1	Public events and delayed flight restrictions
2	were the turning point of the COVID-19
3	mitigation policy of Israel
4	
5	Klausner, Ziv PhD ^{1†} ; Fattal, Eyal PhD ^{1*†} ; Hirsch, Eitan PhD ² ;
5	Shapira, Shmuel C., MD, MPH ³
7	
3	¹ Department of Applied Mathematics, Israel Institute for Biological Research, Ness-Ziona, Israel
)	² Environmental Sciences Division, Israel Institute for Biological
1	Research, Ness-Ziona, Israel
2	³ Director general, Israel Institute for Biological Research, Ness-Ziona,
3	Israel
4	
5	
5	
7	
3	
)	
)	
1 2	
3	
4	
5	
6	
7	
8	
9	
0	
1	
2 3	
5 4	
+ 5	
5	
7	
8 9	* Correspondence to: Applied Math department, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona, 7410001, ISRAEL. Tel.: +972 8 9381794; fax: +972 8 9381432; e-mail: eyalf@iibr.gov.il

⁴⁰ [†] These two authors contributed equally to the article

-2-

41 Abstract

42 Background:

43	Since its emergence the impact of COVID-19 has been profound, and the
44	public health challenge seem to be the most serious regarding respiratory viruses since
45	the 1918 H1N1 influenza pandemic. In the absence of effective vaccine or biomedical
46	treatment, the basic rules of public health measures have not changed, namely public
47	distancing and personal hygiene.
48	Methods:
49	In this study we present the results of epidemiological data analysis and
50	modelling of one month since the onset of the outbreak in Israel. The data analyzed in
51	this study was obtained from the epidemiological investigation reports that were
52	released by the Israeli Ministry of Health. In addition to data analysis, we present an
53	expended deterministic compartment model and simulations of disease outbreak
54	scenarios emphasizing quarantine and isolation policies given their efficiency.
55	Results:
56	We analyze and discuss an abrupt change from controlled epidemic regime
57	(effective reproduction number R_0 of the order of half) to an exponential growth
58	regime ($R_0 = 2.18$) in light of the actual policy-makers decisions and public behavior
59	in Israel. We further discuss three different modeled scenarios of quarantine
60	efficiency: high-efficiency, medium-efficiency, and low-efficiency.
61	Conclusions:
62	Israel early lessons show that there is no allowance to compromise with the
63	directive of social distancing. Even before the onset of the pandemic in Israel, fine-
64	tuned but determined early decisions were taken by policy makers to control flight
65	arrival from Covid-19 affected regions and to limit public gatherings. These measures

-3-

have effectively decreased the value of the effective reproductive number (R_0) in the

67 first two weeks. Our analysis show that one particular holyday in Israel has shifted the

68 occurrence curve from controlled regime to exponential growing regime. This

69 outcome suggests that even a short lapse in public responsiveness can have a dramatic

- 70 effect on public health during pandemic outbreaks.
- 71
- 72
- 73

74 **1. Introduction**

Since its emergence the impact of COVID-19 has been profound, and the public health challenge seem to be the most serious seen in a respiratory virus since the 1918 H1N1 influenza pandemic (Soper 1919). In this study we present the results of epidemiological data and modelling of one month since the onset of the outbreak in Isreal, addressing public events occurring during this period and the sensitivity to a number of public health measures focusing on social distancing (quarantine and isolation).

82 The epidemiological data studied, consisting of 381 laboratory confirmed 83 COVID-19 cases, has been obtained from the epidemiological investigation reports 84 that were released by the Israeli Ministry of Health (Israeli Ministry of Health, 2020). 85 In addition we present an extended deterministic SEIR (Susceptible, Exposed, 86 Infectious, and Recovered) model to simulate disease outbreak scenarios. In 87 particular, the model includes quarantine of asymptomatic suspected population 88 (exposed) and isolation of symptomatic and infectious patients. The model takes into 89 account the efficiency of the quarantine and isolation measures. We discuss three 90 different quarantine efficiency scenarios: high-efficiency, medium-efficiency, and

