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Abstract

Widespread structural brain abnormalities have been consistently reported in schizophrenia, but
their relation to the heterogeneous clinical manifestations remains unknown. In particular, it is un-
clear whether anatomical abnormalities in discrete regions give rise to discrete symptoms, or whether
distributed abnormalities give rise to the broad clinical profile associated with schizophrenia. Here we
apply a multivariate data-driven approach to investigate covariance patterns between multiple symp-
tom domains and distributed brain abnormalities in schizophrenia. Structural MRI, and clinical data
were derived from one discovery sample (133 patients, 113 controls) and one independent validation
sample (108 patients, 69 controls). Disease-related voxel-wise brain abnormalities were estimated
using deformation based morphometry. Partial least squares analysis was used to comprehensively
map clinical, neuropsychological and demographic data onto distributed deformation in a single mul-
tivariate model. The analysis identified three latent clinical-anatomical dimensions that collectively
accounted for 55% of the covariance between clinical data and brain deformation. The first latent
clinical-anatomical dimension was replicated in an independent sample, encompassing cognitive im-
pairments, negative symptom severity and brain abnormalities within the default mode and visual
networks. This cognitive-negative dimension was associated with low socioeconomic status and was
represented across multiple races. Altogether, we identified a continuous cognitive-negative dimen-
sion of schizophrenia, centered on two intrinsic networks. By simultaneously taking into account both
clinical manifestations and neuroanatomical abnormalities, the present results open new avenues for
multi-omic stratification and biotyping of individuals with schizophrenia.

INTRODUCTION

Schizophrenia is characterized by heterogeneous clini-
cal manifestations including positive symptoms, negative
symptoms and generalized cognitive impairments. This
complex clinical pattern is already prevalent prior to and
during first-episode psychosis1. While positive symptoms
tend to reduce over time, negative and cognitive symp-
toms are more likely to persist over time, severely affect-
ing long-term social functioning and quality of life2–9.

Convergent findings from neuroimaging link clinical
manifestations of schizophrenia with widespread disrup-
tion of structural and functional brain networks10–13.
Several large scale studies and meta-analyses provide ev-
idence for widespread anatomical alterations, including
reduced cortical thickness, subcortical volume and white
matter integrity14–16. These localized brain abnormali-
ties have individually been linked to clinical manifesta-
tions of positive, negative and cognitive symptoms17–20.

But how do complex clinical phenotypes map onto
distributed brain networks? The organization of brain
connectivity increases the likelihood that local patho-
logical perturbations affect synaptically-connected neu-
ronal populations21. Thus, structural abnormalities with
a distributed topography may reflect the underlying net-

work architecture and manifest as a diverse set of cogni-
tive and affective symptoms22–25. Recent studies have
demonstrated such links between brain structure and
function both in healthy controls26,27, and across a num-
ber of neurological and psychiatric diseases28–32.

Several methodological limitations might have ham-
pered the progress to identify comprehensive clinical-
anatomical signatures of schizophrenia. First, the het-
erogeneity of clinical manifestation cannot be captured
by case-control designs, or studies focusing on a sin-
gle symptom domain (e.g. only positive or only nega-
tive symptoms). Second, many previous studies were
designed to capture associations between symptom di-
mensions and global brain measures or localized brain
changes with a priori defined regions of interest. Al-
together, previous work eschews the possibility of a
pleiotropic-like mapping between anatomy and func-
tion, whereby distributed structural alterations may si-
multaneously lead to multiple positive and negative
symptoms17–20,33.

The relationship between anatomical abnormalities
and clinical manifestation is particularly important for
understanding heterogeneity in the patient population.
Recent efforts have been directed towards stratifying in-
dividuals into non-overlapping clusters or biotypes based
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Figure 1. Partial least-squares analysis | PLS is a form of reduced-rank regression used to relate two sets of variables to each
other. The original variables are correlated across participants and subjected to singular value decomposition. The decomposition
yields multiple latent variables: linear combinations of the original variables, with the weights chosen to maximize the covariance
between them. The contribution of individual variables to the latent variable is assessed by bootstrap resampling. The pairing of
the deformation and clinical-cognitive pattern is assessed by permutation tests and cross-validation.

either on clinical-behavioral features34 or neuroimag-
ing features35. Although promising, such “hard parti-
tioning” methods are designed for precise categorical
stratification based either on clinical/behavorial or neu-
roimaging measures, but do not consider the possibil-
ity of continuous phenotypic dimensions that span mul-
tiple clinical domains, nor do they explicitly integrate
clinical and neuroanatomical features. By focusing on
single “modalities” (clinical only or imaging only), un-
supervised learning methods miss out on the critical
link between brain and behavior, and may yield solu-
tions that are difficult to interpret or reconcile with clini-
cal experience30. Thus, identifying continuous clinical-
anatomical dimensions would complement categorical
biotyping efforts,helping to situate individuals and bio-
types in a wider multivariate space defined by both clin-
ical presentation and anatomical abnormalities36,37.

Here we apply a data-driven method to identify multi-
modal phenotypic axes of schizophrenia. Specifically, we
use multivariate mapping between whole brain anatom-
ical alterations and clinical symptoms in schizophrenia
to reveal latent clinical-anatomical dimensions. We first
estimate grey matter abnormalities in a sample of N =
133 individuals with chronic schizophrenia and N =
113 healthy controls from the Northwestern University
Schizophrenia Data and Software Tool (NUSDAST; http:
//schizconnect.org)38. Deformation-based morphometry

(DBM) was applied to T1-weighted MR images to esti-
mate cortical and subcortical grey matter tissue volume
loss in patients with schizophrenia relative to healthy
controls (hereafter referred to as “deformation”)39–44.
We then identify disease-related deformation patterns
using partial least squares analysis (PLS) (Fig. 1)45–47.
The technique isolates patterns of deformation directly
related to multiple symptom dimensions (including posi-
tive, negative and cognitive symptoms) and demographic
data (Table I). We first validate the results in an indepen-
dently collected dataset. We then investigate whether
the spatial patterning of deformation is related to the in-
trinsic functional architecture of the brain. Finally, we
link the most reliable clinical-anatomical dimensions to
broader societal variables of interest, including socioeco-
nomic status and race.

METHODS

Discovery dataset: NUSDAST

The discovery dataset was derived from the North-
western University Schizophrenia Data and Software
Tool (NUSDAST)38, downloaded from XNAT Central
(http://central.xnat.org/) and the SchizConnect data
sharing portal (http://schizconnect.org/). Briefly, the
NUSDAST dataset is a cohort of individuals with
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schizophrenia, their non-psychotic siblings, healthy con-
trols and their siblings. Detailed information is available
at38. The final dataset used in this study comprised 133
individuals with schizophrenia and 113 healthy controls.
Detailed inclusion criteria are included in the Supplemen-
tary Methods, while the selection flowchart is shown in
Fig. S1.

NUSDAST clinical and demographic data

Clinical and demographic data were derived from the
baseline visit provided by the NUSDAST database (Ta-
ble I). Among the demographic measures, we used age,
sex/gender, years of schooling, and socioeconomic sta-
tus (SES). The clinical assessment included the Scale
for the Assessment of Positive Symptoms (SAPS;48)
and the Scale for the Assessment of Negative Symp-
toms (SANS;49). Following the four symptom dimen-
sion approach from Kotov and colleagues50 as well as
Strauss and colleagues (for two negative symptom fac-
tors, respectively)51, we calculated two negative symp-
tom factors and two positive symptom factors. The two
negative symptom dimensions comprised the SANS di-
minished expression factor (including affective flatten-
ing, alogia), and the SANS Avolition-Apathy factor (in-
cluding avolition and anhedonia). The two positive
symptom dimensions comprised the SAPS Reality distor-
tion factor (including hallucinations and delusions) and
the SAPS Disorganization factor (including bizarre be-
havior and thought disorder). These four factors were
calculated for individual items (Sum Scores) and global
ratings separately, resulting in a total of eight factors.
Furthermore, total and global scores of the Extrapyra-
midal Symptom Rating Scale (ESRS) were included to
assess four types of drug-induced movement disorders
(DIMD) caused by antipsychotic treatment: parkinson-
ism, akathisia, dystonia, and tardive dyskinesia52,53.

