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Abstract 

COVID-19 is caused by SARS-CoV-2, and has become a global pandemic. There is no highly 

effective medicine or vaccine, most of the patients were recovered by their own immune 

response, especially the virus specific IgG and IgM responses. However, the IgG/ IgM responses 

is barely known. To enable the global understanding of SARS-CoV-2 specific IgG/ IgM 

responses, a SARS-CoV-2 proteome microarray with 18 out of the 28 predicted proteins was 

constructed. The microarray was applied to profile the IgG/ IgM responses with 29 convalescent 

sera. The results suggest that at the convalescent phase 100% of patients had IgG/ IgM responses 

to SARS-CoV-2, especially to protein N, S1 but not S2. S1 purified from mammalian cell 

demonstrated the highest performance to differentiate COVID-19 patients from controls. Besides 

protein N and S1, significant antibody responses to ORF9b and NSP5 were also identified. In-

depth analysis showed that the level of S1 IgG positively correlate to age and the level of LDH 

(lactate dehydrogenase), especially for women, while the level of S1 IgG negatively correlate to 

Ly% (Lymphocyte percentage). This study presents the first whole picture of the SARS-CoV-2 

specific IgG/ IgM responses, and provides insights to develop precise immuno-diagnostics, 

effective treatment and vaccine. 
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Highlights 

⚫ A SARS-CoV-2 proteome microarray contains 18 of the 28 predicted proteins 

⚫ The 1st global picture of the SARS-CoV-2 specific IgG/ IgM response reveals that at the 

convalescent phase, 100% of patients have IgG/ IgM responses to protein N and S1 

⚫ Significant antibody responses against ORF9b and NSP5 were identified 

⚫ Protein S1 specific IgG positively correlates to age and LDH, while negatively to Ly% 
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Introduction 

COVID-19 is caused by coronavirus SARS-CoV-21,2. In China alone, by Mar. 18, 2020, there are 

81,163 diagnosed cases with SARS-CoV-2 infection, and 3,242 death according to Chinese CDC 

(http://2019ncov.chinacdc.cn/2019-nCoV/). Globally, 184,976 diagnosed cases were reported in 

159 countries, areas or territories. And on Mar. 11, WHO announced COVID-19 as a global 

pandemic. Aided by the high-throughput power of Next Generation Sequencing (NGS), the 

causative agent of COVID, i.e., SARS-CoV-2, was successfully identified and genome 

sequenced. Sequence analysis suggests that SARS-CoV-2 is most closely related to BatCoV 

RaTG13 and belongs to subgenus Sarbecovirus of Betacoronavirus, together with Bat-SARS-like 

coronavirus and SARS coronavirus1,2. Through the comparison with SARS-CoV and other related 

coronaviruses, it is predicted that there are 28 proteins may encoded by the genome of SARS-

CoV-2, including 5 structure proteins (we split S protein to S1 and S2, and thus count as 2 

proteins), 8 accessory proteins and 15 non-structural proteins3. SARS-CoV-2 may utilize the 

same mechanism to enter the host cells, i.e., the high affinity binding between the receptor 

binding domain (RBD) of the spike protein and angiotensin converting enzyme 2 (ACE2)4-9. 

Though tremendous efforts are being poured for hunting effective therapeutic agents, i.e., small 

molecules/ neutralization antibodies, and protective vaccines, unfortunately, none of them are 

available at this moment, even in the near future10. By Mar. 18, 2020, 69,740 patients have been 

cured in China (http://2019ncov.chinacdc.cn/2019-nCoV/). Since there is no effective anti-SARS-

CoV-2 drug and therapeutic antibody, theoretically, most of these patients are cured by 

themselves, i.e., by their own immune system. It is known that for combating virus infections, 

usually antibodies (IgG and IgM) play critical roles, for example, SARS-CoV11,12 and MERS-

CoV13,14. Thus, it is reasonable to argue that virus specific IgG and IgM may also significantly 

contribute to the battle against SARS-CoV-2 infection. Indeed, high levels of SARS-CoV-2 

specific IgG and IgM could be monitored for many of the patients15. In addition, positive results 
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were observed by treating the patients with convalescent plasma collected from COVID-19 

patients16,17. 