-4-

91	low-efficiency. The resulting analysis from the epidemiological cases data are
92	discussed in light of public events and compared to model simulations. We analyze
93	and discuss an abrupt change from controlled epidemic regime to an exponential
94	growth regime in light of policy makers decisions and public behavior.
95	
96	2. Methods
97	The dynamics of spread of epidemics as well as the quanrentine-isolation
98	policy of Israel was modeled using the SEQIJR model (e.g. Gumel, et al., 2004). This
99	is a deterministic compartmental model which allows the implicit inclusion of
100	biological epidemiological phases (including incubation period) as well as
101	governmental interventions such as quarantine and their actual efficiency of
102	implementation. A successful a posteriori implementation of this model to the
103	transmission dynamics and control of the SARS epidemics in Toronto, Hong Kong,
104	Singapore and Beijing is given in Gumel, et al., 2004. The model consists of a system
105	of 7 dynamical equations and 15 parameters. For details of the model and its
106	parameters see the online supplementary information.
107	The data analyzed in this study was obtained from the epidemiological
108	investigation reports that were released by the Israeli Ministry of Health (Israeli
109	Ministry of Health, 2020). From the total of 883 PCR laboratory confirmed COVID-
110	19 cases we analyzed the 384 cases that were investigated epidemiologically. This
111	allowed us to separate the imported cases (travelers arriving from abroad) from the
112	locally infected cases. The data spans over the first month of the COVID-19 outbreak
113	in Israel, beginning in February 21 st 2020 and going until March 20 th . We further note

114 that during the examined period the number of PCR tests performed rose daily,

-5-

reaching 1869 at the end of the period. However the proportion of positive tests

remained approximately the same, as 7.9% (Israeli Ministry of Health, 2020).

117 The incidence curve was modelled as a fit to an exponential growth function

118 (de Silva, et al., 2009; Zhao, et al., 2020). Several serial interval distributions that

119 were estimated for COVID-19 were examined (Nishiura, et al., 2020; Tapiwa, et al.,

120 2020; Zhao, et al., 2020).

121

122 **3. Results**

123 The dynamics of epidemic spread in Israel in terms of daily reported 124 confirmed cases is shown in fig. 1. There are two distinct regimes in the curve. The 125 first ended in March 8, 2020 in which the number of daily new cases was constantly 126 less than 5. The second period, from March 9, 2020 is characterized by a delayed rise 127 in the daily number of new cases (due to incubation period), which resembles to an 128 exponential growth (red line, in figure 1). Although, most of the examined period 129 was dominated by new cases of travelers arriving from abroad, near the end of the 130 period, the number of daily local infections exceeded the number of travel associated 131 cases.

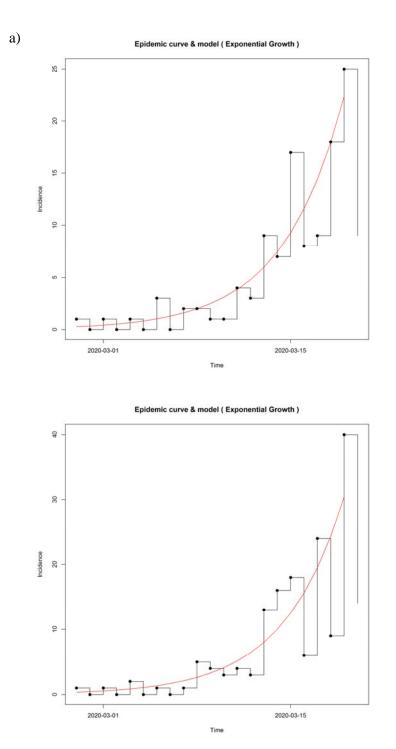


FIG. 1. Daily reported confirmed COVID-19 cases in Israel: a) cases of
travelers arriving Israel from abroad; b) cases infected locally