Overall cognitive functioning was assessed with a
composite score following the method suggested by
Czepielewski and colleagues18. The composite score
(WMS Cog) included the sum of the z-transformed scores
on Logical Memory, Family Pictures, Letter-Number Se-
quencing, Spatial Span, and Digit Span from the Wech-
sler Memory Scale (WMS-III;54). Finally, individual
scaled scores from the WAIS-III Matrix Reasoning and Vo-
cabulary subsets were included as measures of executive
function38 and crystallized knowledge (i.e., premorbid
crystallized intellectual functioning (ePMC-IQ)18), re-
spectively. Altogether, 15 demographic and clinical mea-
sures were entered in the PLS analysis to identify latent
clinical-anatomical dimensions related to multiple symp-
tom dimensions. SES, age of onset, duration of illness
and antipsychotic medication (chlorpromazine equiva-
lents) were left out from the PLS analysis and their rela-
tion with the final statistical model (clinical-anatomical
dimensions) was tested post-hoc (for details see Supple-
mentary Methods).

NUSDAST neuroimaging data

All MRI scans were acquired on the same 1.5 T Vi-
sion scanner platform (Siemens Medical Systems) at the
Mallinckrodt Institute of Radiology at Washington Uni-
versity School of Medicine38. Automated pre-processing
was performed using the minc-bpipe-library pipeline
(https://github.com/CobraLab/minc-bpipe-library) fol-
lowing manual quality control to remove scans with
insufficient quality, see Supplementary Methods. Local
change in the brain tissue’s volume density was calcu-
lated using Deformation-Based Morphometry (DBM;55).
We interpret regional DBM values as measures of tissue
loss or tissue expansion39–43. Note however that morpho-
metric techniques do not directly measure the underlying
cellular morphology and constitute a statistical model of
physiological changes. DBM is estimated based on the
deformation applied at each voxel to non-linearly regis-
ter each brain to a given template. For details of the DBM
pipeline, please see Supplementary Methods. Chronologi-
cal age was regressed from DBM values prior to PLS anal-
ysis in both the NUSDAST and Douglas datasets.

Validation dataset: Douglas Institute

T1-weighted MRI scans of 108 individuals with
schizophrenia and 69 healthy controls were obtained
from an independently collected dataset to validate the
original findings (Table I). Details about the partici-
pant inclusion criteria, MRI acquisition, and data pre-
processing are available elsewhere56 and also described
in the Supplementary Information. Regional DBM values
and clinical/cognitive measures overlapping with the dis-
covery set were used for further analysis.

Partial least squares

We used partial least squares (PLS) analysis to inves-
tigate the relationship between local changes in defor-
mation (DBM values) and clinical/behavioral measures
(Fig. 1). PLS analysis is a multivariate statistical tech-
nique that identifies weighted patterns of variables in
two given sets or data blocks that maximally covary with
each other45–47. In the present analysis, one variable set
corresponded to deformation and the other to clinical
measures. The two variable sets were correlated with
each other across patients, and the resulting correlation
matrix was subjected to singular value decomposition to
identify latent clinical-anatomical dimensions.

Inference and validation of the statistical model was
performed using nonparametric methods: (a) statisti-
cal significance of overall patterns was assessed by per-
mutation tests57; (b) feature (voxel, clinical measure)
importance was assessed by bootstrap resampling58;
(c) out-of-sample correlations between projected scores
were assessed by cross-validation59; (d) stability of de-
formation and clinical patterns was assessed by split-
half resampling60. Mathematical details of the analysis
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and inferential methods are described in Supplementary
Methods and Results.

RESULTS

Clinical-anatomical dimensions of schizophrenia

Multivariate PLS analysis identified three statistically
significant latent variables (LVs) that represent pairings
between distributed deformation patterns (estimated by
age-corrected DBM) and clinical-behavioral measures
(Fig. 2a; LV-1: permuted P = 7.3 × 10−3; LV-2: per-
muted P = 5 × 10−4; LV-3: P = 7 × 10−4). These pat-
terns respectively account for 27.5, 15, and 13% (total
of 55.5%) of the covariance between clinical-behavioral
data and brain deformation. Based on effect size and
reliability (see below), we focus on LV-1 in the main text.

Fig. 2b shows the loadings (i.e. correlations) of in-
dividual clinical and cognitive scales with the first la-
tent variable (LV-1). The strongest contributors to LV-1
were cognitive deficits (all r < −.45), severity of neg-
ative symptoms (all r > .38) and educational attain-
ment (r = −.45). Positive symptoms and DIMD also
contributed to LV-1 but to a lesser extent (all r > .15
but < .2). In other words, LV-1 captures predominantly
clinical features of the cognitive and negative symptom
domains (cognitive-negative dimension).

Fig. 2c shows the corresponding deformation pattern
associated with LV-1, indexed by bootstrap ratios. Briefly,
bootstrap ratios measure the reliability of each weight
across participants, and can be interpreted as a z-score
(see Supplementary Methods for more detail). This brain
deformation pattern is comprised of occipital (visual),
medial parietal, lateral temporal, prefrontal (medial pre-
frontal cortex, superior frontal gyrus), limbic and paral-
imbic regions including the cingulate (anterior and pos-
terior) and hippocampus. In addition, the deformation
pattern involves subcortical regions including the cau-
date and cerebellar structures. Altogether, the first latent
clinical-anatomical dimension indicates that distributed
deformation in this distributed network of regions is as-
sociated with negative symptom severity and lower cog-
nitive performance. Finally, clinical and deformation
scores were then correlated (Fig. 2d); the mean out-of-
sample correlations were r = 0.27 (Fig. 2e). Further
details on cross-validation in Supplementary Results.

LV-2 and LV-3 are shown and described in detail in the
Supplementary Results (Fig. S2b,c). Associations between
patient-specific scores of all three latent variables and
age of onset, duration of illness, and medication dosage
are reported in Supplementary Results.

External replication

To further assess the reliability of the results, we val-
idated the PLS-derived patterns in an independently ac-
quired replication dataset (Douglas dataset; N = 108
individuals with schizophrenia; see Methods). Regional

DBM values from the validation set (Douglas) were pro-
jected onto the PLS model derived from the discovery set
(NUSDAST) to estimate the predicted brain deformation
scores for the validation set. The predicted brain defor-
mation scores were then correlated with the 12 clinical,
cognitive and demographic measures that were common
to two datasets, yielding a predicted clinical profile for
the validation set (Fig. S3, left column). The discovery
and validation clinical profiles were then correlated and
the significance of correlations were tested against a per-
muted null model (1,000 repetitions; Fig. S3, middle col-
umn). Finally, bootstrap resampling was used to gener-
ate a distribution of correlations between the discovery
and validation profiles (1,000 repetitions; Fig. S3, right
column).

For the first latent variable (cognitive-negative dimen-
sion), we find a significant association between the clini-
cal profiles of the discovery and validation datasets (r =
0.6, P = 2.0× 10−2, (95% CI: [0.09 0.90]) (Fig. S3). In
other words, projecting the brain deformation data from
the validation set on the first latent variable of the discov-
ery revealed a similar cognitive-negative clinical profile
with 36% of variance explained. Thus, we were able to
partly replicate the clinical-anatomical dimension of the
first latent variable in an independent validation dataset.
Repeating the same analysis for LV-3 revealed a positive
but non-significant association between the clinical pro-
files of the discovery and validation datasets (r = 0.42,
P = 1.09 × 10−1, (95% CI: [-0.60 0.92]) and no sig-
nificant association between the clinical profiles of LV-2
(r = −0.50, P = 5.8 × 10−2, (95% CI: [-0.87 0.26]).
Please note that the discovery (NUSDAST) and replica-
tion dataset (Douglas) differed significantly in several
aspects including ethnicity (NUSDAST: mixed Caucasian
and African-American, Douglas: Caucasian), fewer fe-
male participants (χ2 = 4.04, P = 4.4 × 10−2), higher
antipsychotic medication (t = 4.49, P < 1.0× 10−4) and
higher global positive and negative symptoms in the dis-
covery sample (SAPS Disorganization Global, t = 2.38,
P = 1.8× 10−2; SAPS RealityDistortion Global, t = 2.55,
P = 1.1× 10−2; SANS Avolition-Apathy Global, t = 2.75,
P = 6.0 × 10−3; SANS Diminished Expression Global,
t = 2.55, P = 1.1 × 10−2). Although these marked
differences might have hampered replication of all three
clinical-anatomical dimensions, the most prominent clin-
ical profile of the first latent variable is still represented
in the independent replication dataset.

