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Abstract 

High Risk Neuroblastoma (HRNB) is the second most frequent solid tumor in children. 

Prognosis remains poor despite multimodal therapies. Mathematical models have been 

developed to describe metastasis, but their prognosis value has yet to be determined and 

none exists in neuroblastoma.  

We established such a model for HRNB relying on two coefficients: 𝛼 (growth) and 𝜇 

(dissemination). The model was calibrated using diagnosis values of primary tumor size, 

lactate dehydrogenase circulating levels (LDH) and the meta-iodo-benzyl-guanidine 

(mIBG) SIOPEN score from nuclear imaging, using data from 49 metastatic patients 

treated according to the European HR_NBL1 protocol. 

The model was able to accurately describe the data for both total tumor mass (LDH, 𝑅$ >
0.99) and number of visible metastasis (SIOPEN, 𝑅$ = 0.96). Statistical analysis revealed 

significant association of LDH with overall survival (OS, p=0.0268). However, clinical 

variables alone were not able to generate a Cox-based model with sufficient prognosis 

ability (p=0.507). The parameter 𝜇 was found to be independent of the clinical variables 

and positively significantly associated with OS (p = 0.0175 in multivariate analysis). 

Critically, addition of this novel computational biomarker to the clinical data drastically 

improved the performances of predictive algorithms, with a concordance index in cross-

validation going from 0.755 to 0.827. The resulting signature had significant prognosis 

ability of OS (p=0.0353). 

Mechanistic modeling was able to describe pathophysiological data of metastatic HRNB 

and outperformed the predictive value of clinical variables. The physiological substrate 

underlying these results has yet to be explored, and results should be confirmed in a 

larger cohort. 

Significance 

A mechanistic mathematical model of metastasis in high risk neuroblastoma is able to 

describe clinical data and provides a numerical biomarker with superior predictive power 

of overall survival than clinical data alone.
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Introduction 

Neuroblastoma is the second solid tumor in children (8-10% children cancers in USA and 

Europe) with a median age at diagnosis around 2 years (1,2). Neuroblastoma is 

responsible of almost 15% of childhood deaths by cancer (3). Neuroblastoma is a quite 

heterogenous disease at clinical, histological and biological levels (4). Consequently, its 

prognostic spectrum is also wide (5). The International Neuroblastoma Risk Group 

(INRG) proposed in 2009 a classification model depending of cancer data (dissemination 

of neuroblastoma, histology, grade of tumor differentiation, genetic abnormalities such as 

MYCN amplification (6) and age (3,7)). Therefore, neuroblastoma is divided into 3 risk-

groups : Low, Intermediate and High Risk Neuroblastoma (HRNB), which display different 

survival rates. For patients treated according to the International Society for Paediatric 

Oncology European (SIOPEN) recommendations, 5-year overall survival is more than 

90% for the first group thanks to minimal therapeutics (surgery and/or chemotherapy or 

simple overseeing), 60 to 80% for the second (5) and < 50% for the lasts group, 

representing nearly 50% of patients (3,8–11), despite intensive multimodal treatments. 

Furthermore, patients progressing during or after initial response to induction have a 

dismal 5-year event-free survival (<20% for patient with early progressive disease 

(12,13)). For these refractory patients, current therapeutics are unsatisfactory and new 

treatments or therapeutic strategies are needed. 

As early as 1964 (14), efforts have been made to develop mathematical models to assist 

cancer research (15). Their aim was to understand multiple biological processes involved 

in cancer and to propose rational tools for the design of therapeutic drug regimen (16,17). 

Three main types of mathematical models can be distinguished. On one hand, highly 

complex, multiscale models try to integrate as much of the biology as possible, ranging 

from intra-cellular molecular processes to systemic interactions at the whole organism 

level (18). This approach requires many parameters and consequently the models are 

often impossible to reliably calibrate for clinical purpose. On the other hand, purely 

statistical models and artificial intelligence techniques rely on agnostic algorithms that try 

to learn patterns directly from the data (19,20), with applications mostly in genomics (21) 

and radiology (22), but rarely in clinical oncology. In between, mechanistic or semi-

mechanistic models seek to describe only the main determinants of a cancer disease, for 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.26.20042192doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.26.20042192
http://creativecommons.org/licenses/by-nc/4.0/


 

4 

 

 

a given purpose (e.g., prediction of survival from tumor kinetics (23), understanding 

(24,25) or prediction (26,27) of metastatic relapse).  

To our knowledge no mechanistic model has yet been established and validated for 

clinical neuroblastoma. In this study, we define such a model for high-risk neuroblastoma 

to describe the metastatic burden at diagnosis, using two coefficients: a patient specific 

parameter 𝜇 for the dissemination process and a patient nonspecific parameter 𝛼 for the 

growth process. The model was built and calibrated using clinical, biological and 

radiological data from a monocentric cohort of 49 patients with HRNB treated according 

to the HRNBL1 protocol (9). We then evaluated the prognostic value of the individual 

parameter 𝜇 and tried to identify Ultra High-Risk patients. 

