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Abstract 11 

Background 12 
Since the outbreak of the COVID-19 pandemic, multiple efforts of modelling of the geo-13 
temporal transmissibility of the virus have been undertaken, but none describes the pandemic 14 
spread at the global level. The aim of this research is to provide a high-resolution global model 15 
of the pandemic that overcomes the problem of biased country-level data on the number of 16 
infected cases. To achieve this we propose a novel SIR-type metapopulation transmission model 17 
and a set of analytically derived model parameters. We used them to perform a simulation of the 18 
disease spread with help of the Global Epidemic and Mobility (GLEAM) framework embedding 19 
actual population densities, commute patterns and long-range travel networks. The simulation 20 
starts on Nov 17th, 2019 with just a single pre-symptomatic, yet infectious, case in Wuhan, 21 
China, and results in an accurate prediction of the number of diagnosed cases after 154 days in 22 
multiple countries across five continents. In addition, the model outcome shows high compliance 23 
with the results of a random screening test conducted on pregnant women in the New York area. 24 

Methods 25 
We have built a modified SIR metapopulation transmission model and parameterized it 26 
analytically either by setting the values of the parameters based on the literature, or by assuming 27 
their plausible values. We compared our results with the number of diagnosed cases in twenty 28 
selected countries which provide reliable statistics but differ substantially in terms of strength 29 
and speed of undertaken Non-Drug Interventions. The obtained 95% confidence intervals for the 30 
predictions are in agreement with the empirical data. 31 

Results 32 
The parameters that successfully model the pandemic are: the basic reproduction number R0, 4.4; 33 
a latent non-infectious period of 1.1. days followed by 4.6 days of the presymptomatic infectious 34 
period; the probability of developing severe symptoms, 0.01; the probability of being diagnosed 35 
when presenting severe symptoms of 0.6; the probability of diagnosis for cases with mild 36 
symptoms or asymptomatic, 0.001.  37 
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Discussion 38 
Parameters that successfully reproduce the observed number of cases indicate that both R0 and 39 
the prevalence of the virus might be underestimated. This is in concordance with the newest 40 
research on undocumented COVID-19 cases. Consequently, the actual mortality rate is 41 
putatively lower than estimated. Confirmation of the pandemic characteristic by further 42 
refinement of the model and screening tests is crucial for developing an effective strategy for the 43 
global epidemiological crisis. 44 

