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Immune Cell Profiling of COVID-19 Patientsin the Recovery Stage by Single-Cell Sequencing
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Abstract

COVID-19, caused by SARS-CoV-2, has recently affected over 300,000 people and killed more than
10,000. The manner in which the key immune cell subsets change and their states during the course
of COVID-19 reman unclear. Here, we applied single-cell technology to comprehensively
characterize transcriptional changesin peripheral blood mononuclear cells during the recovery stage
of COVID-19. Compared with healthy controls, in patients in the early recovery stage (ERS) of
COVID-19, T cells decreased remarkably, whereas monocytes increased. A detailed analysis of the
monocytes revealed that there was an increased ratio of classical CD14™ monocytes with high
inflammatory gene expression as well as a greater abundance of CD14™"1L1B" monocytes in the
ERS. CD4" and CD8" T cells decreased significantly and expressed high levels of inflammatory
genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naive B
cells decreased. Our study identified several novel B cell-receptor (BCR) changes, such as
IGHV3-23 and IGHV3-7, and confirmed isotypes (IGHV3-15, IGHV3-30, and IGKV3-11)
previously used for virus vaccine development. The strongest pairing frequencies, IGHV 3-23-IGHX4,
indicated a monoclonal state associated with SARS-CoV-2 specificity. Furthermore, integrated
analysis predicted that IL-1f and M-CSF may be novel candidate target genes for inflammatory
storm and that TNFSF13, IL-18, IL-2 and IL-4 may be beneficia for the recovery of COVID-19
patients. Our study provides the first evidence of an inflammatory immune signature in the ERS,
suggesting that COVID-19 patients are still vulnerable after hospital discharge. Our identification of
novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of
COVID-19.
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Highlights
- The immune response was sustained for more than 7 days in the early recovery stage of COVID-19,

suggesting that COVID-19 patients are still vulnerable after hospital discharge.

- Single-cell analysis revealed a predominant subset of CD14™" IL1B* monocytes in patients in the
ERS of COVID-19.

- Newly identified virus-specific B cell-receptor changes, such as IGHV3-23, IGHV 3-7, IGHV 3-15,
IGHV3-30, and IGKV3-11, could be helpful in the development of vaccines and antibodies against
SARS-CoV-2.

- IL-1p and M-CSF were discovered as novel mediators of inflammatory cytokine storm, and

TNFSF13, IL-2, IL-4, and IL-18 may be beneficial for recovery.


https://doi.org/10.1101/2020.03.23.20039362

medRxiv preprint doi: https://doi.org/10.1101/2020.03.23.20039362; this version posted March 31, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

I ntroduction

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread
in many countries ¥, As of March 21, 2020, SARS-CoV-2 has affected over 300,000 people and
killed more than 10,000 of those affected in more than 160 countries. Following its global spread, the
World Health Organization declared it a public health emergency of international concern .
COVID-19 shows symptoms of fever, dry cough, fatigue, diarrhea, conjunctivitis, and pneumonia.
Some patients develop severe pneumonia, acute respiratory distress syndrome (ARDS), or multiple
organ failure 7. Although scientists and clinicians worldwide have made great efforts to produce
vaccines and explored antiviral drugs 9, there is till no specific medicine and effective clinical
treatment for COVID-19 1'%,

Immune system dysregulation, such as lymphopenia and inflammatory cytokine storm, have been
observed and are believed to be associated with the severity of pathogenic coronavirus infections,
such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory
syndrome coronavirus (MERS-CoV) infections % *. With regard to COVID-19, recent studies also
found decreases in lymphocyte numbers and increases in serum inflammatory cytokine levels in
peripheral blood ™ **. However, the manner in which key immune cell subsets change and their
states during COVID-19 have remained largely unclear. Thus, defining these key cellular subsets and
their states in COVID-19 is a crucia step in obtaining critical insights into the immune clearance
mechanism and developing new therapeutic strategies for COVID-19.

Here, we applied single-cell RNA sequencing (scRNA-seq) to comprehensively characterize the
changes in peripheral blood mononuclear cells (PBMCs) from 10 COVID-19 patients. Our study
depicts a high-resolution transcriptome landscape of blood immune cell subsets during the recovery
stage of COVID-19. It revedals that, compared to that in the healthy controls (HCs), monocytes
containing high inflammatory gene expression and IL1B" subsets predominated, whereas CD4™ T
cells decreased remarkably in patients in the early recovery stage of COVID-19. We found that T and
B cell clones were highly expanded during the recovery stage in COVID-19 patients. Furthermore,
several specific BCR changes in COVID-19 patients during the recovery stage may be helpful for

vaccine and antibody production.
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Results

Study design and analysis of singleimmune cell profilingin COVID-19 patients

To map the immune microenvironment of COVID-19 patients, we identified mirroring changes in
the blood and pinpointed cell-specific aterations associated with disease severity and recovery; we
then integrated single-cell RNA sequencing (scRNA-seq), single-cell paired BCR, and single-cell
paired TCR analysis from atotal of 10 COVID-19 patients in the early recovery stage (ERS) or late
recovery stage (LRS) (70,858 PBMCs). We also collected scRNA-seq data (57,238 cells) from five
healthy donors as controls (Fig. 1A and Fig. S1). This dataset passed stringent high-quality filtering.
Single-cell suspensions of the sScRNA-seq samples were converted to barcoded scRNA-seq libraries
using 10X Genomics. CellRanger software (version 3.1.0) was used for the initial processing of the
sequencing data

Using t-distributed stochastic neighbor embedding (t-SNE), we analyzed the distribution of the three
immune cell lineages, myeloid, NKT, and B cells, based on the expression of canonical lineage
markers and other genes specifically upregulated in each cluster (Fig. 1B, C). For marker genes,
expression values in each cell positioned in a t-SNE are shown in Fig. 1D. We next clustered the

cells of each lineage separately and identified atotal of 20 immune cell clusters.