 

Material and methods 

Ethics statement 

Authorization to perform the study was obtained at APHM (Public Assistance of 

Marseille’s Hospitals) Health Data Access Portal (number request 32PTJ5)). We respect 

the Informatic and Liberty Law (1978) for the use of data. All parents and patients when 

appropriate gave consent to participate in the study. 

Data collection 

Our population is made of 49 patients with HRNB (see stratification algorithm in Table 

S1) treated according to the HRNBL1 protocol recommendations (9), in the paediatric 

hematology and oncology unit of the children hospital of the University Hospital of 

Marseille (AP-HM) between 11/26/2007 and 08/30/2018. Entry date was the date of 

diagnosis. For survival analyses, end date was either the date of patients’ death or the 

date of last news. Inclusion criteria were the inclusion criteria of the HRNBL1 protocol (9) 

(see Figure S1). Briefly, induction chemotherapy with “rapid COJEC” or “modified N7 

induction” is given for 10 weeks, followed by surgery when considered possible, then 

myeloablative chemotherapy with hematopoietic peripheral stem cell transplantation. 

Treatment is then completed with radiotherapy and maintenance therapy with 

immunotherapy (anti-GD2 ± IL2 therapy) and retinoic acid for 6 months. 
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Data were gathered from Personalized Computerized Folders (PCF) by the Axigate 

platform used in AP-HM, which includes neuroblastoma risk factors such as age at 

diagnosis, lactate dehydrogenase (LDH) – correlated to the total tumor volume 

(6,9,28,29) – or MYCN amplification, researched by polymerase chain reaction from 

peripheric blood and/or from primary or metastatic tumor tissue at diagnosis. The dataset 

is available in the supplementary file S1. 

SIOPEN scoring (Figure S2)  

The meta-iodo-benzyl-guanidine (mIBG) is known to bind to  neuroblastoma cells using 

iodine 123 (I123) (30) and mIBG scintigraphy is consequently used to evaluate the extent 

of the disease, in agreement with INRG recommendations. Indeed, mIBG binds to almost 

90% of neuroblastomas (31) in primary tumors, but also bone, bone marrow (32) or even 

soft tissues with a high sensibility (85-94%) (33). We used a semi quantitative SIOPEN 

score that was elaborated to predict extension and severity of the disease (34). A high 

score has been shown as pejorative but no reproducible cut off has not yet been found 

(31,34). We established the SIOPEN score with the PCF data using the Centricity imaging 

software, or by retrospective double scoring scintigraphy with an experiment nuclear 

physician (LT). 

Tumor characteristics 

Location and size of primary tumors was evaluated using radiological reports performed 

at diagnosis. Forty-five patients (91.8%) had scanner, 11 patients (22.4%) magnetic 

resonance imaging (MRI). Primary tumor volumes were estimated by the formula: 
,
-𝜋𝑎𝑏𝑐 

with 𝑎 half the largest axis, 𝑏 half the medium axis and 𝑐 half the smallest axis of an 

ellipsoid tumor.  

Location and number of visible metastases were retrieved from mIBG scintigraphy 

imaging. Metastases locations were recorded in imaging interpretation. In addition, bone 

marrow metastases were searched by performing myelograms and bone marrow 

biopsies.  

Date of best treatment response was recorded according to the International 

Neuroblastoma Response Criteria (INRC) (35). Date of relapse was recorded as the date 

on which unfavorable evolution of the disease was highlighted by radiology (scanner 
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and/or MRI) and nuclear imaging (positron emission tomography and/or mIBG I123 

scintigraphy). We defined Ultra-High-Risk (UHRNB) patients as relapsing or progressing 

within 18 months after diagnosis.   

Mathematical model 

Definition 

The mathematical model was based on a previously published framework (25,26,36), 

which allows to simulate a cancer disease at the organism scale, including growth of the 

primary tumor (PT) and birth and growth of secondary lesions (Figure 1). We assumed 

growth of both the primary and secondary tumors to follow an exponential law: 

𝑆3(𝑡) = 𝑆(𝑡) = 𝑒89 	, 
where 𝑆3(𝑡) and 𝑆(𝑡) denote the sizes of a primary and a secondary tumor (expressed in 

number of cells), starting from one cell at time 𝑡 = 0 . The parameter 𝛼  denotes the 

proliferation rate. Assuming a metastasis birth rate proportional to the PT size with 

parameter 𝜇, the number of metastasis at time 𝑡	is given by (25): 

𝑁(𝑡) = 𝜇= 𝑆3(𝑠)𝑑𝑠
9

@
. 