Introduction 45 

As of April 23rd, 2020, novel coronavirus SARS-CoV-2 has already spread into 185 countries 46 
and territories around the world (Dong, Du & Gardner, 2020). With over two and half a million 47 
confirmed infections and over 180 thousand deaths (Dong, Du & Gardner, 2020), it became a 48 
global challenge. COVID-19, the disease caused by this coronavirus, was characterised as a 49 
pandemic by WHO on March 11th, 2020. 50 
While several different measures to contain the virus have been implemented by countries all 51 
over the world, their effectiveness remains to be seen. Until an effective treatment is available, 52 
the accuracy of the pandemic models and the decisions made on their basis are the major factors 53 
in reducing the overall mortality in the COVID-19 pandemic. 54 
The models used to inform decision-makers differ significantly in their basic assumptions 55 
because it is the first coronavirus of such an impact in terms of the number of fatal cases. 56 
Moreover, the existing modelling approaches often use biased data for tuning parameters or 57 
assessing models’ quality. In particular, most models use country-level data which is biased by 58 
one or many of the following factors: (i) level of transparency in acquiring, analysing, 59 
interpreting and reporting of data, (ii) level of detection effort, (iii) efficiency of introduced Non-60 
Drug Interventions, (iv) biased sampling of people to be tested (individuals showing severe and 61 
typical symptoms or suspected of having a contact with an infected person are more likely to be 62 
tested). The bias in data could be avoided by conducting well designed, random screening tests, 63 
but so far just a few such attempts have been made and they were limited to small and isolated 64 
communities in Italy (Lavezzo et al., 2020), and Germany (Streeck et al., 2020), or women 65 
admitted for delivery (Sutton et al., 2020). 66 
Also, as of the date of submitting this work, there were no peer-reviewed geo-temporal models 67 
of the pandemic. We argue that creating a global model by fitting curves to observed data is 68 
impossible, unless the data used in this exercise is a result of large scale screening tests. As 69 
mentioned above, country-level data is biased and the nature of this bias is different for each 70 
country, mainly reflecting state policy towards the disease. Obviously, fitting model curves on 71 
global data bears a significant error, as this data is a mixture of all country-level biases. 72 
Even the proper characteristic of the virus is hampered by the above-mentioned biases. For 73 
instance, early estimates of the basic reproduction number of the virus, R0, were typically 74 
obtained using only Chinese data on the number of diagnosed cases (Zhang et al., 2020; Wu, 75 
Leung & Leung, 2020; Liu et al., 2020). These estimates proposed the value of R0 within the 76 
range 1.5-6.47, and the earliest most likely served as the basis for the January’s official WHO 77 
estimate, which stated R0=1.4-2.5 (“Statement on the meeting of the International Health 78 
Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus 2019 (n-79 
CoV) on 23 January 2020”). However, re-analysis of Chinese data provided an updated estimate 80 
of 5.7 (95% CI 3.8-8.9) (Steven Sanche et al., 2020). 81 
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Similar problems arise when estimating the actual prevalence of the virus. In this case, the 82 
estimates are not only biased by the state policy, but also by the fact that many infections are 83 
mild, asymptomatic or with atypical symptoms. In fact, many COVID-19 cases pass unnoticed, 84 
for instance in Li’s and coworkers China study, over 50% (Li et al., 2020a). 85 
The main objective of this research is to create a global model of the early stages of the 86 
pandemic that would overcome the problem of the biased data on the number of infected cases. 87 
This goal was achieved by creating a first global model of the COVID-19 pandemic that builds 88 
on top of the successful modelling framework GLEAM (Van den Broeck et al., 2011). In 89 
contrast to many existing models, our attempt did not use biased country-level data on the 90 
number of infected cases to fit the model curve. Instead, it used a set of predefined parameters to 91 
simulate the spread of the disease around the world starting from a single infected host in 92 
Wuhan, China on Nov 17th, 2019. The exact date was suggested by unverified press reports and 93 
used widely as a date of a disease contraction for “patient zero”, but evolutionary tracing also 94 
suggests a similar timepoint (Li et al., 2020b). The simulation took into account the current 95 
population densities all over the world, actual commute and flight networks, and travel ability of 96 
infected individuals. The simulation was run with 20 iterations for 154 days till Apr 19th, 2020. 97 
The obtained results were used to create 95% confidence intervals for curves of cumulative 98 
number of diagnosed cases, separately for each country in the world. 99 
To assess the quality of our model, its results should be compared to the observed data on the 100 
number of diagnosed cases, but this data suffers from four biases, listed above. These biases 101 
cannot be totally eliminated, but careful selection of countries used in the analysis may reduce 102 
their impact significantly. In particular, we limited the analysis of model results to twenty 103 
countries which to our belief provide the most accurate and transparent reports on the number of 104 
infected cases (reducing bias nr 1). Selected countries are also divergent in terms of their 105 
detection efforts illustrated by the number of conducted tests per capita (reducing bias nr 2). 106 
Additionally, our model depicts the early stages of the pandemic when Non-Drug Interventions 107 
were not yet introduced on a large scale in the selected countries, and if they were, the exact time 108 
of intervention was added to the final diagrams to show its impact on the number of diagnosed 109 
cases (reducing bias nr 3). Furthermore, the proportion of symptomatic versus mild and 110 
asymptomatic cases is built in the model, so is the fact that symptomatic individuals are more 111 
likely to be tested (reducing bias nr 4). Finally, the detectability of the disease is also built in the 112 
model. This means that the presented confidence intervals depict the plausible range of 113 
diagnosed cases assuming a given detectability, not the actual number of infected individuals in 114 
the country. However, the latter may easily be assessed knowing the assumed detectability, or 115 
derived from the model file provided with this paper. 116 
The presented model enables better understanding of the virus, its infectivity and detectability. 117 
Also, it may serve as a solid foundation for further attempts of global and country-level 118 
modelling. In particular, more detailed models that include information on introduced 119 
precautions may be created by making the detectability parameter variable in time and 120 
geographics. This would enable an optimal pandemic strategy to be established for each country. 121 
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Materials & Methods 122 

Modelling software 123 
The model is based on the Global Epidemic and Mobility Model (GLEAM) framework (Balcan 124 
et al., 2010), implemented in the GLEAMviz software (Van den Broeck et al., 2011). The 125 
GLEAM model integrates sociodemographic and population mobility data in a spatially 126 
structured stochastic disease approach to simulate the spread of epidemics at a worldwide scale. 127 
It was previously used for a real-time numerical forecast of the global spreading of Influenza 128 
A/H1N1 (Tizzoni et al., 2012), and the accuracy of that modelling was later confirmed (Tizzoni 129 
et al., 2012). 130 

Data sources 131 
The reference data about the number of SARS-CoV-2 diagnosed patients in the period from Jan 132 
22, 2020, to Apr 19th, 2020, were downloaded from the Johns Hopkins University of Medicine 133 
Coronavirus Resource Center GitHub repository https://github.com/CSSEGISandData/COVID-134 
19. The provided data have been grouped by country. These data sources were used to assess the 135 
quality of the model results. Empirical data for the time preceding Jan 22nd, 2020 is not available 136 
in the cited source. 137 
Information about the severity of developed symptoms was derived from the worldometer.info 138 
website https://www.worldometers.info/coronavirus/. 139 
Information on testing efforts in selected countries, comes from the 140 
https://ourworldindata.org/coronavirus-testing-source-data website. 141 
Approximation of the number of mild and asymptomatic cases in the New York area was derived 142 
from the results of a random screening test performed on women admitted for delivery at the 143 
New York–Presbyterian Allen Hospital and Columbia University Irving Medical Center (Sutton 144 
et al., 2020). 145 
Information on introduced Non-Drug Interventions comes from publicly available sources. 146 
Other data sources, such as subpopulation selection, commuting patterns, or air travel flows, 147 
used during simulation, are embedded in the GLEAM software and well described by its 148 
developers (Van den Broeck et al., 2011). 149 