However, because SARS-CoV-2 is a newly occurred pathogen, the IgG/IgM response is barely 

known. There are many important questions need to be experimentally addressed: 1. What’s the 

variation among different patients, especially for antibodies against nucleocapsid protein (protein 

N) and spike protein (protein S)? 2. Besides nucleocapsid protein and spike protein, is there any 

other viral protein that could trigger significant antibody response for at least some of the 

patients? 3. Is it possible to link the intensity of the overall IgG/IgM response to the severity of 

patients? and etc. It is urgently needed to answer these questions, especially in a systematic 

manner. Once these questions are answered or at least touched, we may can understand the 

IgG/IgM response in detail, and in turn facilitate us to develop more effective treatment, 

therapeutic antibody and protective vaccine.  

Traditional techniques for studying IgG/ IgM responses including ELISA18-20, and immune-

colloidal gold strip assay19,21,22. However, these techniques usually can only test one target protein 

or one antibody in one reaction. Thus a powerful tool is needed that enables the studying of the 

IgG/ IgM responses on a systems level. Featured by the capability of high-throughput and parallel 

analysis, and miniaturized size, protein microarray may be the choice for systematic study of the 

SARS-CoV-2 stimulated IgG/IgM responses. A variety of protein microarrays have already been 

constructed and successfully applied for serum antibody profiling, such as the Mtb proteome 

microarray23, the SARS-CoV protein microarray11, and the Dengue virus protein microarray24. 

Here, we present a SARS-CoV-2 proteome microarray developed using an E.coli expression 

system and SARS-CoV-2 proteins collected from several commercial sources. COVID-19 

Convalescent sera were analyzed on the microarray, the first overall picture of SARS-CoV-2 

specific IgG/ IgM responses was revealed. 
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Results 

Schematic diagram and workflow 

The genome of SARS-CoV-2 is ~29.8 kb, which is predicted to encode 28 proteins3, i.e., 4 

structural proteins (split S protein as S1 and S2), 8 accessory proteins and 15 non-structural 

proteins (nsp) (Fig. 1A). The sequences of all these proteins and the receptor binding domain 

(RBD) on S1 were codon optimized, gene synthesized and cloned to appropriate vector for 

expression in E. coli. We affinity purified these proteins, meanwhile, we collected recombinant 

proteins expressed from both prokaryotic and eukaryotic systems from other sources. After 

quality control, these proteins were then printed on appropriate substrate slides. Convalescent sera 

were collected and analyzed on the proteome microarray. The global SARS-CoV-2 specific IgG 

and IgM responses were revealed. 

 

Eighteen of the 28 predicted SARS-CoV-2 were prepared 

To prepare recombinant proteins of SARS-CoV-2 for microarray fabrication, we first determined 

the amino acid sequences of predicted proteins3 follow a reference genome (Genbank accession 

No. MN908947.3). To obtain more precise analysis, we split protein S as S1 and S23, and also 

included RBD because of its critical role during the entry of SARS-CoV-2 into the cells. The 

protein sequences were subjected for codon optimization and then cloned into E.coli expression 

vector (pET32a or pGEX-4T-1). The final expression library includes 31 clones (Table S1). After 

several rounds of optimizations, so far, we managed to purify 17 of these proteins (Fig. S1). As 

demonstrated by Western blotting with an anti-6xHis antibody and Coomassie staining, Most of 

the SARS-CoV-2 proteins showed clear bands of the expected size (±10 kDa) and good purity. 

Meanwhile, in order to cover the proteome of SARS-CoV-2 as completed as possible, and to take 

post-translational modification (PTM), especially glycosylation into account, we also collected 

recombinant SARS-CoV-2 proteins prepared using yeast cell-free system and mammalian cell 
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expression system, from a variety of sources (Figure S1). Among the collected proteins, there are 

several different versions of S1 and N protein (Table S1). Finally, we obtained 37 proteins of 

different versions from different sources, which covers 18 out of the 28 predicted proteins of 

SARS-CoV-2. These proteins are suitable for microarray construction in terms of both 

concentration and purity. 