The parameter 𝜇 corresponds to the per day probability for each cell of the PT to spread 

and establish a distant metastasis. The total metastatic burden (total number of metastatic 

cells in the organism) is given by (26): 

𝑀(𝑡) = 𝜇 = 𝑆3(𝑠)𝑆(𝑡 − 𝑠)𝑑𝑠.
9

@
 

Visible metastases at time 𝑡 (i.e. metastases with size larger than a visibility threshold 

𝑆CDE) are the ones that were born early enough to have reached  𝑆CDE at 𝑡, that is, before 

𝑡 − 𝜏CDE, where 𝜏CDE is the time to reach 𝑆CDE (see Figure 1). This time is given by 𝜏CDE =
GH(IJKL)

8  and the number of only visible metastases can then be computed as: 

𝑁CDE(𝑡) = 𝑁(𝑡 − 𝜏CDE) = 𝜇= 𝑆3(𝑠)𝑑𝑠.
9MNJKL

@
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The visibility threshold 𝑆CDE is considered a patient-specific model parameter. Numerical 

simulations of 𝑀  were performed using the fast Fourier transform algorithm as 

implemented in the scipy python package (python 3.7), exploiting the convolution 

structure of the equation (37). 

For forward simulations of the model, a discrete version was employed with initiation time 

𝑇D and size 𝑆D of the i-th metastasis given by: 

𝑇D = inf{𝑡 > 0;𝑁(𝑡) ≥ 𝑖},								𝑆D = 𝑒8(9MXK), 	𝑓𝑜𝑟	𝑡 > 𝑇D. 
Calibration 

Cell doubling times (CDTs) in neuroblastoma was a prerequisite to estimate 𝛼 . We 

searched PubMed for studies related to CDT, as well as CDTs from a database of 

commercial cell population (supplementary file S2). All cell lines were obtained from 

human patients and CDTs were established in vitro. Of the 73 strains studied, 15 were 

excluded due to a lack of knowledge regarding possible exposure to chemotherapy. 

Median CDT was 48h (20 - 258h). We then fixed 𝛼 = GH $
\]X^_`Kab

. This further allowed us to 

compute an estimation of the PT age (or time of diagnosis, 𝑇c):  

𝑇c = ln(𝑆c)
𝛼 , 

where 𝑆c is the size of the PT at diagnosis. This last quantity was derived from three 

diameters obtained from computed tomography imaging, which allowed computation of 

the PT volume assuming ellipsoidal shape. This volume was converted into a number of 

cells using the standard assumption of 1 mm3 ≃ 106 cells (38). 

For each patient, two quantitative measurements were used to compare the metastatic 

model to the data: the SIOPEN score and the LDH blood level. The former was assumed 

to be a surrogate of the visible number of metastasis and the latter to represent the total 

cancer burden in the organism (PT + metastases, Figure 1). Denoting with 𝑖 superscript 

the quantities that depend on individual 𝑖, we thus assumed: 

𝑆𝐼𝑂𝑃𝐸𝑁D = 𝑁CDEj𝑇cD ; 𝜇D , 𝑆CDED k × (1 + 𝜎𝜀q),						𝜀q ∼ 𝒩(0,1)	
𝐿𝐷𝐻D = 𝜙 x𝑆3j𝑇cDk +𝑀j𝑇cD ; 𝜇D , 𝑆CDED ky	×	 (1 + 𝜎𝜀$),						𝜀$ ∼ 𝒩(0,1) 
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which expresses a proportional error model for the observations with standard deviation 

𝜎 = 0.1, corresponding to a 10% measurement error. The parameter 𝜙 represents a 

patient non-specific conversion coefficient between number of cells and LDH (expressed 

in units per liter, UI/L). Maximization of the log-likelihood for the expression above leads 

to minimization of the following objective function: 

𝑙j𝜇D , 𝑆CDED , 𝜙k = 𝑙I{|}~�j𝜇D , 𝑆CDED k + 𝑙�]�j𝜇D, 𝜙k	

= x𝑆𝐼𝑂𝑃𝐸𝑁D − 𝑆𝐼𝑂𝑃𝐸𝑁��c��D j𝜇D , 𝑆CDED ky$

2 x𝜎𝑆𝐼𝑂𝑃𝐸𝑁��c��D j𝜇D , 𝑆CDED ky$

+ ln x𝜎√2𝜋𝑆𝐼𝑂𝑃𝐸𝑁��c��D j𝜇D , 𝑆CDED ky +x𝐿𝐷𝐻
D − 𝐿𝐷𝐻��c��D j𝜇D , 𝜙ky$

2 x𝜎𝐿𝐷𝐻��c��D (𝜇D , 𝜙)y$

+ ln x𝜎√2𝜋𝐿𝐷𝐻��c��D j𝜇D , 𝜙ky ,	
 

with  

𝑆𝐼𝑂𝑃𝐸𝑁��c��D j𝜇D , 𝑆CDED k = 𝑁CDEj𝑇cD ; 𝜇D , 𝑆CDED k	
𝐿𝐷𝐻��c��D j𝜇D , 𝜙k = 𝜙 x𝑆3j𝑇cDk +𝑀j𝑇cD ; 𝜇D , 𝑆CDED ky. 