Model parametrization 150 
Below and in Table 1, we present a set of parameters that was used in the model. Most 151 
parameters were derived from the literature. In the absence of a reliable reference, the parameters 152 
were assigned with the most plausible values by the authors based on the epidemiological 153 
knowledge on SARS-CoV-2 and other viruses. The parameters’ derivation method is 154 
summarized in Table 1. 155 
The average latency period (lp) of 5.6 days is a consensus of different estimations calculated 156 
previously (Lauer et al., 2020). Due to 1) long lp, effectively much longer than reported for other 157 
coronaviruses, and 2) known cases of presymptomatic transmission (Woelfel et al., 2020; Tong 158 
et al., 2020), for the modelling purposes we decided to split the latency period into two parts: 1) 159 
average latent non-infectious period (lnip) of 1.1 days (based on the time of infectivity for other 160 
viruses (Wallinga & Teunis, 2004)), and 2) average presymptomatic infectious period (pip) of 161 
4.5 days. This split produces two parameters used in the model:  162 
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1) latency rate for the non-infectious period - non-infectious epsilon (niε): 163 
𝑛𝑖𝜀	 = 	1/𝑙𝑛𝑖𝑝, 164 

and 165 
2) latency rate for the infectious period - latency rate infectious epsilon (iε): 166 

𝑖𝜀	 = 	1/(𝑙𝑝 − 𝑙𝑛𝑖𝑝). 167 
As the Republic of Korea provided high quality, reliable data and conducted a large number of 168 
tests during the pandemic, we decided to use Korean proportion of “severe” to diagnosed cases 169 
as a base for the probability of developing the severe condition (pS), and we set it to 0.01. We 170 
assumed that patients with mild symptoms, in contrast to those in severe condition, are still 171 
capable of travelling. For model simplicity, we decided to merge into one compartment all mild 172 
and asymptomatic cases.  173 
 174 
We decided to set the probability of detection of severe infection (pDS) to 0.6, in order to mimic 175 
two obstacles, typically preventing proper accurate diagnosis. Firstly, the majority of patients 176 
with a severe course of the disease are either chronically ill or above 60 (Zhou et al., 2020) - 177 
their symptoms might be mistaken with those caused by their general health condition, and thus 178 
not reported on time. Secondly, the model is supposed to reflect the average illness detection 179 
around the globe, which includes many countries with low quality or underfinanced healthcare, 180 
where the number of SARS-CoV-2 tests is very limited. 181 
 182 
Another parameter of the model, pDM is the probability of being diagnosed with COVID-19 183 
when having either mild symptoms or an asymptomatic illness course. This parameter depends 184 
on previously defined pS and pDS, as well as the ratio of total diagnosed to undiagnosed cases 185 
(tDR): 186 

𝑝𝐷𝑀	 = (𝑡𝐷𝑅 − 𝑝𝑆 ∗ 𝑝𝐷𝑆) 	÷	(1 − 𝑝𝑆). 187 
Knowing the limitations of previous modelling attempts (Cowling et al.; Ganyani et al., 2020; 188 
Zhang et al., 2020; Chen et al., 2020; Wu, Leung & Leung, 2020; Lin et al., 2020; Kucharski et 189 
al., 2020), we decided to test a radically different COVID-19 epidemiologic paradigm, i.e. a 190 
significantly lower tDR. It means that in our model, we assume a higher proportion of undetected 191 
cases in comparison to other models proposed so far. Taking into account that none of them was 192 
capable of providing a plausible global simulation of the pandemic, plus the fact that the 193 
potentially low detectability has already been discussed in the literature (Nishiura et al., 2020; Li 194 
et al., 2020a; Day, 2020a,b; Kimball et al., 2020), we decided to test such a possibility in 195 
simulation by setting the lowest possible tDR. Its relation to pDM sets its minimum to: 196 

