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Abstract

The first cases of COVID-19 in France were detected on January 24, 2020. The number

of screening tests carried out and the methodology used to target the patients tested do not
allow for a direct computation of the actual number of cases and the mortality rate. In this
note, we develop a 'mechanistic-statistical’ approach coupling a SIR ODE model describing
the unobserved epidemiological dynamics, a probabilistic model describing the data acquisition
process and a statistical inference method. The objective of this model is not to make forecasts
but to estimate the actual number of people infected with COVID-19 during the observation
window in France and to deduce the mortality rate associated with the epidemic.
Main results. The actual number of infected cases in France is probably much higher than the
observations: we find here a factor x15 (95%-CI: 4 — 33), which leads to a 5.2/1000 mortality
rate (95%-CI: 1.5/1000 — 11.7/1000) at the end of the observation period. We find a Ry of 4.8,
a high value which may be linked to the long viral shedding period of 20 days.

Introduction. The COVID-19 epidemic started in December 2019 in Hubei province, China.
Since then, the disease has spread around the world reaching the pandemic stage, according to
the WHO, on March 11. The first cases were detected in South Korea on January 19, 2020, and
in France on January 24. The number of screening tests carried out varies widely from country
to country (36,747 in France vs 268,212 in South Korea up to March 15, 2020; Sources: Santé
Publique France and Korean Center for Disease Control) and does not make possible to know with
certainty the actual number of infected people in the population. Thus, even if the number of
deaths linked to COVID-19 is known with more certainty, ignoring the total number of patients
does not allow a direct calculation of the mortality rate. Using the data available in France and
South Korea, our objectives are:

to estimate the number of people infected with COVID-19 in France;

- to deduce from this number the associated mortality rate;

to calculate the parameters of a SIR-type model representing the early phase of the outbreak
in France;

- to compare the results obtained for France and South Korea.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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In this aim, we carried out an analysis grounded on a mechanistic-statistical formalism. This
formalism allows the analyst to couple a mechanistic model, here an ordinary differential equation
model (ODE) of the SIR type, and uncertain, non-exhaustive and not necessarily commensurable
data with the solutions of the ODE. This formalism, which we have popularized by applying it
to biological invasions (Roques et al., 2011; Roques and Bonnefon, 2016; Abboud et al., 2019),
combines (1) the mechanistic model, (2) a probabilistic model describing the data collection process
conditional on the solution of the mechanistic model and (3) a statistical method for estimating the
parameters of the mechanistic model.

Data. The COVID-19 screening data in France and South Korea used for preparing this note are
those available from January 22, 2020 to March 17, 2020. These data describe the number of positive
cases and deaths, day by day (source: Johns Hopkins University Center for Systems Science and
Engineering, https://github.com/ CSSEGISandData/COVID-19). The number of tests carried out
is only available from February 22 (Sources: Santé publique France and Korean Center for Disease
Control). As some data (positive cases, deaths) are not fully reliable (example: 0 new cases detected
in France on March 12, 2020), we smoothed the data with a moving average over 5 days.

Mechanistic model. SIR models are the most standard ODE-based epidemiological models.
These models are compartmental: they divide the population into subclasses: the susceptibles
(S), the infected (I) and the recovered (R, immune individuals in our case). The simplest SIR
compartmental model does not take into account the demography of the S compartment:
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with N = S + I + R the total population, which is constant. The impact of the compartment
D (number of dead people) on the dynamics of the SIR system is therefore neglected here. The
compartment D satisfies:

D'(t) =A(t) L. (2)

We use this equation later to compute the death rate due to the disease. The initial conditions are
S(tg) = N — 1, I(tp) = 1 and R(tg) = 0, where N corresponds to the population size in France or
South Korea (67-10° and 52-10° people). The SIR model is started at ¢ = to, which should approach
the date of introduction of the virus in the considered country (this point is shortly discussed at
the end of this note).

Note that I'(t) = 81 (Ro S/N — 1), with Ry = /3 the basic reproduction rate (Murray, 2002).
When Rg < 1, we observe that I’ < 0, and so the epidemic cannot spread in the population. When
Ry > 1, the infected compartment I increases as long as Rg S > N =5+ 1+ R.