 

Protein microarray fabrication 

A total of 38 proteins along with positive and negative controls were printed on the microarray 

slide (Fig. 2). Since most of the proteins were tagged with 6xHis tag, the overall quality of the 

microarray were evaluated by probing with an anti-6xHis antibody. The anti-6xHis antibody results 

showed that most of the proteins were nicely immobilized, and the microarray quality if fairly good. 

The detailed layout of the SARS-CoV-2 proteome microarray was indicated as well (Fig. 2A). High 

antibody responses were usually observed for COVID-19 patients while not in control sera (Fig. 

2B). Since the Fc tag could be recognized by fluorescence labeled anti-human IgG antibody, the 

ACE2-Fc generated high signals for all the tests, which could serve as control for the anti-human 

IgG antibody, though the initial reason to include ACE2 on the microarray is for applications other 

than serum profiling. To test the experimental reproducibility of the serum profiling using the 

microarray, two COVID-19 convalescent sera were random selected. Three independent analysis 

for each of these two sera were repeated on the microarray. Pearson correlation coefficients 

between two repeats were 0.988 and 0.981 for IgG and IgM, respectively, and the overall 

fluorescence intensity ranges of the repeated experiments were fairly close, demonstrating high 

reproducibility of the microarray based serum profiling both for IgG and IgM (Fig. 2 C-E). 

 

SARS-CoV-2 specific Serum profiles depicted by proteome microarray 

To globally profile the antibody response against the SARS-CoV-2 proteins in the serum of 

COVID-19 patients, we screened sera from 29 convalescent patients, along with 21 controls by the 
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proteome microarray. The patients were hospitalized in Foshan Fourth hospital, China during 2020-

1-25 to 2020-2-27 with variable stay time. The information of the patients was summarized in 

Table 1. Serum from each patient was collected on the day of hospital discharge when the standard 

criteria were met. And there is no recurrence reported for these patients. All the samples and the 

controls were probed on the proteome microarray, after data filtering and normalization, we built 

the IgG and IgM profile for each serum and performed clustering analysis to generate heatmaps for 

overall visualization (Fig. 3 and Fig. 4). The patients and controls are perfectly clustered for both 

IgG and IgM, justifying the utility of the SARS-CoV-2 proteome microarray for the virus specific 

antibody analysis of COVID-19. As expected, the N protein and S1 protein elicited high antibody 

responses in almost all patients but barely in control groups, confirming the efficacy of these two 

proteins for diagnosis. Interestingly, we also found that in some cases, some proteins other than N 

or S1 can generate significantly higher signals compared with that of the control groups. 

 

Strong response against S and N proteins 

Since S and N protein are widely used as antigens for diagnosis of COVID-19, we next 

characterized the serum antibody responses against these two proteins. For the present cohort, both 

S and N proteins, except for S1-4, were proved to have excellent discrimination ability between 

COVID-19 patients and controls both for IgG and IgM (Fig. 5A, B, Fig. S3A, B). The overall IgG 

signal intensities were much higher than that of IgM, mainly because the sera were collected at the 

convalescent stage when IgG are supposed to be dominant. It is notable that two sera from control 

group have significantly higher IgG antibody response to N proteins than other controls, with one 

to N-Nter and another to C-Nter (Fig. 5G), suggesting the N protein may generate a higher false 

positive rate than S protein, especially S1. To investigate the consistence of signal intensities among 

different sources or versions (C-term, N-term, domain or fragment) of proteins, we calculated the 

Pearson correlation coefficients among S proteins (Fig. 5C) and N proteins (Fig. S2F) using data 

of the convalescent sera. High correlations are observed among different concentrations of the same 
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proteins, and the same protein from different sources is also of high correlation (Fig. 5D, H, Fig. 