Clinical-anatomical dimensions map on intrinsic networks

We next asked how clinically defined deformation pat-
terns are topographically distributed in the brain, and
whether their organization reflects the underlying func-
tional architecture. The deformation pattern correspond-
ing to the clinical features of LV-1 (cognitive-negative di-
mension) appears to mainly target brain regions associ-
ated with the default mode network and visual network
(Fig. 2c). To statistically assess if this is the case, we used
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Figure 2. A clinical-anatomical signature of schizophrenia | (a) Partial least-squares analysis detected three statistically signif-
icant latent variables, mapping distributed patterns of deformation to clinical-behavioral characteristics. The first latent variable
(LV-1) accounted for 27.5% of the covariance between the MRI and clinical-behavioral data. (b) Clinical features of LV-1. The
contribution of individual clinical measures is shown using correlations between patient-specific clinical scores and scores on the
multivariate pattern (loadings). Error bars indicate bootstrap-estimated standard errors. (c) LV-1 deformation pattern. The contri-
bution of individual voxels is shown using bootstrap ratios (ratios between voxel weights and bootstrap-estimated standard errors,
interpretable as z-scores; see Supplementary Methods for more detail). The deformation pattern is displayed on an MNI template
(MNI152_symm_2009a; (x = −3, y = −2)). Patients who display this deformation pattern tend to score higher on measures of
clinical severity of negative symptoms (e.g. SANS Avolition-Apathy) and tend to score lower on cognitive measures (e.g. WAIS).
(d) Individual patient data is projected onto the weighted patterns shown in (b) and (c) to estimate scalar patient scores that quan-
tify the extent to which individual patients express each pattern in LV-1. The two scores are correlated, suggesting that patients
who display the deformation pattern in (c) tend to express the clinical phenotype in (b). (e) Correlations between deformation and
clinical scores in the original sample (red; same as panel e), in held-out data (blue) and in a permuted null (green). (f) Specific
intrinsic-network deformation. The PLS-derived deformation pattern is stratified into resting-state networks (RSNs) defined by Yeo
and colleagues61. The bars indicate mean deformations for each network. P -values are estimated with respect to the spin test null
developed by Alexander-Bloch and colleagues62. Yeo networks: DM = default mode, DA = dorsal attention, VIS = visual, SM =
somatomotor, LIM = limbic, VA = ventral attention, FP = fronto-parietal.

a recently-developed spatial permutation procedure62.
We stratified voxels according to their membership in
seven intrinsic networks and calculated the mean boot-
strap ratio value within each network61. To construct
a null distribution for network means, we projected the
data on a sphere and randomly rotated the sphere, per-
muting the intrinsic network labels of brain regions but
preserving the spatial autocorrelation of the map62,63.

The mean bootstrap ratio was then re-calculated for each
network for the permuted sample. The procedure was
repeated 10,000 times to construct a distribution of net-
work means under the null hypothesis that regional vol-
ume loss patterns are independent of affiliation with spe-
cific intrinsic networks.

Fig. 2e shows the mean bootstrap ratios for each net-
work. Consistent with the voxel-wise anatomical pat-
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tern in Fig. 2c, deformation of the cognitive-negative
dimension (LV-1) was significantly greater in the de-
fault mode and visual networks than expected by chance
(P = 1.2 × 10−2 and P = 3.5 × 10−2, respectively),
demonstrating a specific spatial mapping within these
two intrinsic networks. Complete results for network
specificity of deformation patterns of LV-2 and LV-3 are
presented in the Supplementary Results and Fig. S2 (right
column).

Clinical-anatomical dimensions are associated with lower
socioeconomic status

In schizophrenia, socioeconomic status (SES) is a pre-
dictor for increased risk of hospitalization64,65, symp-
tom severity66,67, poor outcome68,69 and has been shown
to be associated with brain function and structure70,71.
Using simple correlations, we investigated the relation
between the clinical features and corresponding defor-
mation patterns of the first clinical-anatomical dimen-
sion with SES. We observed that both brain deformation
and clinical features of LV-1 were associated with SES
(anatomical: r = 0.36, P = 1.8×10−05, 95% CI [.20,.50],
clinical: r = 0.28, P = 1.0 × 10−03, 95% CI [.11,.43]).
To illustrate this association, we colored the individual
points, corresponding to patients, according to their SES
(Fig. 3a). Taken together, the clinical-anatomical sig-
nature of the cognitive-negative dimension is associated
with lower SES.

We next used mediation analysis (details in Supple-
mentary Results to ask whether the brain deformation
pattern of LV-1 mediates the effect of SES on the corre-
sponding clinical outcome (symptom severity) (Fig. 3b).
Unstandardized parameter estimates and standard error
for the model are shown in (Fig. 3b). Regressing the PLS-
derived brain deformation pattern on SES showed that
lower SES is significantly associated with decreased brain
volume (a) (Fig. 3b). Regressing clinical expression (LV-
1) on the brain deformation pattern (LV-1) showed a sig-
nificant effect of brain deformation on clinical expression
(b). However, the direct effect of SES on clinical expres-
sion (c) did not remain significant after the deformation
pattern was modeled as a mediator (c′) (Fig. 3b). In
contrast, the LV-1 brain deformation pattern significantly
mediates the effect of SES on clinical expression (a ∗ b)
(Fig. 3b). Taken together, the mediation analysis reveals
an indirect-only mediation (mediated effect a ∗ b) with
brain deformation as mediator. In other words, severity
of brain abnormalities mediates the effect of lower SES
on clinical expression of the cognitive-negative dimen-
sion.

As socioeconomic status is often confounded with
race, we stratified patients into Caucasian and African-
American and directly compared their clinical and defor-
mation scores. Fig. S4a suggests that African-American
patients tend to have greater LV-1 clinical and defor-
mation scores, but that this is mainly explained by
differences in socioeconomic status (two-sample t-test:

t(131) = 3.70, P = 3.15 × 10−4; significantly lower so-
cioeconomic status for African-American patients). Crit-
ically, the relationship between brain deformation and
clinical scores can be observed in each group separately
(Fig. S4a, r = 0.76, P = 5.03 × 10−13 and r = 0.69, P =
4.00 × 10−11 for Caucasian and African-American pa-
tients, respectively). Moreover, the two correlation co-
efficients were not significantly different (Fisher’s test,
Z = 0.83, P = 0.41), suggesting that the first clinical-
anatomical dimension remains a viable measure across
different races.

DISCUSSION

In the present report we used multivariate map-
ping of comprehensive clinical features and voxel-wise
brain deformation to isolate latent clinical-anatomical
dimensions of schizophrenia. Three latent clinical-
anatomical dimensions were identified, collectively ac-
counting for 55% of brain-behavior covariance, but only
the first (27%) was replicated in an independent dataset.
This clinical-anatomical dimension encompassed cogni-
tive deficits and negative symptoms, and mapped onto
a distributed brain deformation pattern centered on the
default mode and visual networks. Brain deformation
of this cognitive-negative dimension was represented
across different races but was more pronounced in pa-
tients with lower SES. These findings suggest that a con-
siderable population variance in schizophrenia can be
described by a compact set of continuous multimodal
phenotypic axes, mainly shaped by cognitive-negative
symptoms and network-specific anatomical abnormali-
ties.

