Title: Modeling for Corona Virus Outbreak in IRAN

Maryam Moghadami, PhD of Knowledge Management, Faculty of Management and Economics ,Tehran university (corresponding author)

Maryam Moghadami, PhD of Knowledge Management, Faculty of Management and Economics ,Tehran university, Tehran. Iran (Corresponding author)

Ka Wa, MEng Architecture & Environmental Engineering from the University of Nottingham, landan

Mohammad Hassanzadeh, Head and Faculty member, Knowledge and Information science Dept, Faculty of Management and Economics Tarbiat Modares University Tehran. Iran

Aziz Hedayati, Head of Dept. of Knowledge & InformationScience, Azarbaijan Shahid Madani University, Tabriz. Iran

Abstract

Background:

As the outbreak of coronavirus disease 2019 (COVID-19) is a worldwide pandemic, it is rapidly expanding in Iran, real-time analyses of epidemiological data are needed to increase situational awareness and inform interventions. In this study, we built a predictive model based on the cumulative trend of new cases and deaths for the top five provinces. we will also look at modeling the trends for confirmed cases, deaths and recovered for the whole country.

Method: In this study, we have chosen to apply the exponential smoothing model to iteratively forecast future values of a regular time seires from weightedaverages of past daily values of the series. This method is exponential because the value of each level is influenced by every preceeding actual value to an exponentially decreasing degree – more recent values are given a greater weight. The available data is too small to identify seasonal patterns and make

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

predictable variation in value, such as annual fluctuation in temperature relative to the season. Trend is a tendency in the data to increase or decrease over time.

Results:

If no control measures are put in place, it is expected that over 40,000 would be infected in Tehran around the middle of June. However, if control measures were implemented with a high degree of success, one would expect the spreadof the COV-19 virus would peak at the start of April with a downward trend dropping off by the end of May (70 days). In the scenario, that no further measures are implemented, one would expect the spread of COVID-19 to continue on a gentle incline, reaching 21,000 by mid-June. The same processhas been applied to review the confirmed, deaths and recovered dataset. The forecast has been carried out for the next 30 days, a shorter timeframe has been selected as there is a high probability that the Iranian New Year's celebration, Farvardin, first month of Spring (30th March in Western calendar) will have an impact on the infection rate following the event.

The best predictive model predicts the confirmed cases to be in the range of 35,000-70,000, with the number of reported COVDI-19 deaths to be between 3,000 - 5,000 and 5,000 - 30,000 of recovered cases.

Conclusions: Modeling outbreak ofCovid-19 shows that the number of patients and deaths is still increasing. Contagious diseases follow an exponential model and the same be Haves this one. This is because, the virus can spread to others and finally each person turns into a carrier of the virus and transmit it to another person. Disease control depends on disconnection and social distancing. In addition, many factors are effective in stopping the disease. These include citizens' participation in the prevention process, health education, the effectiveness of instructive traditions, environmental conditions, and so on.

On 31 December 2019, the World Health Organization(WHO) China Country Office was informed of cases of pneumonia of unknown etiology (unknown cause) detected in Wuhan City, Hubei Province of China, and WHO reportedthat a novel coronavirus (2019-nCoV), which was named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by International Commit- tee on Taxonomy of Viruses on 11 February, 2020, was identified as the causative virus by Chinese authoritieson 7 January(1)

During the <u>2019–20 coronavirus pandemic</u>, <u>Iran</u> reported its first confirmed cases of <u>SARS-CoV-2</u> infections on 19 February 2020 in <u>Qom(2)</u>. As of 17 March 2020, according to Iranian health authorities, there had been 988 <u>COVID-19</u> deaths in Iran with more than 16,000 confirmed infections(3,4,5) This respiratory disease caused by a coronavirus is one of the leading causes for serious illnesses in people all over the world. According to the global statistics of fatalities caused by coronavirus, and its spread in Iran, it is vital and essential to forecast its outbreak by a model.