2SA, B, C, G), although N protein with high concentrations generate almost saturated signals (Fig. 

S2G). Specially, for full length S1 proteins from different sources, either obtained from E.coli 

(S1_T) or 293T (S1_B and S1_S) expression system, high correlations with each other were 

observed (Fig. 5C, D), indicating the proteins from different sources are all have good performance 

for detection. However, the background signals in control group are much lower for proteins 

purified from mammalian cells, i.e., 293T (Fig. 5A), suggesting they may possess a higher septicity 

and could serve as a better reagent for developing immune-diagnostics. The signals of the full 

length S1 protein are highly correlated with that of S-RBD (Fig. 5E) but with much stronger signals. 

In contrast, the correlation levels of S1-4 region with full-length S1 or RBD are lower (Fig. 5C, 

Fig. S2D). In addition, The S1 signals are poorly correlated with S2 proteins (Fig. 5F). These data 

may reflect the difference in immunogenicity for different regions of S protein, further epitope 

mapping could answer this question. Similar situations are also observed for N proteins (Fig. 5H, 

Fig. S2H, I). Interestingly, moderate but significant liner correlations were observed between IgG 

responses of N and S1 (Fig. 5I). In addition, the correlations of IgG and IgM signals for the same 

protein were low (Fig. 5J, K), this may in-part because the overall IgM signals were much lower 

than that of IgG (Fig. S3) at the convalescent stage. 

 

Antibody responses against other proteins 

The proteome microarray enables us to investigate antibody responses to 18 of the 28 predicted 

proteins of SARS-CoV-2, including S and N proteins. As mentioned above, some proteins other 

than N and S proteins also generated high IgG signals (Fig. 3). After global analysis, we identified 

6 proteins, against which high IgG responses were detected in at least one convalescent sera (Fig. 

6A). Importantly, 44.8% (13/29) patients presented positive IgG antibody to ORF9b under the 

threshold set based on the signals of control sera (Fig. 6B). IgG antibodies to NSP5 were positive 

in 3/19 patients and positive in 1/21 control sera (Fig. 6C). To investigate if the IgG responses 
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against ORF9b or NSP5 depends on the IgG responses against N or S protein, we calculated the 

correlations among them. It turned out that there are no obvious correlations between the IgG to 

ORF9b or NSP5 with IgG to N or S (Fig. 6D, E), suggesting these two proteins may provide 

complementary information either for diagnosis or worth further study to explore the SARS-CoV-

2 specific immune response.  

 

IgG responses are highly correlated with age, LDH and Ly%  

It is known that immune response is closely related to the disease courses. To evaluate how the 

relationship between the antibody response and the situation of the disease, we investigated the 

correlations between IgG or IgM responses to proteins of virus with clinical characteristics. Not 

surprisingly, the days after onset were correlated with the IgG response against S1 (Fig. 7A) or N 

protein (date not shown), as the IgG response usually increases over time and reach the peak several 

weeks after onset, which is observed by other studies25 and SARS patients26. In contrast, there is 

no correlations between IgM response with days after onset. It was observed that age is also 

correlated with IgG response to S1 or N proteins (Fig. 7B, Fig. S4A). Three patients with mild 

symptoms indicated by red arrows show low IgG response and it is highly variable in the patients 

with common symptoms. It is notable that in male patients, especially older than 40, the correlation 

between age and S1 IgG is very poor (Fig. 7B). To further investigate this phenomenon, we 

separately analyzed the male and female patients in different age groups. For female older than 40 

years old, the S1 IgG response is significantly stronger than that either in the group of female 

younger than 40 or the male counterpart (Fig. 7C). For male younger than 40, high correlation 

between age and S1 or N IgG response was observed (Fig. 7D, Fig. S4C), and this correlation is 

not caused by days after onset (Fig. S4B). For female, whatever the age range is, IgG response to 

S1 or N is highly correlated with age (Fig. S4D, E). To exclude the influence of days after onset, 

the patients with similar (18-24) days after onset were selected (Fig. S4F). High correlation is still 

observed (Fig. 7E, Fig. S4G), demonstrating the correlation is independent of days after onset. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2020. ; https://doi.org/10.1101/2020.03.20.20039495doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.20.20039495
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

It was found that the IgG response against S1 or N protein is highly correlated with peak lactate 

dehydrogenase (LDH) level in female (Fig. S4H) but not significantly in male patients (Fig. 7E). 