𝑡𝐷𝑅	 > 	𝑝𝑆 ∗ 𝑝𝐷𝑆. 197 
For previously set pS and pDS values, tDR must be greater than 0.006, thus the value used in our 198 
simulation was set to 0.0061. This value means that for 10,000 of COVID-19 cases only 61 are 199 
positively diagnosed. The justification for such a strong assumption is based on the following:  200 
(i) tDR reflects the average global detectability of the virus, including countries of low quality of 201 
public healthcare; (ii) tDR reflects the average detectability of the virus during the entire 202 
examined period of 154 days that describes early stages of the pandemic; (iii) the percentage of 203 
asymptomatic or atypical cases is currently unknown, but small-scale screening tests conducted 204 
so far indicate that even 88% of examined diagnosed cases could be asymptomatic (Sutton et al., 205 
2020); and (iv) some of the currently used tests might be faulty e.g. when viral load is small (Pan 206 
et al., 2020). 207 
 208 
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Other important and interconnected parameters required by the model are as follows: the 209 
effective contact rate, β; its reduction level for patients who developed severe symptoms of the 210 
disease but were not diagnosed, rβ; and average recovery time since symptoms development μ. 211 
The parameter β is derived from the time a host remains infectious, d, and the basic reproduction 212 
number of the virus, R0: 213 

𝛽 = 𝑅! ÷ 𝑑 , 214 
where: 215 

𝑑 = 𝜇 + 𝑝𝑖𝑝. 216 
The estimation of R0 is a topic widely discussed in the literature, with values ranging from 1.4 to 217 
6.49 (“Statement on the second meeting of the International Health Regulations (2005) 218 
Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV)”; Majumder & 219 
Mandl; Zhao et al.; Imai et al., 2020; Read et al., 2020; Liu et al., 2020). However, following the 220 
assumption of much higher than the currently suspected ratio of undiagnosed cases, we decided 221 
to use in our model a higher rate of transmissibility, yet well within the range of 2-5, modelled 222 
for SARS (Wallinga & Teunis, 2004). The R0 value assumed in our model is 4.4. 223 
In our study μ is derived from a safe quarantine period for diagnosed cases (Woelfel et al., 2020). 224 
As the safe quarantine time is estimated to be 10 days (Woelfel et al., 2020), we assumed μ to 225 
last on average for 7 days from symptoms development to recovery. The sum of μ and 226 
previously estimated pip (presymptomatic infectious period) results in d equal to 11.5 days, and 227 
β equal to 0.38261.  228 
We decided to set rβ to 0.5, following the assumption for this parameter used in GLEAM 229 
modelling of the 2009 influenza outbreak (Balcan et al., 2010). Patients who were diagnosed 230 
with COVID-19 are assumed isolated and as such, not spreading the disease any further. 231 

Model compartmentalization 232 
To model the virus spread, we modified the compartmental SIR metapopulation transmission 233 
model to represent the nature of the COVID-19 epidemic. 234 
In our model, we used seven different compartments (Figure 1).  235 

1. Susceptible population - equal to the general global population. We assume no existing 236 
immunity to infection.  237 

2. Latent non-infectious - infected population in the first incubation stage, not yet infectious. 238 
3. Presymptomatic infectious - infected population already infectious, but without 239 

developed symptoms. 240 
4. Mild symptoms - joint populations of asymptomatic cases and those with inconspicuous 241 

symptoms. 242 
5. Severe symptoms - population infected by SARS-CoV-2 with symptoms affecting their 243 

travel ability. 244 
6. Diagnosed - population identified as infected with the SARS-CoV-2 virus. This is the 245 

reference line for the model accuracy. 246 
7. Recovered - joint populations of recovered and fatal cases. We assumed recovered 247 

individuals cannot be reinfected, although the only evidence so far is for rhesus macaques 248 
(Ota, 2020) and WHO is still investigating the issue . 249 

 250 
The last step was necessary to avoid the problem of unknown mortality rate of the virus. It 251 
should be noted that the currently reported mortality rate only applies to diagnosed cases (CFR, 252 
case fatality ratio), and its value still lacks consensus varying from 0.9%-2.1% (Wu et al., 2020). 253 
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The true mortality rate (IFR, infected fatality ratio) that takes into account all undiagnosed cases 254 
is likely to be much smaller. For China for instance, it has been estimated at 0.66% (Verity et al., 255 
2020). However, even if we assume that we currently detect all COVID-19 cases, it should not 256 
exceed 3.4% (WHO estimation) and this already is negligible from the perspective of our model 257 
(I.e. artificial increasing of the number of recovered, and thus immune individuals by this 258 
amount should not affect the model's final outcome much). 259 

Model running 260 
The prepared model served as an input for 20 runs of GLEAM stochastic simulations. The 261 
GLEAM framework uses high-resolution worldwide population data, allowing for the definition 262 
of subpopulations according to a Voronoi decomposition of the world surface centered on the 263 
locations of International Air Transport Association (IATA)-indexed airports (www.iata.org). 264 
Short-range commuting networks for the defined subpopulations are constructed on the basis of 265 
data on the commuting patterns of 29 countries in five continents, generalized to a general 266 
gravity law for commuting flows, reproducing commuting patterns worldwide. 267 
The stochastic simulation of the pandemic was started on Nov 17th, 2019. Although this date is 268 
stated only in non-academic sources, other reports also indicate mid-November as the time of the 269 
pandemic outbreak (Li et al., 2020b). The simulation began with a single presymptomatic 270 
individual located in Wuhan, China, and the development of the pandemic spread was modelled 271 
for 154 days. 272 