An overview of NKT, B, and myeloid cellsin the blood of convalescent patientswith COVID-19
The immune cell compartment of patients who have recovered from COVID-19 infection comprised
all major immune lineages. We analyzed 128,096 scRNA-seq profiles that passed quality control,
including 36,442 myeloid cells, 64,247 NKT cells, and 10,177 B cells from five HCs, five ERS, and
five LRS patients. The sketchy clustering analysis landscape of each subject is presented in Fig. S2A,
and the merged image of each group is shown in Fig. 2A. We discovered that COVID-19 patients,
including ERS and LRS, demonstrated a higher proportion of myeloid cells compared to the HCs,
but with a lower proportion of NKT cells (Fig. 2B, C). Interestingly, LRS patients had more B cells
and NKT cells, but less myeloid cells, than the ERS patients (Fig. 2B, C). Thus, these findings
indicated that COVID-19 patients had decreased lymphocyte counts and increased counts of myeloid
cellsin peripheral blood.

To further understand the changes in the myeloid, NKT, and B cells in COVID-19 patients, we
conducted differential expression gene (DEG) analysis of the NKT, B, and myeloid cells between the
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HCs and patients. The heat maps are shown in Fig. 2D-F. Inflammatory cytokines and chemokines
such as IL1B, CCL3, IRF1, DUSP1, JUN, and FOS were all expressed at high levels in patients,
regardless of myeloid cells (Fig. 2D), NKT cells (Fig. 2E), or B cells (Fig. 2F).

Collectively, our results demonstrated that myeloid cells increased, whereas NKT cells decreased in
the periphera blood of COVID-19 patients and that the immune cell compositions differed between
the patients in the ERS and LRS.

Myeloid cell subsetsand their statesin the blood of convalescent patientswith COVID-19

To further understand the changes in the monocytes in patients in the early and late recovery stages
of COVID-19, we conducted gene expression analysis and sub-clustered the myeloid cells into six
transcriptionally distinct subsets using Uniform Manifold Approximation and Projection (UMAP).
Classical CD14™ monocytes (M1), non-classical CD16™ (FCGR3A) CD14"" monocytes (M2),
intermediate CD14™ CD16" monocytes (M3), CD1C" ¢cDC2 (M4), CLEC9A™ ¢cDC1 (M5), and pDC
(CLEC4C'CD123") (M6) were present in the six distinct clusters (Fig. 3A, B, and S). We found that
the compartment of the monocyte subset differed remarkably among the HCs and COVID-19
patients (Fig. 3C). Among the myeloid cells, the ratio of classical CD14™ monocytes (M1) higher in
the ERS patients than in the HCs and was almost normal in the LRS patients (Fig. 3C).

We found that COVID-19 patients had a greater abundance of CD14™ IL18" monocytes and
IFN-activated monocytes than the HCs (Fig. 3D-F). Genes associated with CD14™ inflammatory
monocytes (M1) had high expression levels of inflammatory genes such as IL14, JUN, FOS, JUNB,
and KLF6; chemokines, CCL4, CXCR4,; and interferon-stimulated genes, IFRD1, IRF1, and IFI6. In
contrast, anti-inflammatory genes associated with CD14™ monocytes (M1) were downregulated in
COVID-19 patients relative to that in the HCs (Fig. 3D, E). Notably, IL1p expression values in a
UMAP with simultaneous contrast indicated that IL13 was upregulated in the ERS group and
decreased in the LRS patients (Fig. 3F). This was also confirmed in the DC cluster of the ERS group
compared to that of the HCs (Fig. S3A-B). Next, we took the average of the inflammatory genes for
each myeloid cell stRNA-seq subset in the COVID-19 patients versus that in the HCs (Fig. S3C).
These results demonstrated that cytokine activation drives the expansion of monocyte populations
(especially CD14™ inflammatory monocytes) in COVID-19-infected patients. To explore the

biological significance of the transcriptional changes in the M1 cluster, we performed GO analysis
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with DEGs (Fig. 3G). We observed enrichment of the pathways related to cytokine signaling and
inflammation activation, which were driven by the upregulation of IFITM3 and IFI6 and IL14, JUN,
FOS, JUNB, and KLF6 (Fig. 3G).

Collectively, these findings demonstrate that a dysregulated balance in the monocyte populations in
ERS patients is manifested by substantially increased classica CD14™ monocytes. Our results
suggest that the classical CD14™ monocytes increase in circulation to fuel inflammation during

SARS-CoV-2-infection.