The parameter 𝜙  was arbitrarily fixed to 10M�  UI/L/cell, from preliminary simulations. 

Minimization was implemented using the Nelder-Mead algorithm of the minimize function 

of the scipy python package (python 3.7). 

Statistical and predictive analysis 

Due to ranges spanning several orders of magnitude, individual values of LDH levels and 

the mathematical parameter 𝜇 were log-transformed beforehand. Association between 

clinical variables and/or the individual mathematical parameter	ln 𝜇 with progression-free 

survival or overall survival was assessed using log-rank tests for dichotomized groups, 

as well as univariate and multivariate proportional hazard Cox regression models for 

continuous covariates. The lifelines python package was used to fit the models. Resulting 

models were evaluated for their predictive power by computing the mean of Harrell’s c-

index (39) during a ten-folds cross-validation procedure. It is the equivalent of the area 
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under the ROC curve for survival analysis (proportion of correctly predicted pairs of 

subjects). Specifically, we first selected the variables below a p=0.2 significance threshold 

in univariate analysis. Then multivariate Cox models including only these variables were 

trained on the cross-validation learning sets, and the c-index was computed on the 

corresponding test sets. For construction of prognosis scores, Cox models were trained 

using the selected variables on the entire data set. For a patient 𝑖 with covariates 𝑥D, the 

score was defined by 𝛽X𝑥D with 𝛽 the vector of the Cox coefficients. Calibration of these 

Cox models was assessed using calibration plots at the median survival value. These bin 

patients according to predicted survival and compare survival predictions with the Kaplan-

Meier estimates of the patients within the bin (calibrate function of the rms R package) .  

Results  

Description of the cohort 

Patients and tumor characteristics (Table 1) 

Forty-nine patients were included in our cohort. Two girls of 26 and 11 months diagnosed 

with low risk neuroblastoma were included due to early progression. The MYCN status 

for both patients was negative at diagnosis but changed for the younger one at relapse. 

We excluded 4 patients for the construction of the mathematical model as the date of 

inclusion in the HRNBL1 protocol was delayed when compared with the initial diagnosis 

(pre-treatment with other off-protocol chemotherapy types and one 36 months-old girl with 

a metastatic, MYCN negative esthesio-neuroblastoma whose size could not be 

estimated). 

Median age was 36 months (range 11-140). LDH levels at diagnosis were high with a 

median of 842 UI/L (302-22022), compared with laboratory normal values < 300 UI/L. 

Metastases were present for most patients (91.8%) and SIOPEN scores were overall high 

(median 27 (0-60)). Three patients who had a negative mIBG (no fixing primary tumor on 

scintigraphy) but PET-visible metastases were excluded. All patients underwent bone 

marrow aspirates and/or biopsies. 

Location of primary tumors was adrenal for 55,1% patients (n=27) and abdominal for 

34,7% (n=17). Details are given in Figure S3A. Primary tumor median volume was 272 
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cm3 (range 0.5 – 2 266 cm3). Locations of metastases are detailed in Figure S3B. The 

most frequent metastatic site was bone marrow (n=38, 77.6%). 

Patients outcome 

All patients were evaluable for response to induction chemotherapy. Twenty-three 

patients had complete response (46.9%), 24 partial response (49%) and only 2 had stable 

disease (4.1%). However only 20 patients did not ultimately progress (40.8%). Among 

those who progressed (59.2%), 25 died (51% of whole initial cohort). Details of patients 

survival are showed in Figure 2. The median survival without progression was 29 months. 

At 3 and 5 years, progression-free survival rates were 44.1%, and 29.1%, respectively. 

Median overall survival (OS) was 43 months. At 3 and 5 years, OS rates were 55.8% and 

38.9%, respectively. 

Descriptive power of the mathematical model 

To describe the metastatic burden of HRNB patients, we developed a semi-mechanistic 

modeling approach whereby the metastatic process is reduced to two main phenomena: 

growth and dissemination (Figure 1). Growth was assumed to be exponential and the 

dissemination rate to be proportional to the primary tumor size, with a proportionality 

factor 𝜇. To rely to the data and estimate 𝜇D in a given patient 𝑖, we assumed that the LDH 

level was a surrogate of the total tumor mass, whereas the SIOPEN score reflected the 

number of visible metastases (Figure 1). We also used the primary tumor size at 

diagnosis to infer the age of the tumor and simulate the pre-diagnosis history of the 

disease. The model was able to accurately reproduce the SIOPEN score and LDH levels 

(Figure 3A-B, 𝑅$ = 0.96	and > 0.99 , respectively). Interestingly, The parameter ln 𝜇 

revealed no correlation with either the log(LDH) (R = 0.25) or the SIOPEN (R = 0.201, 

Figure 3C), suggesting independent added value of this parameter – possibly informative 

of progression or survival – as compared to the data alone. 