As the outbreak of coronavirus disease 2019 (COVID-19) is a worldwide pandemic, it is rapidly expanding in Iran, real-time analyses of epidemiological data are needed to increase situational awareness and inform interventions. Previously, real-time analyses have shed light on the transmissibility, severity, and natural history of an emerging pathogen in the first few weeks of an outbreak. such as with severe acute respiratory syndrome (SARS), the 2009 influenza pandemic, and Ebola. Analyses of detailed line lists of patients are particularly useful to infer key epidemiological parameters, such as the incubation and infectious periods, and delays between infection and detection, isolation, and reporting of cases. However, official individual patient data rarely become publicly available, when the information is most needed. This is an analysis of the COVID-19 out-break in Iran. In this population-level observational study, I used Iranian Ministry of Health reports downloaded from GitHub, an online datasharing platform. This dataset is updated on a daily basis with a 24 hour delay. The dataset include time-stamped counts of the daily cases and deaths within each province in Iran.

In this study, we will build a predictive model based on the cumulative trend of new cases and deaths for the top five provinces. I will also look at modeling the trends for confirmed cases, deaths and recovered for the whole country.

Method

In this study, I have chosen to apply the exponential smoothing model to iteratively forecast future values of a regular time seires from weighted averages of past daily values of the series. This method is exponential because the value of each level is influenced by every preceeding actual value to an exponentially decreasing degree – more recent values are given a greater weight.

Due to the lack of historical data, seasonality analysis has been removed from the modelling and the trends are analysed based on the daily timeframe. The available data is too small to identify seasonal patterns and make predictable variation in value, such as annual fluctuation in temperature relative to the season. Trend is a tendency in the data to increase or decrease over time.

The predictive model will be tested against four regression model evaluations for robustness. They are as follow:

- MAE mean absolute error, this gives less weight to the outliers
- MAPE similar to MSE, but normalized by true observation. The downside is when true observation is zero, this metric could be problematic.
- MSE mean squared error, it is like a combination measurement of bias ad variance of the prediction. For eample, bias squared add variance.
- RMSE root MSE, this takes the root of MSE to bring the unit back to actual value. It is the standard deviation of residuals (prediction errors).
 Residuals are a measure of of how far from the regression line data points.

Both MAE & RMSE can range from 0 to infinity. They are negatively-oriented scores: lower values are better.

The Akaike Information Criterion, AIC test will be applied to the predictive model. This purpose of this test is to see how well the model fits the dataset without overfitting it. The AIC score rewards models that achieve a high goodness-of-fit score ad penalizes them if they become over complex. A low AIC score indicates a better fit.

Statistical analysis

Since the outbreak began in early February 2020, the rate of infection and number death has increased significantly as seen in the illustration below. On the 19th February, the first 2 deaths were reported, on the 23rd February, 4 additional province reported COVID-19 deaths, and within the space 28 days the virus has spreaded across the whole country (see illustration 2), by 20thMarch 2020, Tehran, the capital city of Iran reported close to 4000 confirmed cases of COVID-19.

Illiustration 1

Illustration 2

The total number of confirmed cases of infected patients on the 20th March 2020 is 19,661, with 1,411 deaths and 6,226 recovered. The top 10 most affected provinces are Tehran, Esfahan, Mazandaran, Qom, Alborz, Gilan, Markazi, Razavi-Khorasan, East Azerbaijan and Semon, which can be reviewed in illustration 3, province ranked by confirmed cases from the highest number to the least.

Illustrattion 3

Based on the exponential smoothing model, the projection for the next 90 days across the top 5 with the most reported confirmed cases are shown in illustration 4. If no control measures are put in place, it is expected that over 40,000 would be infected in Tehran around the middle of June. However, if control measures were implemented with a high degree of success, one would expect the spread of the COV-19 virus would peak at the start of April with a downward trend dropping off by the end of May (70 days). In the scenario, that no further measures are implemented, one would expect the spread of COVID-19 to continue on a gentle incline, reaching 21,000 by mid-June.