Characterization of T and NK cell responsesin the blood of recovered COVID-19 patients

T and NK cells play critical roles in viral clearance during respiratory infections > *°. Our
clustering analysis sub-grouped T and NK lymphocytes into 10 subsets (Fig. 4A) based on canonical
markers (Fig. 4B and Fig. $4A). NK cells highly expressed NCAM1, KLRF1, KLRC1, and KLRD1;
then, we sub-divided the NK cells into CD56"CD16'NK cells (NK 1), which expressed high levels of
CD56 and low levels of CD16, and C56'CD16" NK cells (NK2), which expressed high levels of
CD16 and low levels of CD56. CD4" T cells expressed CD3E and CD4; then, we sub-divided these
cells into four clusters: naive CD4'T cells (T1), which expressed high levels of CCR7, LEF1, and
TCF7; central memory CD4'T cells (T2, CD4 Tem), which expressed high levels of CCR7, but more
AQP3 and CD69 compared to naive CD4'T cells; effector memory CD4'T cells (T3, CD4 Tem),
which expressed high levels of CCR6, CXCR6, CCL5, and PRDM1; and regulatory T cells (T4, Treg),
which expressed FOXP3. CD8+ T cells expressed CD8A and CD8B and were sub-divided into three
clusters: naive CD8" T cells (T5), which expressed high levels of CCR7, LEF1, and TCF7, similar to
naive CD4'T cells; effector memory CD8'T cells (T6, CD8 Tm), which expressed high levels of
GZMK; and cytotoxic CD8" lymphocytes (CD8" CTL) (T7), which expressed high levels of GZMB,
GNLY, and PRF1. Proliferating T cells (T8, Pro-T) were TYMS" MKI67" cdlls.

The composition of the T and NK cell subsets differed significantly among the HCs and COVID-19
patients (Fig. 4C). The ratio of CD8'T cells decreased in the ERS COVID-19 patients, whereas the
ratio of NK cells was higher than that in the HCs. The ratio of CD4" T cells was stable, but the
composition of the CD4" T cell subset differed significantly between the HCs and COVID-19
patients. Among CD4" T cells, central memory CD4" T cells were significantly higher, whereas the
ratio of naive CD4" T cells was lower than thats in the HCs. Notably, genes associated with CD4™ T
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cells had relatively high expression levels of inflammation-related genes and were significantly
upregulated in the COVID-19 patients (Fig. 4D). CD4" T cells had high expression levels of
inflammatory genes, including FOS, JUN, KLF6, and S100A8 in patients in the ERS of COVID-19.
(Fig. 4E). In contragt, anti-inflammatory genes associated with CD4" T cells were downregulated in
COVID-19 patients relative to that in the HCs (Fig. 4D, E). This suggested that CD4" T cells were
the main participants in the virus infection. Comparison of the DEGs in the CD4" T cells revealed the
enrichment of genes participating in the cytokine pathway and inflammation activation, including
IFITM3 and IFI6 and IL1B, JUN, FOS, JUNB, and KLF6 (Fig. 4F). Further studies are needed to
elucidate the IFN pathways involved in COVID-19 pathogenesis.

TCR-seq analysis showed that T cell expansion was obviously decreased in the ERS group than in
the HC group (Fig. 4G). Moreover, naive or central memory T cells showed little clonal expansion,
while effector memory T cells, terminal effector CD8" T cells (CTLs), and proliferating T cells
showed higher expansion levels (Fig. 4H). In addition, the most highly expanded (maximum) clone
in the ERS group was TRAV8-6-TRAM5.: TRAV7-8-TRBJ2-1 (Fig. S5D). The decreased ratio of
CD8" T cells in COVID-19 patients may implicate the role of CD8" T cells in virus clearance (Fig.
4C). Moreover, the CD8" CTL with expanded clones also exhibited overactivated inflammation and
antiviral activity compared to those in HCs (Fig. 4l and Fig. $4B). Together, these findings show that
clonally expanded CD8" T cells in the peripheral blood of COVID-19 patients help control the virus.
We also performed DEG analysis, via unsupervised clustering analysis, and found an overactivated
inflammatory state in pro-T cells (Fig. SAC). Next, we took the average of inflammatory genes for
each NKT cell subset sScRNA-seq subset in the COVID-19 patients versus normal RNA-seq data (Fig.
$AD).

Characterization of single-cell B cellsin COVID-19 patients

By projecting the gene expression data of B cells using diffuson maps, we identified four B cell
clusters using scRNA-seq: naive B cells (B1) expressing CD19, CD20 (M4AL), IGHD, IGHM,
ILAR, and TCL1A; memory B cells (B2) expressing CD27, CD38, and IGHG; immature B cells (B3)
only expressing CD19 and CD20 (M$4A1); and plasma cells (B4) expressing high levels of XBP1
and MZB1 (Figs. 5A-B and Fig. S5A).
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In comparison with that in the HCs, the percentage of plasma cells increased significantly in
COVID-19 patients, whereas naive B cells decreased significantly in the COVID-19 patients (Fig.
5C). Memory B cells and plasma cells (MPB) might play an important role in the control of viral
infection and the development of adoptive immunity as they synergistically work and induce specific
antibodies. Moreover, compared to that in the HCs, B cell activation-related genes, including SL00AS,
IGLL5, SSR3, IGHAL, XBP1, and MZB1 were primarily expressed in the MPB of the ERS group (Fig.
5D). We also found similar results in the plasma cells, the antibody-secreting cells (ASC) (Fig.
S5B-C), suggesting a key role for ASC in viral control. Next, we took the average of the
inflammatory genes for each B cell subset of the COVID-19 patients versus the normal RNA-seq
data (Fig. 5E). The difference in the genes between the ERS and HCs indicated enhanced B cell
reaction and antibody secretion in COVID-19 patients. GO analysis revealed that IGHAL, XBP1,
MZzB1, JUN, POLR2L, and ZFP36 were over-presented in MPBs, which suggests enhanced B cell
proliferation and viral transcription in COVID-19 patients (Fig. 5F). Single-cell BCR-seq anaysis
indicated that the IgA isotype was over-represented in COVID-19 patients compared to that in the
HC (Fig. 5G). This corresponded with an increase in the levels of serum IgA, which was also
pronounced in other coronavirus infections. Moreover, the ratio of (IgA+IgG+IgE) to (IgD+IgM)
increased significantly in the ERS patients and showed a downward trend with recovery time (Fig.
5H).

