in their cohort.  The rate of 

contact with other cohorts is controlled by a parameter which was varied in our sensitivity 

analysis. To adjust for generally higher contact rates during the winter months, we use a seasonal 

term cf. [56,57]  which multiplies the baseline contact rate by a factor that peaks on January 1st:  

   Eqn A.2b (1 cos(2πD/365)b = b0 h + bS  

Here D is the day of the year counting from January 1st. Like the influenza virus, SARS-CoV-2 

transmission is apparently higher in cold and dry weather, but unlike influenza, it is also affected 

by absolute humidity [58] . Contact rates were also modified during weekends (Saturdays and 

Sundays) (cf. [30] ), vacations and closures (see Table A.2).  

 

16 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.26.20044750doi: medRxiv preprint 

https://paperpile.com/c/peuiod/gqVp+rAYq
https://paperpile.com/c/peuiod/Tu1C
https://paperpile.com/c/peuiod/3CBY
https://doi.org/10.1101/2020.03.26.20044750
http://creativecommons.org/licenses/by/4.0/


 

Table A.2. Summary of parameters and their interpretation. All time rate constants are in units of 

day − 1.  Parameters are known from previous studies, set for each scenario, or calibrated to 

match the model to past outbreaks. 

Parameter  Interpretation  Type Range and Sources, if available  

b0   Core transmission 

rate 

Calibrated 

 

See section on model calibration  

bh  Relative contact rate 

during weekends  

Calibrated 0 to 0.5, comparable to school closure 

in [18] 

bc  Relative contact rate 

during closures, 

holidays or vacations 

Calibrated Generally lying around 0 to 0.5 

comparable to school closure in [18] 

bs  Relative seasonal 

amplitude of contact  

Calibrated  

 
Relative contact rate 

for cohorts  and i j  

Input data or 

calibrated 

Sometimes estimated from locations 

of cohorts in a building 

l  Symptomatic rate Input data 0.88 [59] .  0.5 and 0.88 for COVID-19 

 p   Fraction of persons 

complying with 

policy 

Calibrated Quantifies compliance with the policy 

 
Fraction of persons 

return to cohort on 

day  after infectiond  

Based on 

symptom data 

 

See table below 

 
Shedding at day d 

(relative) 

Input data or 

estimates 

Proportional to log10 titers [14] 

tstart  
Day of first infected 

case  

Input data or 

calibration 

Often reported approximately in 

post-outbreak investigations 

v Vaccination rate 

(seasonal virus) 

Set during 

scenarios 

Season flu: 60% [0.5, 0.7] [60] . 0% in 

novel infections 
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ve  Vaccine efficacy 

(seasonal virus) 

67%  

[0.65, 0.95] 

[61,62]  For novel infections with no 

immune response, 0% 

X i
  Persons in cohort  i  Set by 

scenario  

Cohort is partitioned into fraction v ve  

with vaccine protection and the rest 

y Fever attention Calibrated Fraction of persons who would return 

from home, of those having symptoms 

on the previous day  

 

 

Rates of Return from Isolation and the Modeling of Policy 

The values  express the fraction of persons returning from home on day  after they becomerd d  

infected when no policy is in place. It is modeled as a function of four factors: the symptoms in 

the previous days , the symptom propensity (i.e., rate of symptomatic infections) ,f s 0, ]l∈ [ 1  

the attention to symptoms  and the compliance to policy if any . To be0, ]y ∈ [ 1 0, ]p∈ [ 1  

precise, in the simplest case (no isolation policy), increasing ,  or  would decrease thef d−1 l y  

return rate: . The introduction of the isolation policy decreases the return to schoolyfrd = 1 − l d−1  

rate at day  by making the persons more attentive to the recent days of symptoms.  Namely,d  

under a one-day isolation policy, the rate is modified to:  

 

on day ;  Eqn A.3r fd = 1 l(y 1 )p)]− [ + ( − y  d−1 d  

 

This model ensures that the rate of symptoms  sets an upper bound on the effectiveness offl d−1  

the symptom-isolation policy. In the case of 100% compliance and 100% symptom attention, the 

return rate is  and not lower.1 − lf d−1   

 