Model results processing 273 
A single model run yields two sets of results. The first set is the median value and confidence 274 
intervals for the number of individuals per thousand which, at a given day, were moved to each 275 
of the compartments (presented in Figure 1). The second set is the median value and confidence 276 
intervals for a cumulative number of individuals per thousand, entering each of the 277 
compartments, until a given day. Both sets of results can be extracted with different resolutions - 278 
globally, by hemisphere, continent, country, or the tessellated area surrounding IATA-registered 279 
airports. 280 
For areas selected for detailed analyses of model results (i.e. twenty selected countries and the 281 
New York area), a cumulative number of transitions into a compartment of interest (i.e. 282 
“Diagnosed” and “Mild symptoms” respectively) was multiplied by the area population, and 283 
divided by thousand. The display of the model results was limited to the dates for which the 284 
experimentally derived data was available.  285 
In order to compare model results with the random screening test from the New York area 286 
(Sutton et al., 2020), it was necessary to calculate the average number of undiagnosed mild and 287 
asymptomatic cases in this region (cs) for the period covered by the experiment. The median and 288 
the lower and upper confidence limits of the number of individuals entering the “Mild 289 
symptoms” compartment at any day (n) of the simulation is provided by the GLEAM framework 290 
(𝒄𝒑#𝒎𝒏 , 𝒄𝒑#𝒍𝒏 , and 𝒄𝒑#𝒖𝒏 , respectively), while the number of individuals leaving the compartment   291 
(𝒄𝒑(𝒏 ) was estimated similarly as in the framework: 292 

𝑐)(* 	= 𝑐)* 	÷ 𝜇, 293 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2020. ; https://doi.org/10.1101/2020.03.21.20040444doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.21.20040444
http://creativecommons.org/licenses/by-nc/4.0/


where 𝑐)*stands for the average number of infected but not diagnosed asymptomatic or mild 294 
symptoms cases at day n. For each day (n) of the simulation, 𝒄𝒑𝒏 and its lower and upper 295 
confidence limits, 𝒄𝒑𝒍𝒏 and𝒄𝒑𝒖𝒏 , were calculated as: 296 

𝑐)* = 𝑐)*(+ + 𝑐)#,* − 𝑐)(*(+ , 297 
𝑐)-* = 𝑐)*(+ + 𝑐)#-* − 𝑐)(*(+ , 298 
𝑐).* = 𝑐)*(+ + 𝑐)#.* − 𝑐)(*(+. 299 

The lower and upper confidence limits for cs, respectively csl and csu, used for comparison with 300 
confidence interval derived from the screening test, were obtained as: 301 

𝑐/- = (∑+01*2+34 𝑐)-* )/(139 − 126) , and 302 
𝑐/. = (∑+01*2+34 𝑐).* )/(139 − 126), 303 

where n = 126 and n = 139 stand for simulation steps referring to Mar 22nd, 2020, and Apr 2nd, 304 
2020, respectively. 305 
The Excel workbook with performed calculations is provided as Supplementary Workbook 1. 306 