Multimodal heterogeneity of schizophrenia

Understanding the heterogeneity of clinical and
anatomical manifestations of schizophrenia remains a
major challenge in schizophrenia research31. Numerous
studies have investigated single symptom domains in re-
lation to either global measures (e.g. total brain vol-
ume, global cortical thickness)15,18,19 or localized brain
abnormalities in pre-defined regions of interest17,20. And
yet, symptom domains in schizophrenia often occur si-
multaneously (e.g. secondary negative symptoms due
to positive symptoms and/or depression,72,73) and are
highly correlated (e.g. cognitive deficits and nega-
tive symptoms,74–76). Likewise, brain abnormalities
covary across structurally and functionally connected
regions22,23. In the present report, we take a step to-
wards a more comprehensive and multimodal under-
standing of the disease. Using a single integrative anal-
ysis, we find that the complex constellation of clinical-
behavioral and anatomical features can be parsimo-
niously summarized by a smaller set of latent clinical-
anatomical dimensions. In doing so, we derive continu-
ous, multimodal markers of individual disease status that
can be easily computed in new patients and datasets, and
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Figure 3. Mediation analysis | (a) Correlations between patient-specific scores on the deformation and clinical-cognitive patterns
in LV-1 (shown previously in Fig. 2d). Individual points (representing individual patients) are colored by their socioeconomic
status (SES); individuals with lower SES tend to score more highly on both patterns. (b) Mediation analysis testing the hypothesis
that the effect of SES on clinical-cognitive outcome is mediated by neuroanatomical changes. Regressing the PLS-derived brain
deformation pattern on SES showed that lower SES is significantly associated with decreased brain volume (a = −0.43(0.092);
P < 1.0 × 10−4; 95% CI [-0.62, -0.24]. Regressing clinical expression (LV-1) on the brain deformation pattern (LV-1) and SES
showed a significant effect of brain deformation on clinical expression (b = 0.077(0.06); P < 1.0× 10−4; 95% CI [0.065, 0.089]).
However, the direct effect of SES on clinical expression (c = −0.034(0.01); P < 1.0× 10−2; 95% CI [-0.05, -0.01]) did not remain
significant after the deformation pattern was modeled as a mediator (c′ = −0.001(0.008); P = 0.9; 95% CI [-0.016, 0.014]). In
contrast, the LV-1 brain deformation pattern significantly mediates the effect of SES on clinical expression [a ∗ b = −0.033(0.007);
P < 1.0× 10−4; 95% CI [-0.049, -0.018].

are readily comparable with other continuous or categor-
ical solutions.

Importantly, the present results complement modern
efforts to derive transdiagnostic biotypes. For instance,
Clementz and colleagues used comprehensive neurocog-
nitive and neurophysiological data to identify three dis-
crete biotypes across the schizophrenia spectrum (bipo-
lar, schizoaffective and schizophrenia)34. A subsequent
voxel-based morphometry study showed that biotype 1
with poor cognitive-sensory function had a broadly dis-
tributed cortical and subcortical volume reduction, while
biotype 2 with moderate cognitive impairments exhib-
ited more regional volume reduction within the insula
and fronto-temporal regions77. Transdiagnostic symp-
tom dimensions have been identified in the same dataset,
with more severe negative symptoms for biotypes 1 and
278. Our findings enrich insights from this work, show-
ing a dimensional clinical (cognitive-negative) and neu-
roanatomical pattern that effectively bridges biotypes 1
and 2. Consistent with Reininghaus and colleagues78,
the present study demonstrates successful integration of
phenomenological and neuroimaging data to identify di-
mensional characteristics of schizophrenia. Altogether,
the identified clinical-anatomical dimension can be read-
ily applied in concert with categorical biotypes, to ad-
vance progress in treatment development and diagnos-
tics across the schizophrenia spectrum34,35,77.

Default mode and visual networks - anchors of the
cognitive-negative dimension

In the present model, the dominant cognitive-negative
dimension was most closely related to deformation in
the default mode and visual networks. Our group and
others have recently demonstrated that deformation to-
pography in schizophrenia reflects anatomical and func-
tional network topology, with core deficits observed in
the default mode network13,22,23. For instance, Wan-
nan and colleagues observed a similar network-based
pattern of brain abnormalities across multiple stages of
the schizophrenia spectrum (from first episode to chronic
and treatment-resistant patients)22. The present findings
extend this work by showing that network based defor-
mation can be mapped to a cognitive-negative dimen-
sion.

Previous case-control studies revealed that clinical
subtypes with predominantly negative symptoms79 and
biotypes with cognitive-sensory impairments77 demon-
strated most extensive cortical thinning and global grey
matter reduction respectively. At the same time lo-
calized associations have been reported for cognitive
function and volume reduction in the anterior cingu-
late, insula, hippocampus/parahippocampal gyrus, mid-
dle frontal gyrus and cognitive function18,19 as well as
negative symptoms and reduced orbitofrontal cortical
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thickness17. The present report builds on these find-
ings, demonstrating that a cognitive-negative dimen-
sion of schizophrenia reflects targeted abnormalities in
spatially-specific networks.

More generally, these results shed new light on how
pathological processes of brain structure and func-
tion are intertwined10,21,80. An emerging literature
points to a continuous unimodal-transmodal cortical
synaptic hierarchy81,82, manifesting as smooth topo-
graphic gradients of gene transcription83,84, intracorti-
cal myelin85,86, cortical thickness87, excitation-inhibition
balance88, and macroscale structural and functional
connectivity63,89–91. Our results show that the dominant
cognitive-negative dimension originates from the ends
or “anchors” of this hierarchy: the visual15,92 and de-
fault mode networks93–95. This raises the possibility that
multiple pathological processes, originating from oppos-
ing ends of the putative sensory-fugal hierarchy, may be
involved in the disease. Interestingly, two recent func-
tional imaging studies found evidence of atypical func-
tional connectivity and integration between unimodal
and transmodal cortices96,97. Our results show that these
deficits in functional coordination may ultimately origi-
nate from underlying anatomical abnormalities, reflect-
ing large-scale molecular and cellular gradients.

Limitations and future directions

The present report highlights a latent clinical-
anatomical dimension of schizophrenia, but the findings
should be interpreted with respect to several important
limitations. First, data-driven multivariate models seek
to map multiple modalities to one another, but as a re-
sult, they have cannot be used to make inferences about
localized relationships between specific clinical symp-
toms and specific brain regions. Second, the present
findings are based on cross-sectional data, precluding
extrapolation of longitudinal progression. In addition,
there is consistent evidence for five specific psychosis do-
mains of positive, negative, disorganized, manic and de-
pressive symptoms across the schizophrenia spectrum78.
The current study was based on datasets assessing psy-
chotic symptoms with the SAPS and SANS, which lim-
ited the ability to investigate clinical-anatomical dimen-
sions in the presence of additional measures of the affec-
tive domain (mania, depression) and a more comprehen-
sive disorganization domain. Future work should employ
multivariate approaches including all five symptom do-
mains.

In terms of methodology, it is important to note
that head motion could systematically bias structural
MRI98–101. Addressing this potential confound would re-
quire additional in-scanner head-motion estimates from
fMRI99,101, which were not available in either dataset. Fi-
nally, the influence of drug exposure on brain structure is
another important confounding factor that is challenging
to address in cross-sectional studies. We found no evi-
dence of an association between current medication dose

and the clinical-anatomical dimensions in a sub-sample
(n=87) of the discovery dataset. However, these re-
sults are limited by the fact that current medication does
not allow conclusions to be drawn on long-term drug
exposure. Future studies in longitudinal data are war-
ranted to explore medication effects on latent clinical-
anatomical dimensions.

Conclusion

The present work contributes to a growing recognition
that individual clinical symptoms do not occur in isola-
tion, nor can they be precisely mapped to a single lo-
cus in complex disorders such as schizophrenia. An inte-
grated multivariate model allows clinical experience and
objective neuroanatomical measurements to simultane-
ously inform one another, yielding a more holistric un-
derstanding of heterogeneity in the patient population.
The clinical-anatomical dimension identified here opens
a new direction for dimensional stratification, comple-
menting existing efforts to develop sensitive diagnostics
and individualized treatment strategies.
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(A) Discovery data (NUSDAST) SCZ (n=133) HC (=113) Statistic
age, mean (sd) 34.8(13.2) 23.5(8.4) t=7.85**
female sex, no. (%) 48(36.1) 64(56.6) x2=10.4*
years in school, mean (sd) 12.2(2.3)
age of onset, mean (SD)a 21.6(8.0)
years illness duration, mean (SD)a 12.9(12.5)
SES score, mean (SD) 45(15.5)
WMS cognitive, mean (SD) -0.00005(4.9)
WAIS score, mean (SD)

matrix 8.9(3.3)
vocabulary 7.9(3.6)

ESRS score, mean (SD)
global 1.2(1.9)
total 5.5(6.6)

SANS score, mean (SD)
avolition/apathy 10.7(6.9)
avolition/apathy - global 4.3(2.4)
diminished expression 10.3(9.5)
diminished expression - global 3.0(2.2)