Simulations of the natural history of HRNB 

Statistical inference of the model parameters 𝜇D and 𝑆CDED  allowed to perform simulations 

of the predicted natural history of the disease. Representative patients are shown in  

Figure 4A (see Figure S4 for all patients). These highlight the high inter-individual 

variability, well captured by the mathematical model (Figure 3). As a general observation 
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however, we predicted that once initiated, metastatic dissemination then experienced a 

“burst”, with multiple metastasis born in a short period of time (see patients 1, 16, 24, 25 

and 30 in Figure 4A). Nevertheless, the time 𝑇�� between the first cancer cell and birth of 

metastasis was variable, from almost simultaneous to cancer initiation (e.g. patient 24, 

0.42 days) to one month (e.g. patient 25, 34.4 days), see Figure 4B. The predicted age 

of the PT was less variable (median 76 days, range 58.1 – 82.1 days).  

Prognostic analysis 

Analysis of classical prognosis factors 

Using log-rank tests for dichotomized groups (Figure S5), no significant difference was 

found in progression-free survival (PFS) for gender (p = 0.219), MYCN status (p = 0.354) 

or age (p = 0.825 with, 18 months cut-off). For LDH and SIOPEN, separation at the 

median value or from literature thresholds (9,34) was not able to significantly discriminate 

patients and statistical significance was only reached for extreme values, respectively at 

the 80th percentile (2,375 UI/L) and the 90th percentile (46.2) (Figure S5). In univariate 

Cox regression analysis, only the LDH level was associated with PFS (Hazard Ratio (HR) 

1.6 (95%CI: 1 – 2.56), p=0.05). For analysis of the predictive power, univariate analysis 

selected the variables LDH and SIOPEN at a p < 0.2 threshold. The mean c-index in 

cross-validation was 0.603 for PFS. 

Similarly, no significant difference was found in overall survival (OS) for  gender (p = 

0.198), MYCN status (p = 0.181) or age (p=0.527). Again, a significant difference in OS 

was found only for at the 80th and 90th percentiles of LDH levels and SIOPEN score. Using 

univariate Cox regression, only the LDH rate was significantly associated with OS (HR 

1.74 (95%CI: 1.07 – 2.84), p=0.0268), which was confirmed in multivariate analysis 

(Figure 5A). The predictive model selected the variables LDH and MYCN status as having 

p < 0.2, which resulted in a c-index of 0.755. However, these variables were not sufficient 

to yield a Cox score able to significantly discriminate patients (p=0.507, Figure 5B). 

Added value of the mechanistic model 

Neither 𝜇 nor 𝑆CDE were significantly associated with PFS (p = 0.475) in log-rank analysis 

(Figure S5) or Cox analysis. On the other hand, the parameter 𝜇  seemed to be the 

quantitative parameter most associated with OS in dichotomized analysis (Figure S6), 
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even if not significant probably due to a crossing of the survival curves. Critically, 

confirming this observation, 𝜇 was positively significantly associated with better OS in 

multivariate Cox regression analysis (HR=0.839 (95% CI: 0.726 – 0.97), p=0.0175 , see 

Table 2 and Figure 5C). Moreover, adding this novel computational biomarker 𝜇 to the 

previous significant biomarkers LDH and MYCN strongly increased the predictive power 

with an updated c-index of 0.827 (+9.54%). In addition, this superior predictive power was 

further supported by the fact that a novel Cox score, derived from the coefficients of LDH, 

MYCN and log(𝜇), was now able to significantly separate patients between poor and good 

prognosis (p=0.0353, Figure 5D). This was also confirmed by better calibration plots when 

including 𝜇   vs when not including it  (Figure S7). 

Discussion 

We reported here about the development of a mathematical model of metastatic 

neuroblastoma using a mechanistic approach based on classical risk factors, easy to 

collect at diagnosis and routinely used by clinicians. Our model could adequately describe 

total cancer mass represented by LDH levels as well as visible metastases represented 

by the SIOPEN scores. Beyond this mere descriptive value, our analysis suggested 

predictive value of a new computational biomarker 𝜇, able to significantly better predict 

outcomes for patients.  

Tumor growth is a complex biological process, that includes tumor proliferation, regulation 

of abnormalities concerning stem cells (40), neoangiogenesis (32,33),  microenvironment 

interactions (40,41), immune interactions with tumor cells and dysregulation immune 

system (4,41–43). These complex interacting processes are regulated by many genes or 

epigenetic regulators (44) currently still being investigated. How to model these complex 

properties remains an open debate.  We have used a semi-mechanistic approach relying 

on both clinical and radiological data to model neuroblastoma growth. Such mechanistic 

models of metastasis have already been successfully used for different cancer types such 

as kidney (24), breast (26,27) or lung (25). Although not included here, these models can 

incorporate the effects of multiple therapies (i.e. surgery, chemotherapy) or tumor-tumor 

interactions to describe and predict tumor dynamics (26,45,46). Moreover, the limited 
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number of parameters used in these models allows a quick translation to potential clinical 

applications.  