Results 307 

The simulation modelled the pandemic spread for 154 days. The results for all subpopulations 308 
around the globe are available in the shared model file (see the Data Sharing section below). 309 
As overall data on the pandemic dynamics around the globe is likely to be biased by regions, 310 
often considerable in size and population, for which official statistics might be inaccurate, we 311 
decided not to compare overall model results with global data. Instead, we limited the analysis of 312 
results to twenty countries across five continents which are, in our belief: a) divergent in the 313 
proportion of the tested population (as reported in https://ourworldindata.org/coronavirus-314 
testing-source-data), quality of healthcare, and strength of undertaken preventative measures; b) 315 
likely to provide the public with real data. We also compared the model outcome for the New 316 
York area subpopulation with the results obtained in a random screening test on women admitted 317 
for delivery (Sutton et al., 2020). 318 
The obtained 95% confidence intervals of predicted numbers of diagnosed patients were 319 
compared with empirical data from twenty countries. In Figure 2, we present a percentage 320 
difference over time between the number of reported confirmed cases and confidence interval 321 
limits for modelled predictions. Positive values state that the model overestimates the number of 322 
diagnosed cases; negative values indicate the underestimations of the model; for the observed 323 
numbers of diagnosed cases that are within the model’s CIs the percentage difference is equal to 324 
0. For most of the selected countries, the model predictions fit well to the observed data, 325 
especially in the early stages of the pandemic. 326 
Additionally, Figure 3 confronts the number of actual confirmed COVID-19 cases with 327 
confidence intervals for the modelled number of diagnosed cases in twenty selected countries 328 
from five continents for all 154 days of the simulation. Some countries present epidemic 329 
dynamics different from the model. However, the direction of these deviations may be explained 330 
by the measures overtaken by their governments, their societal response, or the number of tests 331 
carried per million of citizens. To show the possible influence of Non-Drug Interventions, we 332 
summarized them and marked the dates of their introduction in the country charts. Even though it 333 
is difficult to assess the effectiveness of precautions without detailed reports from the country in 334 
question, in some cases they seem to explain the observed discrepancies well. For instance the 335 
number of detected cases in Japan, Australia and New Zealand is much smaller than predicted by 336 
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the model, which might be the result of the ban on flights from China introduced at the beginning 337 
of February combined with a geographical isolation of these countries. In contrast, most 338 
European countries started introducing preventive actions in March and the potential effects are 339 
only slightly visible in the last days of simulation. Similarly, the lack of concordance between 340 
model and empirical data in the case of the Republic of Korea may also be caused by the 341 
introduced precautions. However, in this case the preventive actions were of a different nature 342 
and are not shown in the country chart. Namely, the Republic of Korea introduced what was 343 
considered one of the largest and best-organised epidemic control programs in the world, 344 
consisting of measures to screen and isolate any infected people, as well as track and quarantine 345 
those who contacted them (South Korean Ministry of Health and Welfare). 346 
Furthermore, the empirical data from the last day of the simulation, Apr 19th, 2020, was 347 
juxtaposed with the obtained confidence intervals in a single plot for all countries (Figure 4). In 348 
this plot the number of detected cases is presented as a percentage of the country population, in 349 
order to better show the width of the obtained confidence intervals in relation to the entire 350 
country population. From Figure 4 it is visible that model predictions are generally within the 351 
same order of magnitude as the observed data. So are the differences between upper and lower 352 
confidence limits. 353 
Finally, for the New York area and the time period between March 22nd, 2020 and April 2nd, 354 
2020, we compared the model outcome with the results of a random screening test conducted on 355 
women admitted for delivery (Sutton et al., 2020). The cited experimental study revealed that out 356 
of 214 women tested, 33 were positively diagnosed with COVID-19, of which 4 had mild 357 
symptoms and 29 were asymptomatic. Assuming pregnant women are representative of the 358 
entire population and omitting severe COVID-19 cases from calculations (given patients in late 359 
pregnancy showing severe symptoms would have been admitted to the hospital earlier), the 95% 360 
CI for the true population proportion of mild or asymptomatic cases in the New York area, 361 
averaged over the examined period, is 0.11 - 0.21. According to our model, in the same area and 362 
averaged over the same period, the 95% CI for this proportion is 0.19 - 0.23. Although the 363 
predicted CI is not fully enclosed by the CI of the experimental result, their large overlap 364 
suggests high quality and accuracy of the model, started 139 days earlier from a single case on 365 
the other side of the globe. 366 
Altogether, our 154-day long simulations of the pandemic seem to reflect the empirical data well. 367 
However, as is in the case of any model, this reflection is not perfect. The main reason for the 368 
discrepancies between model predictions and the reported number of COVID-19 cases is the fast 369 
governmental responses and early introduced precautions, which significantly influence the pace 370 
of the disease spread. Such preventive measures, for instance local flight bans, are not included 371 
in our simulations. In fact, the model depicts only the “natural” dynamics of the pandemic in the 372 
situation when governments do nothing to stop it. This means that in countries where overtaken 373 
actions were fast and effective, the model has a tendency to overestimate the number of detected 374 
cases.  375 
The second potential reason for the observed discrepancies between model results and empirical 376 
data is the increase of the virus detectability in countries where the proportion of tested 377 
individuals is larger, leading to higher tDR than the one assumed in our model. To check this 378 
hypothesis, we calculated 95% confidence intervals for the Spearman correlation coefficient 379 
between: a) the cumulative number of conducted tests per capita in a country, and b) the 380 
percentage difference between the cumulative number of detected cases and the lower or upper 381 
confidence limit of the CIs obtained in the model (i.e. if the model underestimates the number of 382 
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detected cases, its upper confidence limit is used in calculations, and vice versa; if the observed 383 
data is within the predictions of the model, the difference is zero). The correlations’ CIs were 384 
calculated separately for each day of the simulation, if only sufficient data on countries’ testing 385 
effort were available in the datasource. Missing data on the number of carried tests were 386 
interpolated if possible. As some countries started testing earlier than others, the number of 387 
datapoints for correlations varies from 4 to 18, depending on the date. The obtained CIs for 388 
correlations are plotted on a timeline in Figure 5. It is visible that within the used data and with a 389 
limited sample size of 4 to 18 countries, it is not possible to state the direction of the correlation 390 
and decide if the tested hypothesis is true.  391 
We believe that further modelling efforts, that will include careful parameters’ modifications 392 
over time in order to better reflect local responses to the pandemic, would greatly improve the 393 
accuracy of the simulations, but it is outside of the scope of this work. 394 

Data sharing 395 
The model and the results of the simulation are freely available at 396 
https://github.com/freesci/covid19. 397 
The data used to generate Figure 5 is provided as Supplementary Table 1. 398 
The data and calculations used to obtain confidence intervals for the proportion of the mild and 399 
asymptomatic cases in the New York area is provided as Supplementary Workbook 1. 400 