SAPS score, mean (SD)
disorganization 5.1(5.8)
disorganization - global 1.8(1.7)
reality distortion 13.5(12.7)
reality distortion - global 3.2(2.5)

chlorpromazine equivalent dosage, mean (SD)b 391.3(379.8)
information on medication status obtained, no. (%)c 93.2
type of medicationc, %

typical 12.9
atypical 70.2
both 12.2
unmedicated 4.8

(B) Validation data (Douglas Institute) SCZ (n=108) HC (n=69) Statistic
age, mean (sd) 35.2(8.2) 34.1(9.0) t=0.84
female sex, no. (%) 26(24.0) 21(30.4) x2=0.87
WASI full-scale IQ, mean (SD) 95.23(14.58)
Cognitive composite score, mean (SD)d -5.5(5.6)
SANS score, mean (SD)

avolition/apathy 12.3(7)
avolition/apathy - global 5.8(2.1)
diminished expression 10.3(7.1)
diminished expression - global 3.7(2.0)

SAPS score, mean (SD)
disorganization 5.6(6.5)
disorganization - global 2.4(2.1)
reality distortion 12.8(13.7)
reality distortion - global 4.2(3.1)

chlorpromazine equivalent dosage, mean (SD) 798.3(825.3)

TABLE I. Sample characteristics | Clinical, behavioral and de-
mographic characteristics. (A) Discovery sample (NUSDAST).
a based on 131 patients; b based on 86 patients; c based on
124 patients. (B) Validation sample (Douglas Institute). d Nor-
malized composite cognitive score estimated from the CogState
Research Battery protocol102 that includes cognitive domains
of verbal memory, visual memory, working memory, processing
speed, executive function, visual attention, and social cogni-
tion.*<.01, **<.001
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Supplementary Methods and Results

Methods

NUSDAST inclusion criteria

The initial sample submitted to MRI pre-processing
comprised a total of 267 participants (153 patients, 114
controls). Eight participants were removed after fail-
ing MRI processing quality control (see Quality con-
trol below) resulting in data from 146 individuals with
schizophrenia (52 female, 34.7 ± 12.9 years) and 113
healthy controls for further analyses. The behavioral
(clinical and cognitive) measures as well as demograph-
ics and other general information (i.e., medication in-
formation, age of disease onset, years of education, so-
cioeconomic status,etc) were also obtained for the in-
dividuals with schizophrenia. Among the participants
with schizophrenia, 10 individuals were removed due to
missing behavioral data (> 20% missing values) and 3
individuals were removed due to uneven race distribu-
tion relative to the rest of cohort (removed races were
Asian-Pacific Islander (n = 1) and Hispanic (n = 2);
the rest were either African-American (n = 71) or Cau-
casian (n = 62); for more details see Clinical and cog-
nitive measures). Altogether, the final dataset comprised
133 individuals with schizophrenia and 113 healthy con-
trols (selection flowchart is shown in Fig. S1). Data
collection and sharing was approved by the local insti-
tutional review board and was funded by NIMH grant
1R01MH08480338. Informed consent was obtained from
each participant after a complete description of the study
was given18.

NUSDAST sample selection and imputation

The NUSDAST database provides a large battery of
behavioral data (demographics, clinical and cognitive
assessments) and neuroimaging data. We collected a
subset of the behavioral data for the individuals with
schizophrenia from their baseline visit for our purposes.
It should be noted that some of the individuals with
schizophrenia were missing parts of the behavioral data.
To address this issue, we first removed the individuals
who were missing more than 20% of the behavioral vari-
ables. Second, we imputed the missing values for the
remaining n = 133 individuals using K Nearest Neigh-
bors imputation (MATLAB function: knnimput.m). The
number of neighbors was set to k = 15 (≈ 10% of the
total number of individuals) and Euclidean distance was
set as the distance metric, such that the missing entry
of a variable was replaced by the median value of that
variable from its 15 nearest neighbors.

Douglas inclusion criteria

Participants inclusion criteria, MRI acquisition and
processing were derived from the previous publication
from Beland and colleagues56. Individuals (n=143)
meeting diagnostic criteria for schizophrenia or schizoaf-
fective disorder for a duration of at least 3 years, and
aged between 18 and 50 years old, were recruited from
inpatient and outpatient units of the Douglas Mental
Health University Institute and affiliated community cen-
ters. Participants were recruited as a part of a larger
cross-sectional study investigating the determinants of
insight in schizophrenia. Of this group, 114 patients
accepted to participate in the neuroimaging part of the
study. Information on diagnosis, antipsychotic dosage
(converted to chlorpromazine equivalent), and duration
of illness were collected by medical chart review, or di-
rectly confirmed with patients’ medical teams. An ab-
breviated version of the Structured Clinical Interview for
DSM-IV Axis I Disorders was administered to all patients
to confirm patients’ illness history. Exclusion criteria in-
cluded low neuropsychological performance, lifetime or
familial history of neurological condition, head injury
with loss of consciousness, diagnosis of substance depen-
dence, and presence of metallic objects in the body. Ad-
ditionally, 71 healthy controls, without any personal or
familial history of psychotic illness were recruited using
a classified advertising website in Montreal. The Struc-
tured Clinical Interview for DSM-IV-TR Axis 1 Disorders,
non-patient version (SCID-NP) was administered to all
healthy controls during the first assessment to rule out
the presence of current mental illness. Healthy controls
were recruited based on their education level, age, and
sex, to match the demographic characteristics of the pa-
tient group. All participants provided written informed
consent, and the study procedures were approved by the
Douglas Mental Health University Institute human ethics
review board.

MRI acquisition parameters

NUSDAST dataset. For details of T1 MRI data ac-
quisition see38. All MR scans were collected using the
same 1.5 T Vision scanner platform (Siemens Medical
Systems). Acquisition of all scans was performed at
the Mallinckrodt Institute of Radiology at Washington
University School of Medicine, where scanner stability
(e.g., frequency, receiver gain, transmitter voltage, SNR)
and artifacts were regularly monitored. Whole brain 3-
dimensional T1-weighted magnetization prepared rapid
acquisition gradient (MPRAGE) scans with the following
were applied. Acquisition parameters were: TR = 9.7
ms, TE = 4 ms, flip angle = 10◦, ACQ = 1, 256 × 256
matrix, 1 × 1 mm in-plane resolution, 128 slices, slice
thickness 1.25 mm, 5:36 min per scan.

Douglas dataset. T1-weighted structural images were
acquired on a Siemens 3 T Tim trio MRI at the Brain
Imaging Centre of the Douglas Mental Health University
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Institute. The scans were MPRAGE (TR = 2300ms, TE =
2.98ms, FOV 256mm, 1× 1× 1 mm voxels, flip angle =
9◦) and lasted 9 min.

Quality control of pre-processed MRI data

NUSDAST dataset. Pre-processing of T1 MRI
scans from 267 participants was performed using
the minc-bpipe-library pipeline (https://github.com/
CobraLab/minc-bpipe-library). Manual quality control
of images included the following steps of inspection: (1)
registration of each individual brain relative to the tem-
plate, (2) proper coverage of individual brain mask on
the brain to avoid over/under segmentation, (3) uni-
formity of intensity profiles across the brain to ensure
good inhomogeneity correction. Participants were ex-
cluded if images failed in one of the three steps. In to-
tal eight subjects were excluded including seven patients
with schizophrenia and one healthy control.

Douglas dataset. Pre-processing of T1 MRI scans and
manual quality control was performed as outlined above
for the NUSDAST discovery dataset. After visual qual-
ity control of images six patients with schizophrenia and
two healthy controls were excluded leaving with a to-
tal sample of 108 individuals with schizophrenia and 69
healthy controls for further analysis.

Deformation-Based Morphometry (DBM)

Local change in the brain tissue’s volume density
was calculated using Deformation-Based Morphometry
(DBM;55). Regional DBM values can be considered as
measures of tissue loss or tissue expansion39–43. DBM
is estimated based on the deformation applied at each
voxel to non-linearly register each brain to a given tem-
plate.