Expanded BCR clones and biased usage of VDJ genes observed in COVID-19 patients

Using sc-BCR-seq to assess the status of clonal expansions in the blood of patients, we found that
IL4R" naive B cells showed little clonal expansion, whereas CD27'CD38" memory B cells showed
the highest expansion levels among diverse B cell subsets (Fig. 6A). At the individua level, we
found that COVID-19 patients had significantly expanded clones compared to that in the HCs,
supporting the assumption that B cells had experienced unique clonal VDJ rearrangements under
SARS-CoV-2 infection. We also found that a higher B cell clonality consistently remained in the
ERS compared with that in the LRS patients (Fig. 6B). Moreover, quantification of the maost highly
expanded (maximum) clone for each subject showed that the ratios of the maximum clones were
higher in the ERS group than in the HCs (Fig. 6C). To understand the functional status of expanded
cloned B cells, we performed DEG analysis between the cloned memory B cells and the other B cells.
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Our results revealed increased expression of B cell genes, including CD27, SSR4, IGHG1, MZB1,
and XBP1, which further supports the superior effector functions of the expanded cloned B cells (Fig.
6D). Moreover, the differential genes for expanded B cells significantly subsided over time and
reduced in LRS patients (Fig. 6D).

To study the unique changes and preference genes of BCR in COVID-19 patients, we compared the
usage of VDJ genesin COVID-19 patients with that in the HCs. We identified an over-representation
of the IGHV 3 family, especially the IGHV3-7, IGHV3-15, IGHV 3-21, IGHV3-23, and IGHV3-30in
COVID-19 patients compared to that in the HCs (Fig. 6E). The preferred IGLVs were IGKV1-17,
IGKV2-28, and IGKV 3-15, wheress the preferred IGKVs were IGLV 1-44, IGLV 2-8, and IGLV3-27
(Fig. 6E). Moreover, the top two pairing frequencies in ERS patients were IGHV3-23-IGHJ}4 and
IGHV3-7- IGHJ6 (Fig. 6F). These cells showed IGH subunit pairing withthe IGL/V subunit
encoded by IGLV1-44-1GLJ3 and IGKV1-17-1GKJ1, respectively, which indicated expanded states
associated with SARS-CoV-2 specificity. Individually, ERS-4 and ERS-5 had the maximum clones,
referring to IGHV 3-23-IGHM (Fig. S5E) and IGHV 3-7- IGHJ6 (Fig. S5F), respectively.

In summary, an increase in clonality in COVID-19, which was dominated by the IgA and IgM
isotypes, together with a skewed use of the IGHV gene, suggested the contribution of SARS-CoV-2
to pathogenesis. Notably, the biased usage of dominated IGV genes, especialy the IGHV3-23 and
IGHV3-7 in COVID-19 patients, provides a framework for the rational design of SARS-CoV-2

vaccines.

Céll-to-cell communication among immune cellsin COVID-19 patients

An established computational approach " was used to predict cell-to-cell interactions that may
contribute to the distinct functional state of T cells, B cells, monocytes, and dendritic cells (DCs) in
ERS and LRS (Fig. 7A, B). In ERS COVID-19 patients, we found adaptive signals involved in
monocyte activation, proliferation, and inflammatory signaling (Fig. 7A, B). T cells expressed genes
encoding ligands of TNFSF8, LTA, IFNG, IL17A, CCR5, and LTB to TNFRSFS8,
TNFRSF1A/TNFRSF14, IFNGR1, IL-17RA, CCR1, and LTBR, which were expressed on
monocytes and could contribute to the pro-inflammatory status. Other T cell-monocyte interactions
involved the expression of CSF2 and CSF1. T cells might activate monocytes through the expression