The system (1) can be analytically solved, using a change of time variable which requires a
numerical integration. Here, we rather solve the ODE system thanks to a standard numerical
algorithm, using Matlab® ode23s solver.
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Observation model. We denote by 5, the number of cases tested positive on day t. We suppose
that these increments follow independent binomial laws, conditionally on the number of tests, on
I(t) and on S(¢):

0t ~ Bi(ng, py), (3)

where n; corresponds to the number of tests carried out on day ¢ and p; the probability of being
tested positive in this sample. The tested population consists of a fraction of the infecteds and a
fraction of the susceptibles: ny = 71(t) I(t) + 72(¢) S(¢). Thus,
B m1(t) I(2) _ I(t)
T HOIO SO 10 + ke SO

with x := 7(t)/71(t), the relative probability of undergoing a screening test for an individual of
type S vs an individual of type I (probability of being tested conditionally on being S / probability
of being tested conditionally on being I). We assume that the ratio x does not depend on ¢ at
the beginning of the epidemic (i.e., over the period that we use to estimate the parameters of the
model). The daily number of deaths caused by the virus is assumed to be known exactly.

In order to compute the maximum likelihood estimator (the MLE, i.e., the parameters that
maximize £), we use the BFGS constrained minimization method, applied to —In(£), via the
Matlab ® function fmincon. In order to find a global maximum of £, we apply this method starting
from random initial values for a,tg, k drawn uniformly in the following intervals:

ae(0,1),
to € (1,30), (January 1st - January 30th) (4)
k€ (0,1).

For each country, the minimization algorithm is applied to 2000 random initial values of the pa-
rameters.

The posterior distribution of the parameters («, t, k) is computed with a Bayesian method, using
uniform prior distributions in the intervals given by (4). This posterior distribution corresponds to
the distribution of the parameters conditionally on the observations:

ﬁ(aa th ﬂ) 7'('(04, to, H)
C K

where 7(a, tg, k) corresponds to the prior distribution of the parameters (therefore uniform) and
C is a normalization constant independent of the parameters. The numerical computation of the
posterior distribution (which is only carried out for French data) is performed with a Metropolis-
Hastings (MCMC) algorithm, using 5 independent chains, each of which with 10 iterations, starting
from random values close to the MLE.

Unless otherwise mentioned, the data 5 used to compute the MLE and the posterior distribution
are those corresponding to the period from February 29 to March 17.

P(a, to, 5|{0:}) =

Results. Model fit. We denote (a*, ¢, x*) the maximum likelihood estimator (MLE), and I*(t),
S*(t) the solutions of the system (1) associated with these values. In France, we get (a*, tf, k*) =
(0.24,26,2 - 10~%). The expectation of the observations associated with this MLE is n; p; (expec-
tation of a binomial) with
) I"(t)
Py = 7N L ox aeln
I*(t) + k* S*(t)
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Figure 1: Expected number of observed cases associated with the MLE vs number of
cases actually detected (total cases). The red curve corresponds to the expectation n; p}, the
blue crosses to the data (cumulated values of &) The computation of the MLE is based on data
from February 29 to March 17.

Fig. 1 compares this expectation with observations. In France, we get a good match between n; p}
and the data. In South Korea, on the other hand, the gap between the data and the model prediction
is significant: the SIR model, which leads to an exponential trajectory of I at the beginning of the
epidemic, cannot properly render the dynamics. Using data obtained at an earlier stage in South
Korea, the model fit is better for the initial outbreak phase (Fig. 2). The corresponding MLE is:
(a*,ts, k%) = (0.13,3,3 - 1077).

Parameter distribution. The joint posterior distributions of the three pairs of parameters («, k),
(to, ) and (to, k) for France are presented in Appendix A (Fig. 6). Note that the distributions are
very different from the uniform prior distribution. However, the distributions of ¢, and k are quite
dispersed. The joint distribution of (¢, k), presented in Appendix A shows a correlation between
to and k. Based on this distribution, in order to reduce the uncertainty on k, we assume that ¢y is
between January 13 and 30.
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(a) South Korea

Figure 2: Expected number of observed cases associated with the MLE vs number of
cases actually detected (total cases) in South Korea. The red curve corresponds to the
expectation ng p}, the blue crosses to the data (cumulated values of 5,5) The computation of the
MLE is based on data from February 18 to March 4.

Fig. 3 depicts the marginal posterior distribution of the basic reproduction rate Ry. The value
of Ry corresponding to the MLE in France is R = o*/8 = 4.8. A similar computation in South
Korea, based on the data used in Fig. 2 gives R = 2.6.

Actual number of infected cases. Using the posterior distribution of the model parameters, with
the constraint that t( is between January 13 and 30, we can compute the daily distribution of the
actual number of infected peoples. This distribution is represented across time in Fig. 4. We deduce
the following ratios between the actual number of infected people and the observations, I(t)/ b,
(with %26, the sum of the observed infected cases at time t). Thus, in France, the estimated ratio
between the actual number of infected and observed cases is 15 (95%-CI: 4-33).
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Figure 3: Posterior distribution of the basic reproduction rate Rj in France.
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Figure 4: Distribution of the actual number of infected cases in France across time.
Solid line: average value obtained from the posterior distribution of the parameters. Dotted curves:
0.025 and 0.975 pointwise posterior quantiles.
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Figure 5: Dynamics of the mortality rate in France. Solid line: average value obtained from
the posterior distribution of the parameters. Dotted curves: 0.025 and 0.975 pointwise quantiles.