In the present study, we used the ANTs
Multivariate Template Construction pipeline44

(antsMultivariateTemplateConstruction2.sh) to
measure the DBM values. This pipeline produces a
population average through the iterative estimation and
application of affine non-linear warps to a starting rigid
model, in this case the MNI ICBM 09c symm model.
The final iteration of non-linear transformation of each
structural brain image to the unbiased template image
produced during the registration process is used as a
deformation map for each subject in the template space.
A deformation map quantifies the displacement of each
voxel in each direction in the 3-dimensional template
space that was required to transform a participant’s
image to the template. Local change in tissue density is
then estimated as the derivative of the displacement of
a given voxel in each direction. The derivatives can be
calculated as the determinant of the Jacobian matrix of

displacement, J, which is given as43:

J =
∂U

∂x
=


∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
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∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2

∂u3

∂x3

 (1)

where x = (x1, x2, x3) is a position in a given T1-
weighted image at the subject space, which is then trans-
formed to the template space in each direction using
the displacement given by the vectors U = (u1,u2,u3).
Each element of the Jacobian matrix is estimated using
a first order approximation. As an example, J13 can be
calculated as following:

∂u1
∂x3

=
u1(x1, x2, x3 + δ)− u1(x1, x2, x3− δ)

2δ
(2)

where δ is the position of a given voxel along axis x3.
Local changes in tissue density are given by the deter-
minant of the Jacobian matrix: no change in volume is
given with 1 (i.e., no displacement relative to template),
tissue expansion is given with a value between 0 and 1
(i.e., subject image was shrunk to be transformed to tem-
plate space), and tissue loss is given with a value larger
than 1 (i.e., subject image was expanded to be trans-
formed to template space). For more intuitive interpre-
tation of the changes in volume density, we calculated
the logarithm of the determinant, such that no change is
given by 0, tissue loss is given by a positive value, and
tissue expansion is given by a negative value.

Finally, the deformation maps were blurred (2 mm
full-width/half-maximum) and the non-brain tissue was
removed from each brain using FreeSurfer image analy-
sis suit (release v6.0.0; documented and freely available
for download at http://surfer.nmr.mgh.harvard.edu/).
The voxel-wise data was then extracted for each partici-
pant for further analysis (see Statistical model).

Clinical and demographic measures for post-hoc analysis
with PLS results

Socioeconomic status (SES) was left out from the PLS
analysis in order to run post-hoc analysis of the relation
between clinical-anatomical dimensions and SES. In ad-
dition, age of onset and duration of illness were also
preserved for post-hoc analysis, because (a) both vari-
ables significantly correlated with age, which was al-
ready regressed out from the DBM data (age of onset:
rs=0.25, P = 3.6 × 10−3; duration of illness: rs=0.78,
P = 1.3×10−28) (b) we aimed to directly correlate those
measures with the clinical-anatomical dimensions to in-
vestigate a potential relation between the latent dimen-
sions and disease course. Finally, chlorpromazine equiv-
alents were tested for associate with clinical-anatomical
dimensions post hoc.
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Statistical model

Partial least squares is a form of reduced rank regres-
sion that identifies linear combinations of two sets of
variables that maximally covary with each other. In the
present study, one set represents the voxel-wise deforma-
tion for each schizophrenia patient (denoted as Xn×p),
while the other set corresponds to the behavioral mea-
sures (denoted as Yn×q). The n rows of both matri-
ces X and Y represent the number of schizophrenia
individuals (i.e., n = 133). The p columns of matrix
X correspond to the number of voxels. Matrix X was
first thresholded above zero and only the positive values
corresponding to volume loss were retained. The DBM
values in matrix X were then corrected for the age of
schizophrenia patients using a linear regression model.
The q columns of matrix Y correspond to the behavioral
measures from the same schizophrenia patients. We in-
cluded 15 demographic and clincial measures in the PLS
analysis (See Clinical and cognitive measures). Finally,
both X and Y matrices were standardized column-wise
(i.e., z-scored) and a correlation matrix (X

′
Y) was com-

puted from the standardized matrices. Singular value
decomposition (SVD)103 was then applied to the correla-
tion matrix R = X

′
Y as follows:

R = X
′
Y = USV′ (3)

The decomposition results in two orthonormal matri-
ces of left and right singular vectors (U and V, respec-
tively), and a diagonal matrix of singular values (S).
The main results of PLS analysis are represented as la-
tent variables, which are constructed from the 3 result-
ing matrices (i.e., U, V, and S). More specifically, latent
variables are mutually orthogonal, weighted linear com-
binations of the original variables of the two initial data
blocks (i.e., X and Y) and express the shared informa-
tion between the blocks with maximum covariance. La-
tent variable i (LVi) is composed of the ith column vector
of U, ith column vector of V, and the ith singular value
from S. The elements of the column vectors of U and
V are the weights of the original voxel-wise deforma-
tion values and behavioral measures, respectively, that
contribute to the latent variable. The weighted deforma-
tion and behavioral patterns maximally covary with each
other, and the covariance between them is reflected in
the corresponding singular values from the diagonal el-
ements of matrix S. The effect size associated with the
latent variable i can also be measured using the singular
values, as follows:

ηi =
s2i∑J
j=1 s

2
j

(4)

where ηi is the effect size for LVi, si is the correspond-
ing singular value from the diagonal matrix S, and J is
the total number of singular values. Furthermore, the

PLS-derived deformation and behavioral patterns (i.e.,
left and right singular vectors, U and V) can be used to
estimate patient-specific scores that demonstrate the ex-
tent to which each patient expresses the patterns. The
patient-specific deformation and behavioral scores are
calculated by projecting the PLS-derived deformation
and behavioral patterns (i.e., U and V) onto the orig-
inal patient data:

Deformation score = XU

behavioral (clinical/cognitive) score = YV

To assess the model, we performed four additional
steps: (a) statistical significance of overall patterns was
assessed by permutation tests57; (b) feature (voxel, clin-
ical measure) importance was assessed by bootstrap
resampling58; (c) out-of-sample correlations between
projected scores were assessed by cross-validation59; (d)
stability of deformation and clinical patterns was as-
sessed by split-half resampling60. We discuss each below.

Permutation tests. We assessed the statistical signifi-
cance of each latent variable using permutation tests57.
During each permutation, the rows of data matrix X
were reordered randomly and a new permuted corre-
lation matrix was calculated using Y and permuted X.
Similar to the original analysis, the permuted correlation
matrix was then subjected to SVD. The procedure was
repeated 10,000 times resulting in a null distribution of
singular values. To test the null hypothesis that there is
no specific relationship between deformation values and
behavioral measures, a P -value was estimated for each
latent variable as the proportion of the times that the
permuted singular values were greater than or equal to
the original singular value.

Bootstrap resampling. The reliability of singular vector
weights (i.e., weights of voxel-wise deformation values
and behavioral variables) were assessed using bootstrap
resampling (10,000 repetitions)58. The rows of data ma-
trices (i.e., X and Y) were randomly resampled with re-
placement and new correlation matrices were calculated
using the resampled data matrices. The correlation ma-
trices were then subjected to SVD as before, generating
a sampling distribution for each deformation and behav-
ioral weight in the singular vectors. To assess the reliabil-
ity of each variable, we calculated bootstrap ratios as the
ratio of each variable’s weight to its bootstrap-estimated
standard error. Bootstrap ratios allow us to identify vari-
ables (voxels or clinical measures) that make a large con-
tribution to the overall pattern (i.e. have a large weight)
and, at the same time, are stable across individuals (i.e.
have a small standard error). If the bootstrap distribu-
tion is Gaussian, a bootstrap ratio can be interpreted as
a z-score58, such that 95% and 99% confidence intervals
correspond to bootstrap ratios of ±1.96 and ±2.58, re-
spectively.

Cross-validation. We used cross-validation to assess
the out-of-sample correlation between deformation and
clinical scores59,104. We used 100 randomized train-test
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splits of the original data, where 75% of the data was
treated as a training set and 25% of the data was treated
as an out-of-sample test set. For each training set, PLS
was used to estimate deformation and behavioral pat-
terns (i.e., Utrain and Vtrain). Next, the test data were
projected onto the deformation and behavioral patterns
derived from the training set. This allowed us to esti-
mate patient-specific scores and their correlation for the
test sample (i.e. corr(XtestUtrain,YtestVtrain)). This
procedure was repeated 100 times to generate a distri-
bution of out-of-sample correlation coefficients. Finally,
we used permutation tests (100 repetitions) to assess
the significance of these out-of-sample correlation coeffi-
cients. During each permutation, we randomly shuffled
rows of the original deformation matrix X and repeated
the above procedure. The procedure generated a null
distribution of correlation coefficients between deforma-
tion and clinical scores in the test sample. This null dis-
tribution was then used to estimate a P -value, by calcu-
lating the proportion of correlation coefficients that were
greater than or equal to the mean original out-of-sample
correlation coefficient.