Illustration 4

Two models have been tested with varying degree of accuracy. The base model shown in Illustration 5 is the simple forecast model, without trend or seasonality built-in. It has the highest AIC out of the three models across the 5 sampled provinces, although it has a low MAPE, when compared to the other three statistical metrics like RMSE, MAE, MASE it yields the highest margin of error in the group.

The quality of the predictive model for Tehran is acceptable because the dataset is more robust compared to one integrated with seasonality. The Mean Absolute Scaled Error, MASE is less than 1 for the projected 90 days period which is a positive score for the model. The RMSE, unbiased forecast score is slightly higher than the MAE, which gives a median future distribution of 84. The MAPE is over 100% which means the errors are "much greater" then the actual values.

Table 1 & 2

Options Used to Create Forecasts

Time series: Day of Date Measures: Sum of Cases Forecast forward: 30 days (20 Mar 2020 – 18 Apr 2020) Forecast based on: 19 Feb 2020 – 19 Mar 2020 Ignore last: 1 day (20 Mar 2020) Seasonal pattern: None

Sum of Cases

Column	Color	Detail	Initial	Change From Initial	Seasonal Effect	Contri	bution	
Country	City	City	20 Mar 2020	20 Mar 2020 - 18 Apr 2020	High Low	Trend	Season	Quality
Iran	Tehran	Tehran	3,989 ± 4.9%	151.5%	None	100.0%	0.0%	Ok
Iran	Qom	Qom	1,028 ± 8.8%	82.8%	None	100.0%	0.0%	Poor
Iran	Mazandaran	Mazandaran	1,603 ± 10.2%	109.5%	None	100.0%	0.0%	Poor
Iran	Gilan	Gilan	926 ± 9.2%	148.8%	None	100.0%	0.0%	Poor
Iran	Esfahan	Esfahan	$1.697 \pm 6.9\%$	213.0%	None	100.0%	0.0%	Poor

All forecasts were computed using exponential smoothing.

Sum of Cases

Column	Color	Detail		Model			Qua	lity Me	trics		Smoot	hing Co	efficients
Country	City	City	Level	Trend	Season	RMSE	MAE	MASE	MAPE	AIC	Alpha	Beta	Gamma
Iran	Tehran	Tehran	Additive	Additive	None	100	84	0.66	188.7%	286	0.500	0.500	0.000
Iran	Qom	Qom	Additive	Additive	None	46	33	0.96	123.8%	240	0.500	0.500	0.000
Iran	Mazandaran	Mazandaran	Additive	Additive	None	83	51	0.97	102.7%	275	0.500	0.500	0.000
Iran	Gilan	Gilan	Additive	Additive	None	44	35	1.15	171.1%	236	0.500	0.281	0.000
Iran	Esfahan	Esfahan	Additive	Additive	None	59	44	0.81	42.2%	255	0.500	0.500	0.000

%Illustration 5

Options Used to Create Forecasts

Time series: Day of Date Measures: Sum of Cases Forecast forward: 90 days (20 Mar 2020 – 17 Jun 2020) Forecast based on: 19 Feb 2020 – 19 Mar 2020 Ignore last: 1 day (20 Mar 2020) Seasonal pattern: None

Sum of Cases

Column Country	Color City	Detail City	Initial 20 Mar 2020	Change From Initial 20 Mar 2020 – 17 Jun 2020	Seasonal Effect High Low		ibution Season	Quality
Iran	Tehran	Tehran	3,517 ± 17.4%	0.0%	None	0.0%	0.0%	Poor
Iran	Qom	Qom	961 ± 17.1%	0.0%	None	0.0%	0.0%	Poor
Iran	Mazandaran	Mazandaran	1,471 ± 19.6%	0.0%	None	0.0%	0.0%	Poor
Iran	Gilan	Gilan	828 ± 17.6%	0.0%	None	0.0%	0.0%	Poor
Iran	Esfahan	Esfahan	1,452 ± 18.7%	0.0%	None	0.0%	0.0%	Poor