of CSF2 and CSF1, which bind to CSFRs (CSFR2/1) and contribute to inflammatory storm. A cluster
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of CD14" monocytes exclusively expressed IL1p, which was predicted to bind to IL1RAP expressed
by T cells. T cell-monocyte interaction may enhance immune response and be exclusive to
COVID-19 patients. (Fig. 7A, B). Furthermore, we found that monocytes highly expressed the
poliovirus receptor, which serves as a cellular receptor for poliovirus in the first step of poliovirus
replication and induction of the NF-kappa B signaling pathway. From the B cell-monocyte and B
cell-T cell interactions, we found that B cells could secrete a large number of IL-6, LTA, and LTB,
which are combined with IL-6R, LTAR, and LTBR expressed in monocytes, and a large amount of
IL-6 was applied to T cells to promote the secretion of IFN-y, IL-18, and other inflammatory
cytokines and chemokines. Thus, a cascade signature of inflammatory monocytes with high
expression of IL-6 and their progeny were formed in the peak incidence of ERS COVID-19 patients
(Fig. 7C). These activated immune cells may enter the circulation in the lung and other organs in
large numbers and play an immune-damaging role. In LRS COVID-19 patients, DC ligands were
predicted to interact with B and T cell receptors involved in cell proliferation and the production of
antibodies. We discovered that the peripheral blood of LRS patients contains a diversity of antibodies;
we found that IL18-IL18RAPR, TNFSF13-TNFRSF13B, TNFSF13-TNFRSF17,
TNFSF13B-TNFRSF17, TNFSF13B-TNFRSF13B, and TNFSF13B-TNFRSF13C were highly
expressed in our analysis of DC-B cell interaction (Fig. 7D). Thus, we speculate that DCs produce
IL-18, TNFSF13, and TNFSF13B to promote the proliferation of B cells and then secrete many
antibodies into the blood in ERS. From the DC-T and T cell-B cell interactions, we discovered that
DCs produce not only IL-18 but also IL-7 to promote the proliferation of T cells; moreover, T cells
produce IL-2 (to promote the proliferation of B cells) and antibodies (Fig. 7D). Thus, cell-to-cell
interactions help us to understand why COVID-19 patients manifested high rates of monocytes and
low rates of lymphocytes and why the proportion of lymphocytes gradually increased in the

peripheral blood of recovering patients.
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Discussion

The clinical presentation of COVID-19 varies from asymptomatic to severe ARDS. This has been
similarly observed in severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East
respiratory syndrome coronavirus (MERS-CoV), and influenza infections ** /. In viral infection, it
is generally accepted that host immune responses determine both protection against viral infections
and the pathogenesis of respiratory injury *® *. A coordinated response in innate and adaptive
immune cells working in concert may lead to the rapid control of the virus, whereas afailed immune
response might lead to viral spreading, cytokine storm, and a high mortality rate . Despite
belonging to same group of viruses, recent studies have highlighted differences between COVID-19,
SARS, and MERS, such as the speed of transmission, treatment scheme, and mortality rate.
Moreover, this difference may also exist in the key immune players and the underlying molecular
mechanisms related to these diseases. The lack of knowledge regarding the immune impact of
COVID-19 has now become a critical issue in view of its rapid spread and the shortage of specific
therapy %!, Using single-cell sequencing, we profiled the complexity of immune populations in the
blood and analyzed 70,858 cells from 10 patients. We identified a hyper-inflammatory response in
ERS patients, which may explain why some patients fell sick after being discharged, and suggest that
the current criteria for hospital discharge should be re-evaluated. In addition, we identified unique
signatures of myeloid, NK T, and B cells and pinpointed the changes in the epitopes of TCR and BCR.
Our findings helped elucidate the antivira immune mechanisms and revealed promising
opportunities for developing immunotherapies using vaccines and neutralizing antibodies.
Inflammation is a vital part of the immune system’s response to COVID-19 invasion; previous and
latest studies have reported significantly higher levels of inflammatory cytokines associated with
disease severity in SARS, MERS, and COVID-19 patients®> ), Among the various inflammatory
cells, monocytes and their subsets (including classical, intermediate, and non-classical monocytes)
may play a critical role because they are known to fuel inflammation ", In our study, compared
with the HCs, ERS patients demonstrated a significantly higher ratio of monocytes, and these cells
expressed higher levels of inflammatory genes. Intriguingly, the ratio of classica CD14" monocytes
was high in ERS but remained normal in LRS. Furthermore, CD14°IL1p monocytes, which were
absent in HCs, could be observed in ERS, and they declined in number in LRS. Notably, our
cell-to-cell interaction analysis indicated that IL13, CSF1, IL6, and CSF2 may be associated with
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cytokine storm. Collectively, our data provide important insights into the role of monocytes in the
immunopathogenesis of COVID-19.

The adaptive immune system harbors the ability to recognize and remember specific pathogens
through antibody and T cell responses ®!. Inducing adaptive immunity is the aim of vaccination 7.
Previous SARS studies have identified binding and neutralizing antibodies elicited by SARS-CoV
infection. Their therapeutic effect is unclear *°, although robust antibody responses could be induced
34 In COVID-19 infection, although several lines of evidence have consistently indicated a decline
in lymphocyte counts, the distinct immune characteristics at single-cell resolution are unclear. Our
scRNA-seq analysis showed that, compared with the HCs, ERS patients have a lower ratio of T and
NK cells, and these patients' T cells express higher levels of inflammatory genes, such as JUN, FOS,
JUNB, and KLF6. In addition, high-throughput TCR sequencing identified expanded T cell clonesin
ERS patients. In LRS patients, the immunophenotype was different. In particular, LRS patients
would have an increase in T and NK cells, with a lower expression of inflammatory genes. We aso
performed a detailed analysis of B cells in patients and identified a higher population of plasma cells
than that in the HCs. We found that BCR contained highly expanded clones, indicating their
SARS-CoV-2 specificity. Importantly, we found several loci unique to COVID-19 infection. The
strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with
SARS-CoV-2 specificity. Notably, numerous studies have reported biased usage of VDJ genes
related to virus-specific antibodies. For example, IGHV 3-30 and IGKV 3-11 have been involved in
encoding primary antibodies to neutralize human cytomegalovirus** *. In addition, IGHV3-30 and
IGHV3-21 have been utilized to isolate influenza virus antibodies and used for the production of

virus vaccines ** ¥l

. Moreover, a recent study demonstrated that antibodies combining the
IGHV3-15/IGLV 1-40 segments had superior neutralizing activities against the Zaire Ebola virus™?.
In addition, we observed lower expression of inflammatory genes in ERS patients than in the HCs.
We envision that our results will provide direction for the development of vaccines and antibodies for
COVID-19 patients.