Discussion 401 

The presented model, due to its stochastic nature, avoids the problem of biased and inaccurate 402 
data and provides simulations of the pandemic spread for all the countries around the globe. It 403 
also has multiple implications concerning the major characteristics of the COVID-19 pandemic, 404 
such as the basic reproduction number of the virus R0 (higher than previously assumed, yet not 405 
above the values estimated for other coronaviruses), and the average ratio of diagnosed cases 406 
tDR (much lower than assumed so far, especially for cases expressing mild symptoms and 407 
asymptomatic). Such a low tDR would indicate that the vast majority of the COVID-19 408 
infections are so mild that they pass unnoticed. This is not implausible, considering the fact that 409 
there are 1.9 billion children aged below 15 years in the world (27% of the global population) 410 
and predominantly (ca. 90%) the course of their infections is mild or asymptomatic (Dong et al., 411 
2020). Additionally, the tDR used in our model indicates virus detectability averaged over the 412 
entire period of 154 days and over all countries in the world. Furthermore, some COVID-19 413 
cases may show atypical symptoms (e.g. diarrhoea) (Gao, Chen & Fang, 2020) which hinder 414 
correct diagnosis. Taking all this into account, plus the results of our model and latest reports on 415 
the low detectability of the virus (Nishiura et al., 2020; Li et al., 2020a; Day, 2020a,b; Kimball et 416 
al., 2020), one may risk a hypothesis that the virus is already more prevalent in the global 417 
population than shown in official statistics at the moment, and consequently, its mortality rate is 418 
much lower. 419 
To verify this hypothesis, further actions are required. At first, the model should be refined by 420 
stochastic fitting of parameters to the observed data. Also the sensitivity analysis of the 421 
parameters should be performed. Such a refined model could be used for the analysis of the 422 
effectiveness of the applied Non-Drug Interventions and possibly, for the modelling of future 423 
NDIs strategies. Secondly, a simulation with the tDR parameter increasing over time or 424 
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diverging geographically might better reflect the actual virus detectability in the course of the 425 
pandemic.  426 
Finally, the real spread of the virus should be assessed empirically by conducting a sufficient 427 
number of tests on fully random samples as currently, most tests are limited to individuals with 428 
strong and typical symptoms. Only after obtaining a solid measurement of the actual prevalence 429 
of the virus, can one draw conclusions about its true mortality rate. 430 
We emphasize that our conclusions are a hypothesis based on a single computational model and 431 
without empirical verification, but they serve as a platform for further research. At this stage, by 432 
no means should they be used as a reason for governmental decisions on lifting the precautions. 433 
Even if the true mortality of the virus is indeed lower than announced by the media, to our best 434 
knowledge many people remain in the high-risk group (e.g elderly, chronically ill, etc. (Baud et 435 
al., 2020)). Lack of population resistance facilitates their contact with the virus and may lead to a 436 
rapid increase of severe cases in a short time, as seen for example in Italy (Remuzzi & Remuzzi, 437 
2020), leading to the collapse of the healthcare system, which affects the entire society and 438 
results in many additional deaths not related to the virus itself. Careful use and tuning of Non-439 
Drug Interventions, constant balancing of the disease spread and healthcare capacity, protecting 440 
the most vulnerable individuals, farsighted anticipation and agility in decision making may 441 
altogether be able to minimize the number of deaths without resulting in the global economic 442 
breakdown. 443 

Conclusions 444 
Our model implies that the current consensus on the basic reproduction number of SARS-CoV-2 445 
and its prevalence are misestimated. The overall global data on the pandemic dynamics seems 446 
strongly biased by large regions where official statistics may not reflect accurately the state of 447 
the epidemic, and by the fact that many COVID-19 cases may go unnoticed. The basic 448 
reproduction rate of the virus should be confirmed based on reliable data, and its prevalence 449 
determined by conducting properly designed screening tests. 450 
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 586 