Split-half resampling. Finally, we sought to assess the
stability of PLS patterns using split-half resampling60.
The original data were randomly split into two halves
and new correlation matrices were calculated for each
half separately (i.e., R1 and R2). Singular value decom-
position was performed for one half as follows:

R1 = U1S1V1
′ (5)

The correlation matrix from the other half was then
projected onto the singular vectors derived from the first
half (i.e., U1 and V1) to calculate the new singular vec-
tors for the second half (i.e., U2 and V2):

U2 = R2V1S1
−1 & V2 = R2U1S1

−1

The procedure was repeated 100 times. For each split,
we correlated the projected singular vectors of one half
with the ones from the other half (i.e., U1 and U2, and
V1 and V2). The final stability measure is the mean
correlation coefficient across splits.

RESULTS

Reliability of clinical and deformation patterns

Although Fig. 2d depicts strong correlations between
clinical scores and deformation, the analysis is designed
to maximize these values, increasing the possibility of
overfitting the statistical model. To assess the statisti-
cal reliability of the patterns, we perform two additional
analyses. First, we assess the out-of-sample correlation
between clinical and deformation patterns104. We re-
peated the analysis with 100 randomized train and test

splits, representing 75% and 25% of the sample, respec-
tively. Test data were projected onto the PLS models es-
timated from the training set. The predicted clinical and
brain deformation scores were then correlated (Fig. 2e).
As expected, the mean out-of-sample correlations were
lower than the in-sample correlations (LV-1: r = 0.27;
LV-2: r = 0.14; LV-3: r = 0.16), but were statistically
significant against a permutation test (100 repetitions)
with the exception of LV-2 (LV-1: permuted P < 0.01;
LV-2: permuted P = 0.06; LV-3: permuted P = 0.02).

Second, we assess the stability of the clinical and de-
formation patterns by split-half resampling60 (see Sup-
plementary Methods). Briefly, the sample is split into
halves and singular value decomposition is performed for
one half. Data from one split are then projected onto the
singular vectors (corresponding to clinical and deforma-
tion patterns) derived from the other split. Pattern stabil-
ity is then estimated as the mean correlation between the
singular vector calculated directly from one split and the
singular vector estimated by cross-projecting data from
the other split. The mean correlations among projected
clinical and deformation patterns were as follows: LV-1:
r = 0.69 (95% CI: [0.64 0.73]) and r = 0.09 (95% CI:
[0.09 0.10]); LV-2: r = 0.20 (95% CI: [0.15 0.25]) and
r = 0.06 (95% CI: [0.05 0.08]); LV-3: r = 0.19 (95% CI:
[0.14 0.25]) and r = 0.04 (95% CI: [0.03 0.06]). Con-
sistent with previous reports, the clinical patterns were
more stable across splits compared to the brain deforma-
tion patterns28,59.

Clinical and anatomical features of LV-2 and LV-3

Fig. S2b shows the loadings (i.e. correlations) of indi-
vidual, clinical and cognitive scales with the second la-
tent variable (LV-2). Please note that LV-2 is represented
by negative loadings on all significant measures, indicat-
ing lower cognitive performance and also lower symp-
tom scores. Reduced cognitive functioning (WAIS-Voc,
r = −.39, 95% CI [-.25,.53]; WMS-Cog, r = −.21, 95%
CI [-.02,-.36]; WAIS-Matrix, r=-.2, 95% CI [-.07,-.4]),
educational attainment (r = −.26, 95% CI [-.11,-.42]),
low positive symptoms (SAPS Disorganization Global,
r = −.29, 95% CI [-.22,-.47]; SAPS Disorganization
Sum, r = .28, 95% CI [-.21,-.47]) low diminished emo-
tional expression symptoms (SANS Diminished Expres-
sion Global, r = −.31, 95% CI [-.24,-.5]; Diminished Ex-
pression Sum, r = −.33, 95% CI [-.25,-.53]) and lower
educational attainment (r = −.26, 95% CI [-.11,-.42])
were the strongest contributors to LV-2. Low levels of
Avolition-Apathy (SANS Avolition-Apathy Domain) and
DIMD contributed also significantly to LV-2 but to a lesser
extent (all r ≤ .2). In other words, the LV-2 captures a
clinical phenotype of cognitive deficits in the relative ab-
sence of positive and negative symptoms (cognitive-only
dimension).

Fig. S2b (left panel) shows the corresponding defor-
mation pattern, indexed by bootstrap ratios (see Materi-
als and Methods). This deformation pattern is comprised
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of parietal , dorsolateral prefrontal (superior frontal
gyrus, middle frontal gyrus, inferior frontal gyrus and an-
terior cingulate, as well as subcortical regions including
the striatum and brainstem. Altogether, the pairing in-
dicates that across patients, greater deformation in these
regions is associated with severity of cognitive deficits
but not with positive or negative symptoms. To further
demonstrate the relation between the clinical measures
and anatomical maps, we projected individual patient
data onto the PLS-derived left and right singular vectors
to estimate patient-specific scores. Fig. S2c shows the
correlation between the clinical and deformation scores
(r = 0.68).

Fig. S2c shows the loadings (i.e. correlations) of in-
dividual, clinical and cognitive scales with the third la-
tent variable (LV-3). The strongest contributors to LV-3
were: gender (r = −.58, 95% CI [-.45,-.67]) (greater
deformation in males), higher positive symptoms (SAPS
Disorganization Global, r = .30, 95% CI [.16,.52]; SAPS
Disorganization Sum, r = .19, 95% CI [.08,.40]); (SAPS
RealityDistortion Global, r = .21, 95% CI [.06,.40]),
low/diminished emotional expression symptoms (Dimin-
ished Expression Sum, r = −.37, 95% CI [-.20,-.49];
SANS Diminished Expression Global, r = −.28, 95%
CI [-.13,-.44]), higher Avolition-Apathy scores (SANS
Avolition-Apathy Global, r = .23, 95% CI [.06,.42];
SANS Avolition-Apathy Sum, r = .20, 95% CI [.03,.39]),
lower educational attainment (r = −.22, 95% CI [-.04,-
.37]) but good cognitive performance (WAIS-Matrix,
r = .2, 95% CI [.06,.42]). In other words, LV-3 cap-
tures a clinical-anatomical dimension particular preva-
lent in male patients (gender-related dimension) with
combined positive symptoms and motivational deficits
(Avolition-Apathy score).

Fig. S2c (left panel) shows the corresponding defor-
mation pattern, indexed by bootstrap ratios (see Mate-
rials and Methods). This pattern is comprised of lat-
eral occipital (cuneus), parietal (supramarginal gyrus)
and frontal regions (precentral gyrus, superior, middle
and inferior frontal gyri). Altogether, the pairing of this
third clinical-anatomical dimension indicates that across
patients, greater deformation in these regions is more
prevalent in male patients and more strongly associ-
ated with positive symptoms and motivational deficits.
To further demonstrate the relation between the clinical
measures and anatomical maps, we projected individual
patient data onto the PLS-derived left and right singu-
lar vectors to estimate patient-specific scores. Fig. S2c
shows the correlation between the clinical and deforma-
tion scores (r = 0.82).

Mapping of LV-2 and LV-3 on intrinsic networks

LV-2 and LV-3 were mapped on intrinsic networks and
subjected to the same spatial permutation procedure
used for the main analysis in LV-162. The deformation
pattern of LV-2 (cognitive-only dimension) was signifi-
cantly associated with the frontoparietal and ventral at-

tention networks (P = 8.4 × 10−3 and P = 1.9 × 10−2,
respectively; (Fig. S2b). The deformation pattern of LV-3
(gender-related dimension) was significantly associated
with the dorsal attention network (P = 2.2 × 10−3;
(Fig. S2c). Altogether, these results demonstrate that
the identified clinical-anatomical dimensions are linked
to organized deformation patterns, centered to specific
intrinsic networks.