-7-

135	The effective reproduction number, R_0 , was estimated for the daily new cases			
136	data of the first month of the COVID-19 epidemic. The lowest estimated R_0 was 2.08			
137	(95%CI 1.92-2.5) for the Gamma distributed serial interval with mean 4.4 and SD 3			
138	days (Zhao, et al., 2020). The highest estimate was 2.37 for the Gamma distributed			
139	serial interval with mean 5.2 and SD 2.8 days (Tapiwa, et al., 2020). The mean R_0			
140	overall the serial interval distributions examined, was 2.185.			
141	The SEQIJR model solutions are characterized by 3 locally stable equilibrium			
142	points in parameters space. These refer to the following regimes or types of dynamics			
143	of epidemic spread: controlled (decaying), flattened, uncontrolled (baseline SEIR			
144	model; further details can be found in the supplementary material). In this study we			
145	simulated three scenarios, the first corresponding to the first equilibrium and two			
146	corresponding to the second:			
147	1. A controlled high-efficiency quarantining (decaying green curve in			
148	Fig. 2). This regime is characterized by an early entry of asymptomatic			
149	suspected population to home quarantine. Moreover we assume the			
150	infectiousness in home quarantine is one sixth compared to free			
151	asymptomatic. The efficiency of isolation is 70%.			
152	2. A flattened for medium-efficiency quarantining (purple curve in Fig.			
153	2). This regime is characterized by a late entry of asymptomatic			
154	suspected population to home quarantine. Moreover we assume the			
155	infectiousness in home quarantine is one third compared to free			
156	asymptomatic. The efficiency of isolation is 70%.			
157	3. A flattened for low-efficiency quarantining (light-blue curve in Fig. 2).			
158	This regime is characterized by a late entry of asymptomatic suspected			
159	population to home quarantine. Moreover we assume the			
155 156 157 158	infectiousness in home quarantine is one third compared to free asymptomatic. The efficiency of isolation is 70%.3. A flattened for low-efficiency quarantining (light-blue curve in Fig. This regime is characterized by a late entry of asymptomatic suspect			

-8-

- 160 infectiousness in home quarantine is similar to free asymptomatic. The
- 161 efficiency of isolation is 30%.
- 162 As discussed above, the dynamics of epidemic spread in Israel until March 8, 2020
- 163 corresponds to the controlled regime characterizes with (green curve in Fig.
- 164 2). On the other hand after March 8, 2020 the regime corresponds to the flattened
- 165 regime with low-efficiency quarantining and

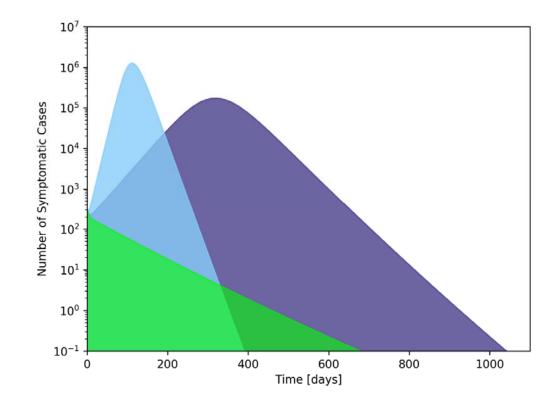


FIG. 2. Total number of symptomatic cases in Israel from SEQIJR model
 simulations for 3 scenarios: green – high-efficiency quarantining, purple – medium-

169 efficiency quarantining, light-blue – low-efficiency quarantining.