Figure 1: Structure of compartments used in modelling.  587 
A susceptible individual in contact with a person: 1) presymptomatic, 2) who developed mild 588 
symptoms, or 3) who developed severe symptoms, may contract the infection at rate β, β or rβ*β, 589 
respectively, and enter the latent non-infectious compartment where he is infected but not yet 590 
infectious. During the non-infectious period, each individual has a probability of niε of becoming 591 
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presymptomatic infectious. The presymptomatic cases have probability iε of developing severe 592 
or mild COVID-19 symptoms, with probabilities pS and 1-pS, respectively. The transition from 593 
both symptomatic groups occurs at μ rate. Individuals who developed severe symptoms do not 594 
travel within and between modelled subpopulations and may be either diagnosed with probability 595 
pDS, or recover with probability of 1-pDS. Individuals whose mild (or non-existent) symptoms 596 
are not stopping them from traveling may be diagnosed with probability pDM or recover with 597 
probability 1-pDM. The diagnosed individuals are considered isolated and effectively non-598 
contagious and recover with rate μ. The recovery does not discriminate between true recovery 599 
and fatal cases. 600 
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 604 
Figure 2: Percentage difference over time between the number of reported cases and confidence 605 
intervals’ limits for modelled predictions. 606 
Positive values state that the model overestimates the number of diagnosed cases, negative 607 
values indicate the underestimations of the model. Observed numbers of cases that are within the 608 
model CIs are equal to 0. For clarity, country plots were grouped by continents and presented in 609 
five plots: A: Asia, B: Europe, C: North America, D: South America, E: Australia and Oceania. 610 
The large discrepancies for Japan, Australia, New Zealand and the Republic of Korea are 611 
putatively caused by the fast and pronounced reaction of their governments and early introduced 612 
NDIs which are not reflected in our model. 613 
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 618 
Figure 3: An overlay of modelled confidence intervals for the predicted cumulative number of 619 
diagnosed cases and the actual reported values shown for twenty selected countries.  620 
The y-axes show the absolute number of diagnosed cases and due to different country 621 
populations are not unified. To facilitate comparisons a blue, dotted line was added as a 622 
reference indicating the 0.61% of the total population of a country. This value is the same as the 623 
tDR parameter used in our model reflecting the assumed ratio of detected to undetected cases. 624 
The confidence intervals obtained in our model will approach this value asymptotically. For most 625 
countries, observations agree well with model predictions. The observed discrepancies are most 626 
likely due to introduced NDIs which are not included in our model. The precautions were 627 
categorized and the dates of their introductions were marked on the plots with vertical lines, 628 
however, the assessment of their effectiveness is beyond the scope of this research. 629 
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 632 

 633 
 634 
Figure 4: An overlay of modelled confidence intervals with the empirical data on the number of 635 
diagnosed cases for the last day of the simulation, Apr 19th, 2020.  636 
The cumulative number of diagnosed cases is presented as a percentage of the country 637 
population, facilitating comparisons between countries. Model predictions are generally within 638 
the same order of magnitude as the observed data and obtained CIs are relatively narrow despite 639 
a limited number of iterations (20). 640 
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 642 

 643 
 644 
Figure 5: Correlation between presented model accuracy and per-country testing effort.  645 
An overlay of 95% confidence intervals for the Spearman correlation coefficients between: 1) 646 
the interpolated, cumulative number of conducted tests per capita in a country, and 2) the 647 
percentage difference between the actual number of detected cases and the lower or upper 648 
confidence limit of the CIs obtained in the model. The correlations were calculated separately for 649 
each day of the simulation if only sufficient data on testing effort is available. As some countries 650 
started testing earlier than others, the number of data points for correlations varies from 4 to 18, 651 
depending on the date. The width of the obtained CIs and the values of their limits indicate that 652 
with the avaialble data it is not possible to state the direction of the analyzed correlations. 653 
 654 
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 656 
Parameter Value Description Source/Derivation 

R0 4.4 Reproduction number for SARS-
CoV-2 

Literature-based: assumed on the basis 
of infectivity rates of other coronaviruses. 

μ 7 days Average recovery time since 
symptoms development Literature-based 

β 0.38261 Transmission rate 𝜇 ÷ 𝑅! 

rβ 0.5 
Reduction in transmission rate 
resulting from the undiagnosed 
development of severe COVID-19 
symptoms 

Literature-based 

lp 5.6 days Average latency period Literature-based 

lnip 1.1 days Average latent non-infectious period Literature-based: assumed on basis of 
non-infectious period of Influenza A/H1N1 

pip 4.5 days Average presymptomatic infectious 
period 𝑙𝑝 − 𝑙𝑛𝑖𝑝 

niε 0.9(09) Probability of transition from lnip to 
pip state 1 ÷ 𝑙𝑛𝑖𝑝 

iε 0.2(2) Probability of transition from 
presymptomatic to symptomatic state 1 ÷ (𝑙𝑝 − 𝑙𝑛𝑖𝑝) 

pS 0.01 Probability of developing severe 
COVID-19 symptoms 

Literature-data: The most often reported 
ratio of severe to mild symptoms 

pDS 0.6 
Probability of being diagnosed when 
expressing severe COVID-19 
symptoms 

Assumed, taking into account that:  
1. In elderly patients, COVID may be 

easily misdiagnosed, 
2. Most of the countries in the world do 
not have sufficiently efficient healthcare 

systems.  

tDR 0.0061 Rate of diagnosed SARS-CoV-2 
infected individuals 

Value representing the smallest possible 
detectability > 	𝑝𝑆 ∗ 𝑝𝐷𝑆 

pDM 0.00(01) 
Probability of being diagnosed when 
presenting mild or none COVID-19 
symptoms 

(𝑡𝐷𝑅 − 𝑝𝑆 ∗ 𝑝𝐷𝑆) 	÷	(1 − 𝑝𝑆) 

 657 
 658 

Table 1. List of parameters used for the models and their respective values. 659 
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