Sum of	Cases												
Column	Color	Detail		Model			Qua	lity Me	trics		Smoot	hing Co	efficients
Country	City	City	Level	Trend	Season	RMSE	MAE	MASE	MAPE	AIC	Alpha	Beta	Gamma
Iran	Tehran	Tehran	Additive	None	None	313	235	1.84	33.8%	351	0.500	0.000	0.000
Iran	Qom	Qom	Additive	None	None	84	64	1.88	37.7%	272	0.500	0.000	0.000
Iran	Mazandaran	Mazandaran	Additive	None	None	147	98	1.85	33.2%	306	0.500	0.000	0.000
Iran	Gilan	Gilan	Additive	None	None	75	55	1.82	30.7%	265	0.500	0.000	0.000
Iran	Esfahan	Esfahan	Additive	None	None	138	97	1.79	30.8%	302	0.500	0.000	0.000

The same process has been applied to review the confirmed, deaths and recovered dataset. The forecast has been carried out for the next 30 days, a shorter timeframe has been selected as there is a high probability that the Iranian New Year's celebration, Farvardin, first month of Spring (30th March in Western calendar) will have an impact on the infection rate following the event.

The best predictive model as seen in Illustration 7 predicts the confirmed cases to be in the range of 35,000-70,000, with the number of reported COVDI-19 deaths to be between 3,000 - 5,000 and 5,000 - 30,000 of recovered cases.

Iluustration 7

Table 5 & 6

	e series: D													
	easures: S			220 10		20202								
Forecast b	forward: 3					2020)								
	ore last: 1				0									
	pattern: N				onal p	attern	ecurring	everv	7 Davs)					
					1				1.1					
Sum of N	umber													
Color	Init			ange Fr				sonal E			bution			
Status	20 Mar		20 Mar	2020 -		pr 202	0 Hig		Low	Benalter and Street of Street,	Season	Quality		
recovered	6,226 ±			189.				None		100.0%		Poor		
deaths confirmed	1,411 ± 19,661 ±			299. 170.				None None		100.0% 100.0%		Ok Ok		
commed	19,001 1	: 3.9%		170.	4%			NOTIE		100.0%	0.0%	OK		
All forecasts	were comp	outed usir	ng expone	ntial smo	oothin	g.								
		outed usir	ng expone	ntial smo	oothin	g.							 	
Sum of Nu Color	mber	Model			Qui	ality Me				hing Coe				
Sum of Nu Color Status	mber Level	Model Trend	Season	RMSE	Qua	ality Me MASE	MAPE	and the local division of the local division	Alpha	Beta	Gamma			
Sum of Nu Color Status recovered	mber Level	Model Trend Additive	Season None	RMSE 364	Qu MAE 257	ality Me MASE 1.31	MAPE 15.9%	364	Alpha 0.500	Beta 0.314	Gamma 0.000		 	
Sum of Nu Color Status recovered deaths	mber Level Additive	Model Trend Additive Additive	Season None None	RMSE 364 32	Qu MAE 257 26	ality Me MASE 1.31 0.59	MAPE 15.9% 240.7%	364 218	Alpha 0.500 0.500	Beta 0.314 0.500	Gamma 0.000 0.000		 	
Sum of Nu Color Status recovered deaths	mber Level	Model Trend Additive Additive	Season None None	RMSE 364	Qu MAE 257 26	ality Me MASE 1.31 0.59	MAPE 15.9%	364 218	Alpha 0.500 0.500	Beta 0.314	Gamma 0.000 0.000			
Sum of Nu Color Status recovered deaths	mber Level Additive	Model Trend Additive Additive	Season None None	RMSE 364 32	Qu MAE 257 26	ality Me MASE 1.31 0.59	MAPE 15.9% 240.7%	364 218	Alpha 0.500 0.500	Beta 0.314 0.500	Gamma 0.000 0.000			
Sum of Nu Color Status recovered deaths	mber Level Additive	Model Trend Additive Additive	Season None None	RMSE 364 32	Qu MAE 257 26	ality Me MASE 1.31 0.59	MAPE 15.9% 240.7%	364 218	Alpha 0.500 0.500	Beta 0.314 0.500	Gamma 0.000 0.000			
Sum of Nu Color Status recovered deaths	mber Level Additive	Model Trend Additive Additive	Season None None	RMSE 364 32	Qu MAE 257 26	ality Me MASE 1.31 0.59	MAPE 15.9% 240.7%	364 218	Alpha 0.500 0.500	Beta 0.314 0.500	Gamma 0.000 0.000			
Sum of Nu Color Status recovered deaths	mber Level Additive	Model Trend Additive Additive	Season None None	RMSE 364 32	Qu MAE 257 26	ality Me MASE 1.31 0.59	MAPE 15.9% 240.7%	364 218	Alpha 0.500 0.500	Beta 0.314 0.500	Gamma 0.000 0.000			
Sum of Nu Color Status recovered deaths	mber Level Additive	Model Trend Additive Additive	Season None None	RMSE 364 32	Qu MAE 257 26	ality Me MASE 1.31 0.59	MAPE 15.9% 240.7%	364 218	Alpha 0.500 0.500	Beta 0.314 0.500	Gamma 0.000 0.000			
Sum of Nu Color Status recovered deaths	mber Level Additive	Model Trend Additive Additive	Season None None	RMSE 364 32	Qu MAE 257 26	ality Me MASE 1.31 0.59	MAPE 15.9% 240.7%	364 218	Alpha 0.500 0.500	Beta 0.314 0.500	Gamma 0.000 0.000			
Sum of Nu Color Status recovered deaths	mber Level Additive	Model Trend Additive Additive	Season None None	RMSE 364 32	Qu MAE 257 26	ality Me MASE 1.31 0.59	MAPE 15.9% 240.7%	364 218	Alpha 0.500 0.500	Beta 0.314 0.500	Gamma 0.000 0.000			
Status recovered deaths	mber Level Additive	Model Trend Additive Additive	Season None None	RMSE 364 32	Qu MAE 257 26	ality Me MASE 1.31 0.59	MAPE 15.9% 240.7%	364 218	Alpha 0.500 0.500	Beta 0.314 0.500	Gamma 0.000 0.000			

