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Here we use a metapopulation model applied at county resolution to simulate the 
spread and growth of COVID-19 incidence in the continental United States. We 
calibrate the model against county-level incidence data collected between February 21, 
2020 and March 13, 2020, and estimate epidemiological parameters including the 
fraction of undocumented infections and their contagiousness1. Using the calibrated 
model, we project the outbreak in the continental US for 180 days after March 13, 2020, 
and evaluate the effects of social distancing and travel restrictions on the outbreak. 
 
Model 
 
We use a metapopulation SEIR model to simulate the transmission of COVID-19 among 
3,108 US counties. In this model, we consider two types of movement: daily work 
commuting and random movement. Information on county-to-county work commuting is 
publicly available from the US Census Bureau2. We further assume the number of 
random visitors between two counties is proportional to the average number of 
commuters between them. As population present in each county is different at daytime 
and nighttime, we model the transmission dynamics of COVID-19 separately. We 
recognize that in the days leading up to March 13, some control measures were 
implemented in some areas of the country (e.g. school closure, closing of restaurants 
and bars, etc.); while these measures likely reduced inter-county movement to some 
degree, these effects were not likely large during this time period. 
We formulate the transmission as a discrete Markov process during both day and night 
times. The daytime transmission lasts for 𝑑𝑡! day and the nighttime transmission 𝑑𝑡" 
day (𝑑𝑡! + 𝑑𝑡" = 1). Here, we assume daytime transmission lasts for 8 hours and 
nighttime transmission lasts for 16 hours, i.e., 𝑑𝑡! = 1/3 and 𝑑𝑡" = 2/3. The 
transmission dynamics are depicted by the following equations. 
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Nighttime transmission: 
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Here, 𝑆#$, 𝐸#$, 𝐼#$& , 𝐼#$(  and 𝑁#$ are the susceptible, exposed, reported infected, unreported 
infected and total population in the subpopulation commuting from county 𝑗 to county 𝑖 
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(𝑖 ← 𝑗); 𝛽 is the transmission rate of reported infections; 𝜇 is the relative transmissibility 
of unreported infections; 𝑍 is the average latency period (from infection to 
contagiousness); 𝐷 is the average duration of contagiousness; 𝛼 is the fraction of 
documented infections; 𝜃 is a multiplicative factor adjusting random movement; 𝑁4#$ =
(𝑁#$ + 𝑁$#)/2 is the average number of commuters between counties 𝑖 and 𝑗; and 𝑁#' 
and 𝑁#+ are the daytime and nighttime populations of county 𝑖. We integrate Eqs. 1-10 
using a Poisson process to represent the stochasticity of the transmission process. A 
similar model has been used to generate forecasts for influenza in the United States3. 
To account for reporting delay, we mapped simulated documented infections to 
confirmed cases using a separate observational delay model. In this delay model, we 
account for the time interval between a person transitioning from latent to contagious 
(i.e. E à 𝐼#&) and observational confirmation of that individual infection. To estimate this 
delay period, 𝑇,, we examined line-list data from early-confirmed cases in China4. Prior 
to January 23, 2020, the time-to-event distribution of the interval (in days) from 
symptom onset to confirmation is well fit by a Gamma distribution1 (𝑎 = 1.85, 𝑏 =
3.57, 𝐿𝐿 = −252.24). Consequently, we adopted a Gamma distribution to model 𝑇,, but 
tested longer mean periods (𝑎𝑏) as symptom onset often lags the onset of 
contagiousness. 
 
Parameter inference 
 
We calibrated the transmission model against county-level incidence data reported from 
February 21, 2020 through March 13, 20205. Specifically, we estimated model 
parameters using an iterated filtering (IF) framework6,7. The metapopulation model is 
high dimensional with 59,998 subpopulations. We therefore applied an efficient data 
assimilation algorithm – the Ensemble Adjustment Kalman Filter (EAKF)8, which is 
applicable to high dimensional models, in multiple iterations to infer parameters 𝛽, 𝜇, 𝑍, 
𝐷, 𝛼 and 𝜃. This iterated filtering (IF)-EAKF framework has been used to infer 
parameters in a large-scale agent-based model for antimicrobial-resistant pathogens9, 
as well as a metapopulation model depicting the spread of SARS-CoV-2 in China1. 
Details of its implementation can be found in Ref. 1. 
The prior ranges of model parameters were set as: 𝛽 ∈ [0.3, 1.5], 𝜇 ∈ [0.2, 1.0], 𝑍 ∈
[2, 5], 𝐷 ∈ [2, 5], 𝛼 ∈ [0.02, 1.0], and 𝜃 ∈ [0.01,0.3]. In the inference, we fixed the shape 
parameter of the Gamma distribution for 𝑇, as 𝑎 = 1.85, and vary the mean value of the 
distribution. We tested a range of mean 𝑇, values from 6 days to 10 days.  
To initialize the model, we seeded exposed individuals (𝐸) and unreported infections 
(𝐼() in counties with at least one confirmed case. Unlike the situation in China, where 
the outbreak originated from a single city, there was importation to multiple locations in 
the US that could have initiated community transmission. To reflect this potential 
ongoing community transmission before the reporting of the first local infection, for each 
county with confirmed cases, we randomly drew 𝐸 and 𝐼& from uniform distributions 
[0, 12𝐶] and [0, 10𝐶] 8 days prior to the reporting date (𝑇-) of the first case. Here 𝐶 is the 
total number of reported cases between day 𝑇- and 𝑇- + 4.  
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The rationale for this seeding strategy is as follows. If an average reporting delay of 8 
days is assumed, we can estimate 𝐼& on day 𝑇- − 8 by .