A very limited number of studies have focused on the mathematical modeling of 

neuroblastoma genesis, growth, or metastatic evolution. Ciccolini et al. (47) have reported 

a mechanistic model of neuroblastoma growth, using a classical Gompertzian model. 

Their model was used to optimize gemcitabine metronomic chemotherapy administration 

but did not intend to model metastatic dissemination. Elsewhere, He et al. (48) coupled a 

complex vasculature model fitting the dynamic growth of the human neuroblastoma cell 

line IMR32 in mice and a pharmacokinetics/pharmacodynamics model of bevacizumab, 

an anti-VEGF agent, to determine the best dosing regimen for this treatment and predict 

its effectiveness. Kasemeier-Kulesa and al. (49) have developed a molecular network 

model of developmental genes and signaling pathways with a 6 gene inputs logic model, 

using the discrete Boolean logic, and based on 4 cell states (differentiation, proliferation, 

angiogenesis, apoptosis). The model was able to predict the stage of the human 

neuroblastoma SHSY5Y and then the outcome of 77 early stage patients. Recently, 

Hidalgo et al. (50) modeled the whole cell signaling pathways data linking analysis of 

different pathways to molecular mechanisms involved in cancer physiopathology and 

patient survival. They identified numerous pathways implicated in the activation or 

deactivation of several cell functions responsible of poor outcomes in patients with 

neuroblastoma by for instance promoting of proliferation and apoptosis inhibition (TP53), 

angiogenesis (FASLG), or metastasis (THBS1, PTPN11 and cAMP AFDN). All the 

models proposed above are nevertheless not easily translatable in the clinic.  

Alternatively, although not being the mainstay yet, individual molecular profiling has been 

studied in neuroblastoma (3,4). Several studies explored genome wide associations to 

predict outcomes for HRNB patients (51,52) but they are not used yet in day-to-day 

clinical practice. The relevance of the identified markers can also be questioned due to 

the lack of evidence of a causal relationship (53). 

Our mechanistic model is a simplified representation of the metastatic process, reducing 

it to two basic phenomena: growth (𝛼) and dissemination (𝜇). Our findings suggested 

growth to be exponential and fast, with primary tumors reaching 10 cm tumors in less 

than 3 months. This contrasts with previous studies where tumor growth kinetics were 
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shown to slow down and deviate from an exponential pattern, following rather a 

gompertzian pattern (25,54). This is probably explained by the embryonic nature of this 

cancer, which makes it particularly aggressive. Dissemination was also characterized 

with a very high value of 𝜇 (median = 0.0446 metastases/cell/day) in comparison to other 

adult cancers (e.g. typical 	𝜇  = 2.30 × 10Mq$  metastases/cell/day in breast cancer). 

Notably, the inferred values of metastatic sizes at diagnosis and threshold values 𝑆CDE fall 

within biologically realistic ranges (median 𝑆CDE = 14 mm), although no a priori metastatic 

size information was used when calibrating the model. Only numbers of metastases 

above a parametric threshold (automatically fitted by the model) were used. 

The parameter 𝜇 was found a better prognostic tool than the validated SIOPEN score at 

diagnosis and can be combined with LDH and MYCN status to predict OS. Interestingly, 

a high 𝜇 value is paradoxically an independent and statistically significant factor of better 

OS in our cohort. This might be explained by two possible hypotheses. First, patients with 

high 𝜇 may have an aggressive neuroblastoma with high replicative potential, which may 

result in a better sensitivity to chemotherapy and therefore better survival. Second, 

patients with high 𝜇 have a bigger total cancer burden, but this total mass could result in 

systemic inhibition of proliferation (46). This would be consistent with the fact that 𝜇 is a 

good prognosis factor for OS but not for PFS. Indeed, the visible mass might progress 

while suppressing the growth of smaller, invisible tumors. Assuming further that death 

results from the total mass present in the organism and not only the visible lesions could 

possibly explain why patients who progress are distinct from patients with the largest 

number of metastases (i.e., largest 𝜇). To further confirm or invalidate these hypotheses, 

further mechanistic insights could be gained by linking 𝜇 to molecular analyses of the 

tumor. The micro-environment and more specifically the immune system might also be 

implicated in slow tumor progression and a host’s tumor long-term control.  

The major limitation of our study is the limited (n=45) number of patients included in our 

analysis, due to the monocentric nature of our cohort. This nevertheless corresponds to 

all HRNB patients treated at our institution during over a 10 years period. This prevented 

us to extract a test set from the data before any analysis, on which to evaluate the 

predictive power of the model a posteriori. Nevertheless, we tested the predictive abilities 

of 𝜇 using cross-validation, i.e. on independent sets independent from the learning ones. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.26.20042192doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.26.20042192
http://creativecommons.org/licenses/by-nc/4.0/


 

15 

 

 

In this cross-validation process, the model changes on each fold, thus deciding on the 

"best" model (i.e. the ones with highest c-index across the 10 folds) still relies on entire 

data set. Critically, the mean c-index was found higher when using 𝜇 to predict survival, 

reaching a very good score (> 0.8). Further research should evaluate the predictive value 

of this final model on independent data. 