To evaluate whether there is correlation between peak LDH and virus specific IgG response in 

female patients, the patients with 18-24 days after onset and ranging in age from 20 to 60 were 

selected to form a smaller cohort, in which, no statistical correlation between age or days after onset 

with peak LDH were observed (Fig. S4I). It turns out the correlation was still high and significant 

both for S1 and N protein specific IgG response (Fig. 7G, Fig. S4J), demonstrating the correlation 

is independent of age and days after onset. Since the LDH level could serve as an indicator of 

disease severity26,27, it seems that immune system of women may be more sensitive to the virus. It 

was also found that the IgG response to S1 or N protein negatively correlates with the percentage 

of lymphocyte (Ly%) (Fig. 7H, I, Fig. S4K), however, this correlation might be dependent of age 

(Fig. S4L). 

 

Materials and methods 

Construction of expression vectors 

The protein sequences of SARS-CoV-2 were downloaded from GenBank (Accession number: 

MN908947.3). According to the optimized genetic algorithm28, the amino acid sequences was 

converted into E.coli codon-optimized gene sequences. Subsequently, the sequence optimized 

genes were synthesized by Sangon Biotech. (Shanghai, China). The synthesized genes were 

cloned into pET32a or pGEX-4T-1 and transformed into E. coli BL21 strain to construct the 

transformants. Detailed information of the clones constructed in this study is given in Table S1. 

Protein preparation 

The recombinant proteins were expressed in E. coli BL21 by growing cells in 200 mL LB 

medium to an A600 of 0.6 at 37 °C. Protein expression was induced by the addition of 0.2 mM 
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isopropyl-β-d-thiogalactoside (IPTG) before incubating cells overnight at 16 °C. For the 

purification of 6xHis-tagged proteins, cell pellets were re-suspended in lysis buffer containing 50 

mM Tris-HCl pH 8.0, 500 mM NaCl, 20 mM imidazole (pH 8.0), then lysed by a high-pressure 

cell cracker (Union-biotech, Shanghai, CHN). Cell lysates were centrifuged at 12,000 rpm for 20 

mins at 4℃. Supernatants were purified with Ni2+ Sepharose beads (Senhui Microsphere 

Technology, Suzhou, CHN), then washed with lysis buffer and eluted with buffer containing 50 

mM Tris-HCl pH 8.0, 500 mM NaCl and 300 mM imidazole pH 8.0. For the purification of GST-

tagged proteins, cells were harvested and lysed by a high-pressure cell cracker in lysis buffer 

containing 50 mM Tris-HCl, pH 8.0, 500 mM NaCl, 1 mM DTT. After centrifugation, the 

supernatant was incubated with GST-Sepharose beads (Senhui Microsphere Technology, Suzhou, 

CHN). The target proteins were washed with lysis buffer and eluted with 50 mM Tris-HCl, pH 

8.0, 500 mM NaCl, 1 mM DTT, 40 mM glutathione. The purified proteins were analyzed by 

SDS-PAGE followed by Western blotting using an anti-His antibody (Merck millipore, USA) and 

Coomassie brilliant blue staining. Recombinant SARS-CoV-2 proteins were also collected from 

commercial sources. Detailed information of the recombinant proteins prepared in this study is 

given in Table S1. 

Protein microarray fabrication 

The proteins, along with negative (BSA) and positive controls (anti-Human IgG and IgM antibody), 

were printed in quadruplicate on PATH substrate slide (Grace Bio-Labs, Oregon, USA) to generate 

identical arrays in a 2 x 7 subarray format using Super Marathon printer (Arrayjet, UK). Protein 

arrays were stored at -80°C until use.  