Effects of age of onset, duration of illness and medication
dosage

In an exploratory analysis, we assessed whether
patient-specific clinical and brain deformation scores are
related with age of onset, duration of illness or medi-
cation dosage. We found a statistically significant asso-
ciation between age of onset and brain deformation as
well as clinical scores of the LV-1 and LV-3 (LV-1, clinical:
rs = 0.19, P = 0.03, brain: rs = 0.22, P = 0.01; LV-3,
clinical: rs = 0.25, P = 0.004, brain: rs = 0.28, P =
0.001) but not with clinical scores of LV-2 (LV-2, clini-
cal: rs = 0.05, P = 0.59, brain rs = 0.17, P = 0.05).
In contrast, duration of illness was not associated with
clinical scores or brain deformation (LV-1, clinical: r =
−0.02, P = 0.85, brain: r = −0.05, P = 0.32; LV-2, clin-
ical: r = −0.10, P = 0.59, brain: r = −0.03, P = 0.56),
LV-3, clinical: r = −0.06, P = 0.26, brain r− = 0.15, P =
0.09.) Information on current medication dosage (chlor-
promazine equivalents) were available for a subset of 87
individuals with schizophrenia. We found no statistically
significant association between medication dosage and
clinical scores or corresponding deformation patterns of
all three LV (LV-1, clinical: r = −0.02, P = 0.88, brain:
r = −0.10, P = 0.32; LV-2, clinical: r = 0.07, P =
0.51, brain: r = −0.03, P = 0.76), LV-3, clinical: r =
−0.13, P = 0.21, brain r− = 0.22, P = 0.19).
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Figure S1. Flow chart of NUSDAST sample selection
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Figure S2. Relating deformation and clinical manifestation | Partial least-squares analysis detected three statistically significant
latent variables; LV-1 (a), LV-2 (b) and LV-3 (c), mapping distributed patterns of deformation to clinical-behavioral phenotypes. First
column: LV clinical features. The contribution of individual clinical measures is shown using correlations between patient-specific
clinical scores and scores on the multivariate pattern (loadings). Error bars indicate bootstrap-estimated standard errors. Second
column: LV deformation pattern displayed on an MNI template (MNI152_symm_2009a; LV-1: x = −3, y = −2; LV-2: x = −3,
y = −1; LV-3: x = −34, y = −14). The contribution of individual voxels is shown using bootstrap ratios (ratios between voxel
weights and bootstrap-estimated standard errors; see Materials and Methods for more detail). Patients who display this deformation
pattern tend to score higher on positively-weighted clinical measures and lower on negatively-weighted clinical measures. Third
column: individual patient data is projected onto the weighted patterns shown in the first and second columns to estimate scalar
patient scores that quantify the extent to which individual patients express each pattern in the LV. Fourth column: system-specific
deformation. The PLS-derived deformation pattern is stratified into resting-state networks (RSNs) defined by Yeo and colleagues61.
The bars indicate mean deformations for each network. P -values are estimated with respect to the spin test null developed by
Alexander-Bloch and colleagues62. Yeo networks: DM = default mode, DA = dorsal attention, VIS = visual, SM = somatomotor,
LIM = limbic, VA = ventral attention, FP = fronto-parietal.
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Figure S3. Replication dataset | The statistical PLS models derived from the discovery dataset (NUSDAST; blue) was applied to
the validation dataset (Douglas; orange). Brain imaging data (i.e., DBM maps) from the validation set were projected onto the
latent variables derived in the discovery set (Fig. S2), yielding a predicted clinical profile. The two datasets were compared on a
reduced set of 12 overlapping clinical, cognitive and demographic measures. Note that IQ and total cognitive scores are estimated
differently in the two datasets. Vocabulary subtest of Wechsler Adult Intelligence Scale (WMS-III;54) was used as a measure of
crystallized knowledge (i.e., premorbid crystallized intellectual functioning (ePMC-IQ)18) in the discovery dataset, while Weschler
Abbreviated Scale of Intelligence (WASI full-scale IQ;56) was used in the validation dataset. A composite score of overall cognitive
functioning was estimated from subtests of the Wechsler Memory Scale (WMS-III;54) in the discovery set, whereas the composite
cognitive score for validation dataset was estimated from the CogState Research Battery protocol102 that includes cognitive domains
of verbal memory, visual memory, working memory, processing speed, executive function, visual attention, and social cognition.
Left column: clinical profile from the discovery data (blue) and projected clinical profile from the validation data (orange). Data
are shown as loadings. Middle column: scatter plots between the disocvery and validation clinical profiles. Pearson correlations
and permuted p-values are shown. Right column: bootstrap-estimated distributions of the correlations between discovery and
validation profiles are depicted.
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Figure S4. The effect of race and socio-economic status on clinical and anatomical patterns | Participants are stratified by race
for the three latent variables (panels a-c). First column: linear models, relating clinical and anatomical patterns, are fit for African-
American and Caucasian participants jointly. Second and third column: linear models, relating clinical and anatomical patterns,
are fit for African-American and Caucasian participants separately. Fourth column: patient-specific clinical and anatomical scores
are colored by the individual’s socio-economic status.
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negative symptomsâĂŤa review of mechanisms, assess-
ment and treatment,” Schizophrenia research, vol. 186,
pp. 29–38, 2017.

[74] M. N. Hartmann-Riemer, O. M. Hager, M. Kirschner,
M. Bischof, A. Kluge, E. Seifritz, and S. Kaiser, “The as-
sociation of neurocognitive impairment with diminished
expression and apathy in schizophrenia,” Schizophrenia
research, vol. 169, no. 1-3, pp. 427–432, 2015.

[75] G. Fervaha, G. Foussias, O. Agid, and G. Remington,
“Motivational and neurocognitive deficits are central
to the prediction of longitudinal functional outcome in
schizophrenia,” Acta Psychiatrica Scandinavica, vol. 130,
no. 4, pp. 290–299, 2014.

[76] P. D. Harvey, D. Koren, A. Reichenberg, and C. R. Bowie,
“Negative symptoms and cognitive deficits: what is the
nature of their relationship?,” Schizophrenia bulletin,
vol. 32, no. 2, pp. 250–258, 2005.

[77] E. I. Ivleva, B. A. Clementz, A. M. Dutcher, S. J. Arnold,
H. Jeon-Slaughter, S. Aslan, B. Witte, G. Poudyal, H. Lu,
S. A. Meda, et al., “Brain structure biomarkers in the psy-
chosis biotypes: findings from the bipolar-schizophrenia
network for intermediate phenotypes,” Biological psychi-
atry, vol. 82, no. 1, pp. 26–39, 2017.

[78] U. Reininghaus, J. R. Böhnke, U. Chavez-Baldini, R. Gib-
bons, E. Ivleva, B. A. Clementz, G. D. Pearlson, M. S.
Keshavan, J. A. Sweeney, and C. A. Tamminga, “Trans-
diagnostic dimensions of psychosis in the bipolar-
schizophrenia network on intermediate phenotypes (b-
snip),” World Psychiatry, vol. 18, no. 1, pp. 67–76, 2019.

[79] I. Nenadic, R. A. Yotter, H. Sauer, and C. Gaser, “Patterns
of cortical thinning in different subgroups of schizophre-
nia,” The British Journal of Psychiatry, vol. 206, no. 6,
pp. 479–483, 2015.

[80] L. E. Suárez, R. D. Markello, R. F. Betzel, and B. Misic,
“Linking structure and function in macroscale brain net-
works,” Trends Cogn Sci, 2020.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2020. ; https://doi.org/10.1101/2020.03.25.20040592doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.25.20040592
http://creativecommons.org/licenses/by-nc/4.0/


13

[81] E. Jones and T. Powell, “An anatomical study of converg-
ing sensory pathways within the cerebral cortex of the
monkey,” Brain, vol. 93, no. 4, pp. 793–820, 1970.

[82] M.-M. Mesulam, “From sensation to cognition.,” Brain,
vol. 121, no. 6, pp. 1013–1052, 1998.

[83] B. D. Fulcher, J. D. Murray, V. Zerbi, and X.-J. Wang,
“Multimodal gradients across mouse cortex,” Proc Natl
Acad Sci USA, vol. 116, no. 10, pp. 4689–4695, 2019.
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