Interaction between immune cells may help expedite or defer recovery from COVID-19 infection.
Our cell-to-cell prediction analysis utilizing scRNA-seq data indicated that, in ERS patients, B
cell-derived 1L-6, T cell-derived CSF1 (M-CSF), and CSF2 (GM-CSF) may promote monocyte

proliferation and activation. As a result, monocytes may produce a larger number of inflammatory
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mediators, including IL-18 and IL-6, contributing to inflammatory storm. In LRS patients, both
DCs-derived TNFSF13 and IL-18 and T cell-derived IL-2, IL-4 may promote B cell survival,
proliferation, and differentiation. Consequently, B cells produce numerous SARS-COV-2-specific
antibodies to clear viruses.

In conclusion, our study provides the first immune atlas of patients who have recovered from
COVID-19 and identifies adaptive immune dysregulation after discharge. The clonal expansion of
both T and B cells indicates that the immune system has gradually recovered; however, the sustained
hyper-inflammatory response for more than 7 days after discharge suggests the need for medical
observation after patients are discharged from hospital. Longitudinal studies of recovered patients in
alarger cohort might help to understand the consequences of the disease. The novel BCRs identified
in our study may advance our understanding of B cell mechanisms and have potential clinical utility

in COVID-19 immunotherapies.
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Methods

Software and Algorithms

Prism 8 https://www.graphpad.com/sci entificsoftware/
prism/

Cell Ranger 3.1.0 https://support.10xgenomics.com

Loupe Browser 4.0.0 https://support.10xgenomics.com

Loupe V(D)J Browser 3.0.0 https://support.10xgenomics.com

R3.6.1 https.//www.r-project.org/

Seurat V3" https://satijalab.org/

Monocle3* https://cole-trapnell-lab.github.io/monocle3

GO analysis® https://www.metascape.org

Patients

10 COVID-19 patients diagnosed with by real-time fluorescent RT-PCR were collected in the Wuhan
Hankou Hospital China. Patients were divided into early-recovery stage (ERS) group and
late-recovery stage (LRS) group according to the days from first negative nucleic acid transfer date
to blood sampling date. We defined the RES group of five cases as the date of nucleic acid turning
negative to blood sampling is less than seven days and LRS group of five cases as is more than
fourteen days. The 10 patients consisted of five males and five females and ranged from ages 40 to
70 years old, with a median of 50 years old. The demographic characteristics of these patients are
provided in Fig. S1. A written informed consent was regularly obtained from all patients. The study
was approved by the Ethics Committee of Wuhan Hankou Hospital, China.

Quantitativereverse transcription polymerase chain reaction

The throat swab, sputum from the upper respiratory tract and blood were collected from patients at
various time-points after hospitalization. Sample collection, processing, and laboratory testing
complied with WHO guidance. Viral RNA was extracted from samples using the QlAamp RNA Viral
Kit (Qiagen, Heiden, Germany) according to the manufacturer's instructions. SARS-CoV-2-infected
patients were confirmed by use of gRT-PCR kit (TaKaRa, Dalian, China) as recommended by China
CDC.

Single-cell collection and sScRNA-seq
The peripheral blood mononuclear cell (PBMCs) were isolated from heparinized venous blood of
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patients or healthy donors using a Ficoll-Hypaque density solution according to standard density
gradient centrifugation methods. For each sample, the cell viability exceeded 80%.

The single-cell suspensions of sScRNA-seq samples were converted to barcoded scRNA-seq libraries
using the Chromium Single Cell 5' Library, Gel Bead and Multiplex Kit, and Chip Kit (10X
Genomics). The Chromium Single Cell 5 v2 Reagent (10X Genomics, 120237) kit was used to
prepare single-cell RNA libraries according to the manufacturer’s instructions. The FastQC software
was used for quality check. The CellRanger software (version 3.1.0) was used for initial processing
of the sequencing data.

ScRNA-seq data alignment and sample aggregating

We de-multiple and barcode the sample by using The Cell Ranger Software Suite (Version 3.1.0) and
with command cellranger count. After getting each sample gene counts, and aggregate them together.
Finally, gene-barcode matrix of all ten patients and five HCs was integrated with Seurat v3 and
monocle3. Following criteria were then applied to each cell, i.e., gene number between 200 and 7000.
After filtering, a total of 128096 cells (13092/10035/13624/8329/12158 cells for HCs;
5163/7685/7171/10058/6581 cells for ERS; 3242/7895/7487/7164/8412 cells for LRS) were left for
following analysis.