Conclusion 

We developed a mechanistic mathematical model, using human data and a limited 

number of standard risk factors required in the clinic. We have chosen to use prognostic 

factors that are available at the time of diagnosis, in order to be able to provide upfront 

alternative therapeutic strategies adapted to the patients most likely to be unresponsive 

to a conventional high-risk neuroblastoma treatment. The model can reproduce tumor 

spreading of high-risk neuroblastoma in our patients and also predict patient prognosis, 

better than clinical variables only. It also led to the creation of a new risk score based on 

the parameter 𝜇, which is associated with better OS outcome in our population. These 

findings must be confirmed in a larger cohort and the physiological substrate underlying 

this result should be explored. 
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Figure and Table legends 

Table 1: Patients characteristics 

Table 2 : Multivariate Cox analysis of overall survival 

Figure 1 : Schematic of the mathematical model 

Primary and secondary tumors are assumed to have exponential growth kinetics 

governed by a proliferation rate α. Dissemination of metastasis is controlled by 

the parameter μ. From these and primary tumor size at diagnosis 𝑆c, the primary 

tumor age 𝑇c can be computed and simulations of the natural history can be 

performed. Adjunction of a visibility threshold 𝑆CDE results in predictions of the 

number of visible metastases 𝑁CDE and total cancer mass (primary + secondary 

tumors) 𝑆3 +𝑀. These are respectively compared to the SIOPEN score and 

lactate dehydrogenase level. The time of birth of the first metastasis is denoted 

𝑇�� and the time to reach 𝑆CDE from one cell 𝜏CDE. Note that the number of visible 

metastases at time 𝑇c is the total number of metastases at time 𝑇c − 𝜏CDE. 
Figure 2: Overall and progression-free survival 

Figure 3: Descriptive power of the mathematical model 

A. Fit of the SIOPEN data. Solid line is the identity line. 

B. Fit of the LDH data. Solid line is the identity line. 

C. Correlation matrix of all features including clinical variables and (log) of the 

mathematical parameter μ. Level of darkness indicates positive correlation 

whereas brightness indicates negative correlation. 

Figure 4: Mechanistic simulations of the pre-diagnosis history 

of high-risk neuroblas- toma patients 

A mechanistic model was calibrated using patient data of SIOPEN score 

(number of visible metastases) and LDH levels (total cancer burden), which 
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resulted in individual values of the model parameters μ and 𝑆CDE. These values 

were used to simulate the pre-diagnosis natural history of the disease. 

A. Simulations of the primary tumor (blue) and metastases (red) growth kinetics, 

for representative patients.  

B. Distributions of the times of the primary tumor (PT ) diagnosis (age of the PT, 

𝑇c) and birth of the first metastasis (𝑇��). 

Figure 5: Prognosis of overall survival 

Using multivariate Cox regression, we compared the association and prognostic 

value of clinical variables alone (left) or complemented with the mathematical 

biomarkers (right). 

A. Hazard ratios and 95% confidence intervals of the clinical variables in 

multivariate Cox regression. The reported c-index corresponds to the one 

obtained in cross-validation using variables selected at p < 0.2 in univariate 

analysis (log(LDH) and MYCN). 

B. Separation of patients according to the Cox score predicted from the selected 

clinical variables (log(LDH) and MYCN).  

C. Same as A. with log(μ) and visible threshold 𝑆CDE as additional variables. 

D. Same as B. with log(μ) as additional variable in the model.  
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Figures and Tables

Table 1: Patients characteristics

Table 2: Multivariate Cox analysis of overall survival

Figure 1: Schematic of the mathematical model

Figure 2: Overall and progression-free survival

Figure 3: Descriptive power of the mathematical model

Figure 4: Mechanistic simulations of the pre-diagnosis history of high-risk neuroblastoma patients

Figure 5: Prognosis of overall survival
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Table 1: Patients characteristics

Sex Male n=28 (57.2%) 

 Female n=21 (42.8%) 

Age > 18 months n=43 (87.8%)  

 < 18 months  n=6 (12.2%)  

LDH rates > 1250 UI/L n=18 (36.7%)  

 < 1250 UI/L n=31 (63.3%)  

MYCN Amplified n=23 (46.9%)  

 Non amplified n=26 (53.1%)  

SIOPEN >4 n=30 (65.2%)  
Only if MIBG was positive <4 n=16 (34.8%)  

Metastasis Present n=43 (87.8%)  

 Absent n=6 (12.2%) 
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Table 2: Multivariate Cox analysis of overall survival