Under a two-day isolation policy, the rate on day  is given by replacing in Eqn A.3 withd f d−1  

, and in general,  for longer isolation policies (see Table A.3, Tableax(f , )m d−1 f d−2 ax (f )m i=1..d−1 i  

A.4).  
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Viral Shedding and Symptom Burden 

Influenza viral shedding appears to vary by subtype, but the patterns of shedding were similar in 

both children and adults [63,64] , and between the seasonal and p(H1N1) outbreaks [64–66] , 

although the reproductive number appears different [65] . We allowed for some of the infections 

to be asymptomatic [59,63] , which in our model increases the rates of return to the community 

and transmission, while also reducing the effectiveness of control policies. Meta-analysis of 

influenza studies [14]  was used to determine shedding and symptom rates by disease state (see 

Table A.3, Table A.4). 

 

 

Table A.3. Daily symptom and shedding rates for influenza from [14] . New ILI rates is the 

probability of newly reporting influenza-like illness on a given day. Predicted return rates when 

symptom propensity is  and symptom attention is . Return rates: A = no policy,.88l = 0 y .5 = 0  

B = policy of one day of isolation with 0.5 compliance, C = policy of one day of isolation with 

100% compliance. Rows are days from the time of infection.  

  Symptoms Return  

Day after 
infection 

Viral 
Shedding 

Total 
Score 

Fever 
(Systemic) Respiratory  Nasal  

New ILI 
Rates A B C 

1 1.89 0.25 0.12 0.15 0.18 0.25 1.00 1.00 1.00 

2 3.00 0.67 0.93 0.66 0.79 0.50 0.92 0.91 0.90 

3 2.63 0.85 0.75 0.95 0.94 0.25 0.32 0.25 0.18 

4 2.16 0.67 0.60 0.91 0.91 0.00 0.45 0.40 0.34 

5 1.54 0.47 0.30 0.56 0.70 0.00 0.56 0.52 0.47 
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6 1.07 0.18 0.17 0.56 0.47 0.00 0.78 0.76 0.73 

7 0.74 0.06 0.08 0.49 0.17 0.00 0.88 0.86 0.85 

8 0.30 0.06 0.07 0.36 0.02 0.00 0.94 0.93 0.93 

9 0.35 0.00 0.08 0.14 0.00 0.00 0.95 0.94 0.94 

 

 

 

 

Figure A.2. Estimated SARS-CoV-2 infectiousness and symptom propensity in symptomatic 

cases. Infectiousness is based on [37,67,68]  with linear interpolation added before day 5 and 

after day 28. Fever estimates are based on case reports in [69–71] . 
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Table A.4.  Estimated symptom, shedding rates, and return rates for symptomatic persons 

infected with SARS-CoV-2. Asymptomatic infections are accounted for through a separate 

parameter. Return rates calculated for when attention is focused on fever, symptom propensity 

rate is  and symptom attention is . Return rates: A = no policy, B = policy of one.88l = 0 y .5 = 0  

day of isolation with 0.5 compliance, C = policy of one day of isolation with 100% compliance. 

Rows are days from the time of infection.  

  Symptoms Return  

Day after 
infection 

Viral 
Shedding 

Fever 
(Systemic) A B C 

1 0.000 0 1.00 1.00 1.00 

2 0.250 0 1.00 1.00 1.00 

3 0.500 0.176 1.00 1.00 1.00 

4 0.750 0.352 0.87 0.86 0.85 

5 1.000 0.528 0.74 0.72 0.69 

6 0.845 0.704 0.61 0.57 0.54 

7 0.721 0.880 0.48 0.43 0.38 

8 0.611 0.860 0.36 0.29 0.23 

9 0.540 0.840 0.37 0.31 0.24 

10 0.473 0.820 0.39 0.32 0.26 

11 0.427 0.800 0.40 0.34 0.28 
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12 0.400 0.780 0.41 0.36 0.30 