/
× 𝐷, where .

/
 is the average 

number of daily cases during the first five days with reporting (𝑇- to 𝑇- + 4). If we use 
the upper bound of the prior for D (i.e., 5 days), 𝐼& is estimated as 𝐶, which is also an 
upper bound. Using parameters obtained from China1, we assume the mean 𝐼( on day 
𝑇- − 8 is 5𝐶, implying a reporting rate of 1/6=16.7%. Drawing 𝐼( from [0, 10𝐶] leads to a 
broader prior range of the reporting rate. As both 𝐼& and 𝐼( were evolved from the 
exposed population 𝐸, we draw 𝐸 from the range [0, 12𝐶]. This crude calculation gives 
us an estimate of seeding in US counties. During inference, this seeding can be 
adjusted up or down by the filter, and best-fitting models produce simulations that 
capture observed outcomes. 
 
Results 
 
The inferred parameters for the best-fit model and the 95% CIs are reported in Table 1. 
The mean reporting delay for the best-fit model is 𝑇, = 6 days. We display the fitting of 
this model to national daily case data and cases for 5 other counties (King County WA, 
Westchester County NY, Santa Clara County CA, Middlesex County MA and Nassau 
County NY) in Fig. 1. 
 
To evaluate the impact of control measures, we examined how daily confirmed cases 
within 6 months of February 21 2020 were modulated by percent reductions of the 
contact rate 𝛽 (effected by isolation, quarantine, telecommuting, school closure, etc.) 
and travel restrictions (effected by reducing commuting and travel among counties). The 
reductions of contact rates disrupt normal mixing within metapopulation locations, 
whereas the travel restrictions impact mixing between locations. In particular, we ran 
model simulations with no intervention, a 25% reduction of contact rate, a 50% 
reduction of contact rate and a 95% reduction of cross-county mobility. The epidemic 
curve is more effectively flattened by reduction of the contact rate, as shown in Fig. 2.  
In addition, we provide movies of each scenario (Movies S1-S410). Each shows a single 
stochastic simulation with best-fitting model parameters (excepting 𝛽, which is adjusted 
in 2 of the scenarios). The projection outputs are available for download from GitHub10. 
 
Disruption of mixing within locations, effected through a reduction of b, more 
substantially slows the spread and increase of confirmed cases than reductions of 
commuting and travel between locations. High reductions of commuting and travel 
between county locations (i.e. ³95%) are needed to reduce the spread and increase of 
infections. 
 
 
  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.21.20040303doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.21.20040303
http://creativecommons.org/licenses/by-nc/4.0/


References 

1. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J (2020) Substantial undocumented 
infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). medRxiv, 
https://doi.org/10.1101/2020.02.14.20023127 

2. https://www.census.gov/topics/employment/commuting.html 
3. Pei S, Kandula S, Yang W, Shaman J. Forecasting the spatial transmission of influenza in the United 

States. PNAS 115(11): 2752-7 (2018). 
4. M. Kramer, D. Pigott, B. Xu, S. Hill, B. Gutierrez, O. Pybus, Epidemiological data from the nCoV-2019 

Outbreak: Early Descriptions from Publicly Available Data. Available: 
http://virological.org/t/epidemiological-data-from-the-ncov-2019-outbreak-early-descriptions-from-
publicly-available-data/337 Accessed Feb 24, 2020. 

5. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html. Accessed March 13 2020. 
6. Ionides EL, Bretó C, King AA. Inference for nonlinear dynamical systems. PNAS 103(49):18438-43 

(2006). 
7. King AA, Ionides EL, Pascual M, Bouma MJ. Inapparent infections and cholera dynamics. Nature  

454(7206):877-80 (2008). 
8. Anderson JL. An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review 

129(12):2884-903 (2001). 
9. Pei S, Morone F, Liljeros F, Makse H, Shaman JL. Inference and control of the nosocomial 

transmission of methicillin-resistant Staphylococcus aureus. eLife 7:e40977 (2018). 
10. Pei S, SenPei-CU/COVID-19_US_Projection: COVID-19_US_Projection (https://github.com/SenPei-

CU/COVID-19_US_Projection), Version 1, Zenodo (2020); http://doi.org/10.5281/zenodo.3722660.  
  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.21.20040303doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.21.20040303
http://creativecommons.org/licenses/by-nc/4.0/


Table 1. Best-fit model posterior estimates of key epidemiological parameters. 
 

Parameter Median (95% CIs) 
Transmission rate (β, days-1) 0.95 (0.84, 1.06) 
Relative transmission rate (µ) 0.64 (0.56, 0.70) 

Latency period (Z, days) 3.59 (3.28, 3.99) 
Infectious period (D, days) 3.56 (3.21, 3.83) 

Reporting rate (α) 0.080 (0.069, 0.093) 
Basic reproductive number (Re) 2.27 (1.87, 2.55) 

Mobility factor (θ) 0.15 (0.12,0.17) 
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Fig. 1. Model fitting to daily case from February 21 2020 to March 13 2020 in US, King 
County WA, Westchester County NY, Santa Clara County CA, Middlesex County MA 
and Nassau County NY. 
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Fig. 2. National daily confirmed cases with no intervention, a 25% reduction of contact 
rate, a 50% reduction of contact rate and a 95% reduction of cross-county mobility. 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.21.20040303doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.21.20040303
http://creativecommons.org/licenses/by-nc/4.0/