Dimensionality reduction and clustering

We handle the data with Log normalize before cluster and reduction, scale data with top 5000 most
variable genes. Clustering and dimensionality method mainly used in monocle3 package. The genes
used in PCA analysis have eliminated mitochondria (MT), and ribosomes (RPL and RPS) genes
including MT-ND3, MT-ATP8, RPS15A, RPS28, RPS21, RPS27, RPS29, RPL36, RPL34, RPL37,
RPL38, RPL39, RPL26 and et.al. with 50 principal components, and then aligned together, followed
by UMAP and t-SNE are both used after the results of the aligned, parameters using the default
parameters inside Monocle3. The leiden method on the UMAP dimension is used.

Differential analysisfor clusters

Seurat v3 and Monocle 3 was used to perform differential analysis. For each cluster,
differentially-expressed genes (DEGs) were generated relative to all of the other cells.
Genefunctional annotation

For DEGs, Gene ontology (GO), KEGG pathway analyses were performed using M etascape webtool

(www.metascape.orq).
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TCR and BCR V(D)J sequencing and analysis

Full-length TCR/BCR V(D)J segments were enriched from amplified cDNA from 5’ libraries via
PCR amplification using a Chromium Single-Cell V(D)J Enrichment kit according to the
manufacturer’s protocol (10x Genomics). The TCR/BCR sequences for each single T/B cell were
assembled by Cell Ranger vdj pipeline (v3.1.0), leading to the identification of CDR3 sequence and
the rearranged TCR/BCR gene. Analysis was performed using Loupe V(D)J Browser v.2.0.1 (10x
Genomics). In brief, a TCR/BCR diversity metric, containing clonotype frequency and barcode
information, was obtained. Using barcode information, T/B cells with prevalent TCR/BCR
clonotypes were projected on at-SNE plot.

Cell-cdll interaction analysis

The cell-cell interaction analysis was based on the expression of immune-related receptors and
ligands. The gene list contained 135 pairs of well-annotated receptors and ligands, including
cytokines, chemokines and co-stimulators. We estimated the potential interaction between two cell
types mediated by a specific ligand-receptor pair by the product of the average expression levels of

the ligand in one cell type and the corresponding receptor in the other cell type.
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Figurelegends

Figure 1. Study design and analysis of singleimmune cell profilingin COVID-19 patients

A. Schematics of the experimental design for single-cell RNA (sc-RNA) sequencing. Peripheral blood mononuclear

cells (PBMCs) were collected from COV ID-19 patients and healthy controls (HCs) and then processed via sc-RNA,
sc-BCR, and sc-TCR sequencing using the 10X -Based Genomics platform.

B. The heatmaps show differentially expressed genes (DEGS) upregulated in myeloid cells, NKT cells, B cells, and
other clusters of PBMCs.

C. t-distributed stochastic neighbor embedding (t-SNE) plot showing myeloid cells (red), NKT cells (blue), B cells
(green), and other clusters (gray) of PBMCsidentified using integrated and classification analysis.

D. t-SNE projection of canonical markers, including CD14, CD1C, and FCGR3A for myeloid cells; CD3E, CD4,
CDB8A, and NCAM1 for NKT cells; and CD19 for B cells asindicated in the legend.

Figure2. An overview of NKT, B, and myeloid cellsin the blood of convalescent patients with COVID-19.

A. The t-SNE plot shows a comparison of the clustering distribution across HCs as well as early recovery stage
(ERS) and late recovery stage (LRS) patients with COVID-19.

B. The bar plot shows the relative contributions of myeloid, NKT, and B cells by individual samples, including five
HCs, five ERS patients, and five LRS patients.

C. The pie chart shows the percentages of myeloid, NKT, and B cells across HCs as well as ERS and L RS patients
with COVID-19.

D. The heatmaps show the DEGs of myeloid cells among the HCs and the ERS and LRS COVID-19 patients.

E. The heatmaps show the DEGs of NKT cells among the HCs and the ERS and LRS COVID-19 patients.

F. The heatmaps show the DEGs of B cells among the HCs and the ERS and LRS COVID-19 patients.

Figure 3. Myeloid cell subsets and their statesin the blood of convalescent patients with COVID-19.

A. Six clusters of myeloid cells were displayed according to marker gene expression levels. Uniform manifold
approximation and projection (UMAP) presentation of the heterogeneous clusters of peripheral myeloid cells.

B. The UAMP plot shows subtype-specific marker genes of myeloid cells, including CD14, FCGR3A, CD1C,
CLEC9A, CLECAC, and IL-185.

C. Bar chart of the relative frequencies of the six sub-clusters of myeloid cells and three sub-clusters of monocytes
acrossthe HCs and the ERS and L RS patients.

D. The heatmaps show the top DEGs between COVID-19 patients and HCsin CD14" monocytes.

E. Volcano plot of fold change between COVID-19 patients and HCsin CD14™ monocytes.

F. The UAMP plot shows that IL-1p was highly expressed in the ERS patients vs. the LRS patients and HCs in
myeloid cells.

G. GO BP enrichment analysis of the DEGs of CD 14" monocytes upregulated in COVID-19 patients.

Figure4. Characterization of T and NK cell responsesin the blood of recovered COVID-19 patients
A. Ten sub-clusters of NKT lymphocytes were identified. The UMAP plot shows the clustering of T and NK cells.
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B. UAMP plot showing subtype-specific marker genes of NKT cells including CD4, CD8A, NCAM1, CCRY,
GZMK, GNLY, MK167, FCGR3A, and IL-15.