13 0.379 0.760 0.43 0.37 0.31 

14 0.351 0.660 0.44 0.39 0.33 

15 0.318 0.550 0.52 0.47 0.42 

16 0.287 0.440 0.60 0.56 0.52 

17 0.244 0.330 0.68 0.65 0.61 

18 0.207 0.220 0.76 0.73 0.71 

19 0.177 0.110 0.84 0.82 0.81 

20 0.139 0 0.92 0.91 0.90 

21 0.112 0 1.00 1.00 1.00 

22 0.095 0 1.00 1.00 1.00 

23 0.082 0 1.00 1.00 1.00 

24 0.077 0 1.00 1.00 1.00 

25 0.070 0 1.00 1.00 1.00 

26 0.067 0 1.00 1.00 1.00 

27 0.056 0 1.00 1.00 1.00 

28 0.044 0 1.00 1.00 1.00 
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29 0.033 0 1.00 1.00 1.00 

30 0.022 0 1.00 1.00 1.00 

31 0.011 0 1.00 1.00 1.00 

32 0.000 0 1.00 1.00 1.00 

 

 

Model Validation 

The model has been validated by comparing it to empirical data on three influenza outbreaks. 

The available data generally indicates the daily number of new ILI cases or the daily number of 

new absences, and both were also calculated from the model. In all calibrations, we found the 

model to give a tight fit to the data matching the attack rate, the peak date, and the overall shape, 

as illustrated in Figure A.3, Figure A.4, and Figure A.5.  

 

For calibration, we need to estimate the number of individuals with influenza-like illness (ILI) 

and the number of newly absent. For ILI, the number of individuals with ILI at a given time t is 

computed by considering  - the number of infected individuals on date t (including isolated(t)  J s  

and unisolated) who are in stage s and the rate of new ILI cases at stage s, . The quantity isls  

multiplied by  - the fraction of individuals that develop ILI (set at 88%, see [59] ):ls

. The symptom data indicates that influenza ILI symptoms first arise 24 hoursILI(t) J (t)= l ∑
 

s
ls s

 
 

after influenza challenge and peak around 2.5 after challenge. Accordingly, we assume that, of 

the population reporting ILI symptoms, ¼, ½ and ¼ first reports on day 1, 2 and 3, respectively. 

 

We calculate the new absentees per day by considering the number of infected and the return 

rate. The number of isolated persons is given by: . Furthermore, the number of(1 )I (t)∑
 

s
− rs s  
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newly-absent (i.e. isolated) students is given by . We will use this formula in(1 )I (t)∑
 

s
∏
s−1

q=1
rq − rs s  

calibrating the model to absenteeism data below.  

 

  

24 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.26.20044750doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.26.20044750
http://creativecommons.org/licenses/by/4.0/


 

(a)  

 

(b) 

  

Figure A.3. Calibration to data from a boarding school in South East England during the 

A(H1N1)v outbreak from May 9, 2009 through June 2, 2009, infecting 101 of the 1307 students 

[43] . (a) model predictions and actual new cases of influenza-like illness (ILI) and (b) estimated 

course of the epidemic from the model.  
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(a) match of the model to data 

 

 

(b) plot of outbreak details 

 

Figure A.4. Calibration to absenteeism for a primary school in Thames Valley, UK during the 

2012/2013 influenza season abstracted from [45] . The data shows spikes of new absences every 

Monday due to lack of data collection on Saturdays and Sundays. (a) model predictions and 

match to actual new cases of absence from school, and (b) estimated course of the epidemic from 

the model.  
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(a)   

 

(b)   

 

  

Figure A.5.  Calibration to data from an elementary school in Pennsylvania affected by the 2009 

Pandemic Influenza A(H1N1). (a) model predictions and actual new cases of influenza-like 

illness (ILI). (b) estimated course of the epidemic from the model. 

27 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.26.20044750doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.26.20044750
http://creativecommons.org/licenses/by/4.0/


 

 

Fever policies of select schools and school districts in Metropolitan Chicago, Illinois, US is 

published online on our website: https://github.com/sashagutfraind/feverfighter. We also provide 

raw data used in the paper in the hope that it would assist other researchers. 

 

Appendix B: Online Excel 

Summary of each scenario and results available at https://github.com/sashagutfraind/feverfighter  
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