170

171 **4. Discussion**

172 Israel has begun early its mitigation policy against the COVID-19 epidemic.

173 From the beginning of February, it was decided: to close all border passages (via land,

-9-

174	sea and air) to people that are not Israeli citizens or resident that have visited China
175	recently; to stop all direct flights from Israel to China and to require Israeli citizens
176	returning from China or that were in touch with a confirmed COVID-19 patients to a
177	14 days home quarantine. A short while later, the quarantine requirement was
178	expanded to other Asian countries. The first COVID-19 patients in Israel were two
179	passengers that returned from the "Diamond Princess", in 21 and 23 of February.
180	They entered directly to hospital isolation. A week later, a passenger from Italy was
181	diagnosed as a COVID-19 patient, and Italy was added to the list of countries that
182	require 14 days quarantine.
183	The quarantine-isolation policy succeeded in keeping the rate of daily new
184	cases small, up until March 9 th . Then, 4 days later, a sudden change of regime has
185	occurred, which was manifested by the distinct change of the epidemic curve of Israel
186	towards exponential growth. March 15 th marks the first time that the daily new cases
187	of locally infected were higher than the new travel associated cases.
188	The timing of this abrupt change is not of coincidence. Regarding the cases
189	arriving from abroad, a requirement for home quarantine affecting all travelers
190	arriving began on Match 9 th . Moreover, during the period between March 9 th to 11 th a
191	Jewish holiday, Purim, was celebrated. This holiday is characterized by big parades
192	organized by local municipalities, as well as religious gatherings and privately
193	organized parties. Although authorities cancelled the public parades, many privately
194	organized and religious crowding had occurred. Regrettably, these drove Israel from a
195	controlled, mitigated regime to an exponential growth, as described in the results
196	section. Therefore, despite its intense efforts, Israel's effective R_0 for the period
197	ending in March 20 th stands on around 2.185, slightly smaller than the R_0 of 2.6-3.2
198	estimated for the republic of Korea and Italy, for the period ending in March 5 th .

-10-

199	Such abrupt transition based on social behavior emphasizes the fragility of mitigation
200	policies.
201	We therefore emphasis the importance of early fine-tuned but intense
202	directives for social distancing and isolation measures. This study clearly
203	demonstrates the lesson learned from the Israeli policy, that even a short lapse in
204	public responsiveness can have a dramatic effect on public health during pandemic
205	outbreak.
206	
207	
208	
209	References
210	1. Israel Ministry of Health. Information on confirmed patients and COVID-19

211	press releases.	https://gov	extra.gov.il/m	inistry-of-health	/corona/corona-

212 <u>virus/spokesman-messages-corona/</u>. Accessed Mar 22, 2020.

213 2. De Silva UC, Warachit J, Waicharoen S, Chittaganpitch M. 2009. A

- 214 preliminary analysis of the epimemiology of Influenza A(H1N1)v virus
- 215 infection in Thailand from early outbreak data. *Eurosurveillance*: **14**(31).
- Nishiura H, Linton NM, Akhmetzhanov AR. 2020. Serial interval of novel
 coronavirus (COVID-19) infections. *International Journal of Infectious*
- 218 Diseases DOI: 10.1016/j.ijid.2020.02.060
- 4. Zhao S, Gao D, Zhuang Z, Chong MKC, Cai Y, Ran J, Cao P, Wang K, Lou
- 220 Y, Wang W, Yang L, He D. 2020. Estimating the serial interval of the novel
- 221 coronavirus disease (COVID-19): A statistical analysis using the public data in
- Hong Kong from January 16 to February 15, 2020. preprint is under

-11-

	consideration at Infectious Diseases of Poverty. DOI: 10.21203/rs.3.rs-
	18805/v1
5.	Tapiwa G, Cecile K, Dongxuan C, Andrea T, Christel F, Jacco W, Niel H.
	2020. Estimating the generation interval for COVID-19 based on symptom
	onset data. medRxiv preprint DOI: 10.1101/2020.03.05.20031815
6.	Gumel AB, Ruan S, Day T, Watmough J, Brauer F, van den Driessche P,
	Gabrielson D, Bowman C, Alexander ME, Ardal S, Wu J, Sahai BM.
	Modelling strategies for controlling SARS outbreaks. Proc Biol Sci. 2004;
	271 (1554):2223-32. doi:10.1098/rspb.2004.2800
7.	Soper GA. 1919. The lessons of the Pandemic. Science 49(1274): 501-506.
	DOI: 10.1126/science.49.1274.501
8.	Zhuang Z, Zhao S, Lin Q, Cao P, Lou Y, Yang L, Yang S, He D, Xiao L.
	2020. Preliminary estimating the reproduction number of the coronavirus
	disease (COVID-19) outbreak in Republic of Korea and Italy by 5 March
	2020. medRxiv preprint DOI: https://doi.org/10.1101/2020.03.02.20030312
	6.

257
258
259
260
261
262

262

263 264

265

266