Conclusion

Modeling outbreak ofCovid-19 shows that the number of patients and deaths is still increasing. Contagious diseases follow an exponential model and the same be Haves this one. This is because, the virus can spread to others and finally each person turns into a carrier of the virus and transmit it to another person. Disease control depends on disconnection and social distancing. In addition, many factors are effective in stopping the disease.

These include citizens' participation in the prevention process, health education, the effectiveness of instructive traditions, environmental conditions, and so on. This article strived to analyze the growth trend of the number of patients, deaths and patients recovered in some provinces of Iran. The knowledge gained can help health planners and planners. Combining the findings of this study with other countries' studies can help to extract a global pattern for the virus outbreak process analysis. We believe that there are still many factors that can be included in the study. Adding these factors helps to validate and consolidate the

findings. We hope that our study as part of an effort to better understand the disease and prevent the spread of the disease will help a global achievement

References

1. World Health Organization. Coronavirus. World Health Organization, cited January 19, 2020. Available: https://www.who.int/health-topics/coronavirus).

2. <u>Iran Reports Its First 2 Cases of the New Coronavirus</u>". New York Times. <u>Archived</u> from the original on 19 February 2020. Retrieved 19 February 2020.

3<u>"IRNA - Iran's Coronavirus Toll"</u>. IRNA. 10 March 2020.

4. Smith, Josh; Stanway, David (26 February 2020). <u>"Germany 'heading for</u> <u>epidemic' as virus spreads faster outside China"</u>. <u>Thomson Reuters</u>. <u>Archived</u> from the original on 26 February 2020. Retrieved 26 February 2020.

5. Aboulenein, Ahmed (25 February 2020). <u>"First Iraqis catch coronavirus amid fear of Iran epidemic spillover"</u>. <u>Thomson Reuters</u>. <u>Archived</u> from the original on 25 February 2020. Retrieved 25 February 2020