C. The bar plot shows the percentages of four sub-clusters of NKT cells, four sub-clusters of CD4" T cells, and
three sub-clusters of CD4" T cells among the HCs and the ERS and L RS patients.

D. Heatmap of CD4" T cells showing the DEGs between the COVID-19 patients and HCs.

E. The volcano plot shows the DEGs of CD8" T cells between the COVID-19 patients and HCs.

F. GO BP enrichment analysis of the DEGs of CD4" T cells upregulated in the COVID-19 patients.

G. The pieplot showsthe TCR clone differences across the HCs and the ERS and LRS patients.

H. UAMP shows expanded TCR clones (n22) in the ERS and LRS patients.

I. The volcano plot shows the DEGs of CD8" CTLs between the COV1D-19 ERS group and HCs.

Figureb5. Characterization of single-cell B cellsin COVID-19 patients.

A. Four clusters of B cells were identified. The UMAP plot showsthe clustering of B cells.

B. UAMP plot showing subtype-specific marker genes of B cells, including MME, IL4R, CD38, CD27, MZB1, and
IGHAL.

C. The bar plot shows the percentages of B clusters across the HCs and the ERS and L RS patients.

D. The volcano plot shows the DEGs of MPB cells between the COVID-19 patients and HCs.

E. The violin plot shows that IL4R, MZB1, IGHG1, and IGHAL were highly expressed in COVID-19 patients vs.
the HCsin the B cell sub-clugters.

F. GO BP enrichment analysis of the DEGs of B cells between the COVID-19 patients vs. the HCs.

G. The bar plot shows the relative contributions of each cluster by individual sample.

H. The bar plot shows theratio of (IgA+IgG+IgE) to (IgD+IgM) among the HCs and the ERS and LRS patients.

Figure 6. Expanded BCR clonesand biased usage of VDJ genes observed in the COVID-19 patients

A. The UMAP plot shows the B cell expansion statusin the HCs and the ERS and LRS COVID-19 patients.

B. The bar plots show the clonal expansion status of B cellsin peripheral blood from each individual sample.

C. The bar plots show the percentages of maximum clones of B cells in the periphera blood of the HCs and the
ERS and LRS COVID-19 patients.

D. The volcano plot shows the DEGs of expanded vs. non-expanded B cellsin ERS and L RS patients.

E. The bar plots show specific IGHV, IGKV, IGLV usage in the HCs and the ERS and LRS COVID-19 patients.

F. Heat map showing IGH rearrangements in peripheral blood samples from ERS group.

Figure 7. Cell-to-cell communication among immune cellsin the COVID-19 patients

A. T cell-monocyte interactions, B cell-monocyte interactions, B cell-T cell interactions, and monocyte-T cell
interactionsin the ERS COVID-19 patients.

B. DC-T cell interactions, DC-B cell interactions, and T cell-B cell interactions in the LRS COVID-19 patients.
C-D. Schematicsillustrating the key innate and adaptive immune cdll functional alterations and main differencesin
cell-cell communicationsin the ERS and LRS COVID-19 patients.

Supplementary figure 1. the detail information of patients (1A) and healthy controls (1B).

Supplementary figure 2. tSNE plot showing the myeloid cells (red), NK& T cells (blue), B cells (green) and other
clusters (grey) of PBMCs of each research object.

Supplementary figure 3. Analysis myeloid cells subsets landscape in COVID-19 patients. The heatmap of DCs
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showing the DEGs between COVID-19 patients and HCs (3A). The volcano plot shows the DEGs of DCs between
COVID-19 patients and HCs (3B). The violin plot shows the JUNB, FOS, S100A8, ISG15, IRF1, IFI16, CXCR4, IL1

B, CD83 were highly expressed in COV ID-19 patients vs HCs in myeloid cells (3C).

Supplementary figure 4. Analysis NK&T subsets landscape in COVID-19 patients. The UAMP plot showing
subtype-specific marker genes of NK& T cellsincluding KLRF1, KLRC1, PRF1, CCL5, TCF7, LEF1, CD69, CD27,
CTLA4, CCR6, GZMB and TYMS (4A). GO BP enrichment analysis of the DEGs of CD8" CTLs between the
COVID-19 patients vs. the HCs. (4B). The volcano plot shows the DEGs of ERS COVID-19 patients vs. HCs in
proliferating T cells (4C). The violin plot shows the IRF1, STAT3, MKI67, 1SG15, IFI6 and IFNG were highly
expressed in ERS COVID-19 patientsvs HCsin T & NK sub-clusters (4.4).

Supplementary figure 5. Analysis B cell subsets landscape in COVID-19 patients. The UAMP plot showing
subtype-specific marker genes of B cellsincluding TCL1A, IGHM, IGHG1, XBP1, IGHD and M$4A1 (5A). The
heatmap of ASCs showing the DEGs between COVID-19 patients and HCs (5B). The volcano plot shows the
DEGs of COVID-19 patients vs. HCs in plasma B cells (5C). Heat map showing TRA and TRB rearrangementsin
peripheral blood samples from ERS group (5D). Heat map showing IGH rearrangements in peripheral blood
samples from ERS-4 sample (5E). Heat map showing IGH rearrangementsin peripheral blood samples from ERS-5
sample (5F).
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