Actual mortality rate. The mortality rate corresponds to the fraction of the infected who die, that
is v(t)/(v(t) + B). The term 7(t) is computed using the formula (2) and the mortality data. We
thus obtain, on March 17, a mortality rate in France of 5.2/1000 (95%-CI: 1.5/1000 — 11.7/1000).
The temporal dynamics of the mortality rate are depicted in Fig. 5.

Discussion. On the number of infecteds and the mortality rate. The actual number of infected
individuals in France is probably much higher than the observations (we find here a factor x15),
which leads at a lower mortality rate than that calculated on the basis of the observed cases.
However, if the virus led to contaminate 80% of the French population (Ferguson et al., 2020),
the total number of deaths to deplore in the absence of variation in the mortality rate (increase
induced for example by the saturation of hospital structures, or decrease linked to better patient
care) would be 277,000 (95%-CI : 81,000 — 629,000)). This estimate could be corroborated or


https://doi.org/10.1101/2020.03.22.20040915
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.03.22.20040915; this version posted March 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

invalidated when 80% of the population will be infected, eventually over several years, assuming that
an infected individual is definitively immunized. It has to be noted that measures of confinement
or social distancing can decrease both the percentage of infected individuals in the population and
the degree of saturation of hospital structures.

On the differences between France and South Korea. The mechanistic-statistical SIR model achieves
a satisfactory goodness-of-fit for French data, but does not capture the decline in the number of
cases observed in South Korea. Grounding the analysis of the South Korean situation on the first
phase of the epidemic improves the goodness-of-fit and yields an estimated Ry twice as low as the
French Ry, resulting on a slower epidemic dynamic. The difference between the dynamics predicted
by the SIR model and the South Korean data is probably linked to a different management of the
epidemic in Korea, having a strong impact on the epidemic dynamics (more important screening,
tracing, social distancing in South Korea).

On the value of Ry. The value of Ry obtained in South Korea is consistent with recent estimates for
COVID-19 (2.0,2.6); see Ferguson et al. (2020). The estimated distribution in France is therefore
surprisingly high. This difference could be due to a different definition of Ry depending on the type
of model used to calculate it. A direct estimate, by a non-mechanistic method, of the parameters
(p, to) of a model of the form 8, = e? (t=%0) gives ty = 30 (January 30) and p = 0.19. With the SIR
model, I'(t) ~ I (o — ) for small times (S ~ N), which leads to a growth rate equal to p =~ a — 3,
and a value of a &~ 0.24, that is to say Rg = 4.8, which is consistent with the distribution presented
in Fig. 3. Note that 8 = 1/20 corresponds to the median period of viral shedding of 20 days
described by Zhou et al. (2020). A shorter period would lead to a lower value of Ry.

On the uncertainty linked to the data. The uncertainty on the actual number of infected and
therefore the mortality rate are very high. We must therefore interpret with caution the inferences
that can be made based on the data we currently have in France. In addition, we do not draw
forecasts here: the future dynamics will be strongly influenced by the containment measures that
will be taken and should be modeled accordingly.

On the hypotheses underlying the model. The data used here contain a limited amount of infor-
mation, especially since the observation period considered is short and corresponds to the initial
phase of the epidemic dynamics, which can be strongly influenced by discrete events. This limit
led us to use a particularly parsimonious model in order to avoid problems of identifiability for the
parameters. The assumptions underlying the model are therefore relatively simple and the results
must be interpreted with regard to these assumptions. For instance, the date of the introduction tg
must be seen as an efficient date of introduction for a dynamics where a single introduction would
be decisive for the outbreak and the other (anterior and posterior) introductions would have an
insignificant effect on the dynamics.
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Appendix A: joint posterior distributions. The joint posterior distributions of the three
pairs of parameters (o, k), (to, @) and (tg, k) are depicted in Fig. 6.
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Figure 6: Joint posterior distributions of (a, k), (t9,«) and (¢, ) in France.
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The computation of the MLEs were based

on a BFGS minimization algorithm, applied to —In(L£), using Matlab ® fmincon function, starting
from 2000 randomly drawn initial guesses for the parameters. This led to 2000 values of (a*, 5, £*).
We only retained the value leading to the highest likelihood. The other values are depicted in Fig. 7.
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Figure 7: Maximum likelihood estimators computed from 2000 randomly drawn initial guesses

in the intervals (4), and using the French data.
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