Hazard ratio lower 0.95 upper 0.95 p

age 1 0.984 1.02 0.73

sex 1.44 0.542 3.82 0.465

log(LDH) 3.87 1.51 9.9 0.00473

SIOPEN 1 0.967 1.03 0.991

MYCN 0.5 0.118 2.12 0.347

log(µ) 0.839 0.726 0.97 0.0175

visible threshold 0.997 0.988 1.01 0.552
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Figure 1: Schematic of the mathematical model
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Primary and secondary tumors are assumed to have exponential growth kinetics governed by a proliferation rate α. Dis-

semination of metastasis is controlled by the parameter µ. From these and primary tumor size at diagnosis Sd, the primary

tumor age Td can be computed and simulations of the natural history can be performed. Adjunction of a visibility threshold

Svis results in predictions of the number of visible metastases Nvis and total cancer mass (primary + secondary tumors)

Sp +M . These are respectively compared to the SIOPEN score and lactate dehydrogenase level. The time of birth of the

first metastasis is denoted Tfm and the time to reach Svis from one cell τvis. Note that the number of visible metastases

at time Td is the total number of metastases at time Td − τvis.
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Figure 2: Overall and progression-free survival
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Figure 3: Descriptive power of the mathematical model
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A. Fit of the SIOPEN data. Solid line is the identity line.

B. Fit of the LDH data. Solid line is the identity line.

C. Correlation matrix of all features including clinical variables and (log) of the mathematical parameter µ. Level of darkness

indicates positive correlation whereas brightness indicates negative correlation
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Figure 4: Mechanistic simulations of the pre-diagnosis history of high-risk neuroblas-

toma patients
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A mechanistic model was calibrated using patient data of SIOPEN score (number of visible metastases) and LDH levels

(total cancer burden), which resulted in individual values of the model parameters µ and Svis. These values were used to

simulate the pre-diagnosis natural history of the disease.

A. Simulations of the primary tumor (blue) and metastases (red) growth kinetics, for representative patients

B. Distributions of the times of the primary tumor (PT ) diagnosis (age of the PT, Td) and birth of the first metastasis (Tfm)
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Figure 5: Prognosis of overall survival
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Using multivariate Cox regression, we compared the association and prognostic value of clinical variables alone (left) or

complemented with the mathematical biomarkers (right).

A. Hazard ratios and 95% confidence intervals of the clinical variables in multivariate Cox regression. The reported c-index

corresponds to the one obtained in cross-validation using variables selected at p < 0.2 in univariate analysis (log(LDH)

and MYCN).

B. Separation of patients according to the Cox score predicted from the selected clinical variables (log(LDH) and MYCN).

C. Same as A. with log(µ) and visible threshold Svis as additional variables.

D. Same as B. with log(µ) as additional variable in the model.
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Supplementary figures and tables

Table S1: Neuroblastoma classification according to the International Neuroblastoma Risk Group staging

system

Table S2: Cox analysis of progression-free survival
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Figure S4: Simulations of all patients
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Figure S7: Calibration plots
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Table S1: Neuroblastoma classification according to the International Neuroblastoma

Risk Group staging system

Adapted from ref [6]. GN: Ganglioneuroma. GNB: Ganglioneuroblastoma. NA: Non Amplified.
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Table S2: Cox analysis of progression-free survival

Hazard ratio lower 0.95 upper 0.95 p

age 0.997 0.978 1.02 0.718

sex 1.15 0.461 2.85 0.768

log(LDH) 2.42 0.985 5.92 0.0539

SIOPEN 1.01 0.982 1.05 0.395

MYCN 0.801 0.196 3.27 0.757

log(µ) 0.902 0.79 1.03 0.13

visible threshold 0.997 0.987 1.01 0.465
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Figure S1: HRNBL1 protocol

Time is in days.

Staging: MRI: Magnetic Resonance Imaging. CT: Computerized tomography. US: Ultrasound. mIBG: meta-iodo-benzyl-

guanidine scintigraphy. BM: Medullar Bone exploration.

Treatments: CBCA: Carboplatine, VP16: Etoposide, VCR: Vincristine, CDDP: Cisplatin. MAT: Myeloablative therapy.

PBSC: Peripherical Blood Stem Cell. Bu Mel: Busulphan Mephalan. Rx: Radiotherapy.
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Figure S2: SIOPEN scoring

To score patients, the skeleton is divided into 12 segments, and for each of them extension of the lesions is scored as:

• 0: no lesion

• 1 for 1 lesion

• 2 for 2 lesions

• 3 for 3 lesions

• 4 for > 3 lesions but < 50% of the concerned segment

• 5 for diffuse disease but < 95% of the whole segment

• 6 for difsuse disease > 95% of whole segment

The SIOPEN score is then defined as the sum of each segment’s score.
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Figure S3: Primary tumor and metastases location
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Figure S4: Simulations of all patients
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Figure S5: PFS analysis in dichotomized groups
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Figure S6: OS analysis in dichotomized groups
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Figure S7: Calibration plots
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