Patients and samples 

The Institutional Ethics Review Committee of Foshan Fourth Hospital, Foshan, China approved 

this study, and written informed consent was obtained from each patient. COVID-19 patients were 
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hospitalized and received treatment in Foshan Forth hospital during 2020-1-25 to 2020-2-27 with 

variable stay time (Table 1). Serum samples were collected when the patients were discharged 

from the hospital. Sera of control group from Lung cancer patients and healthy controls were 

collected from Ruijin Hospital, Shanghai, China. All sera were stored at -80 ℃ until use. 

Microarray based serum analysis 

A 14-chamber rubber gasket was mounted onto each slide to create individual chambers for the 14 

identical subarrays. The microarray was used for serum profiling as described previously29 with 

minor modifications. Briefly, the arrays stored at -80°C were warmed to room temperature and then 

incubated in blocking buffer (3% BSA in PBS buffer with 0.1% Tween 20) for 3 h. Serum samples 

were diluted 1:200 in PBS containing 0.1% Tween 20. A total of 200 μL of diluted serum or buffer 

only was incubated with each subarray overnight at 4°C. The arrays were washed with PBST and 

bound autoantibodies were detected by incubating with Cy3-conjugated goat anti-human IgG and 

Alexa Fluor 647-conjugated donkey anti-human IgM (Jackson ImmunoResearch, PA, USA), the 

antibodies were diluted 1: 1,000 in PBST, and incubated at room temperature for 1 h. The 

microarrays were then washed with PBST and dried by centrifugation at room temperature and 

scanned by LuxScan 10K-A (CapitalBio Corporation, Beijing, China) with the parameters set as 

95% laser power/ PMT 550 and 95% laser power/ PMT 480 for IgM and IgG, respectively. The 

fluorescent intensity data was extracted by GenePix Pro 6.0 software (Molecular Devices, CA, 

USA). 

Statistics 

Signal Intensity was defined as median of foreground subtracted by median of background for each 

spot and then averaged of the quadruplicate spots for each protein. IgG and IgM data were analyzed 

separately. Before processing, data from some spots, such as NSP7_0.1_T, NSP9P_K, are excluded 

for probably printing contamination. Pearson correlation coefficient between two proteins or 
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indicators and the corresponding p value was calculated by SPSS software under the default 

parameters. Cluster analysis was performed by pheatmap package in R30. 

 

Discussion 

In order to profile the SARS-CoV-2 specific IgG/IgM responses, we have constructed a SARS-

CoV-2 proteome microarray with 18 of the 28 predicted proteins. To our knowledge, this is the 

first of such. A set of 29 recovered sera were analyzed on the microarray, global IgG and IgM 

profile were obtained simultaneously through a dual color strategy. Our data clearly showed that 

both protein N and S1 are suitable for diagnostics, while S1 purified from mammalian cell may 

possess better specificity. Significant antibody responses were identified for ORF9b and NSP5. 

We showed that the level of S1 IgG positively correlate to age and the level of LDH while 

negatively correlate to Ly%. 

  The SARS-CoV-2 proteome microarray enables not only the global profiling of virus specific 

antibody responses but also providing semi-quantitative information. By adopting the dual color 

strategy of microarray, we can measure IgG and IgM simultaneously. For the convalescent 

COVID-19 patients tested in this study that with a median of 22 days after onset, we found that 

the overall IgG response is significantly higher than that of IgM, indicating for these patients the 

SARS-CoV-2 specific IgG responses are dominant at the convalescent phase, although IgM level 

might reach the peak at a similar time point with that of IgG, according to some studies of SARS-

CoV31,32. 

  It is well known that S1 and N proteins are the dominant antigens of SARS-CoV and SARS-

CoV-2 that elicit both IgG and IgM antibodies, and antibody response against N protein is usually 

stronger. However, we found for two of the control sera, strong IgG bindings were observed for 

N protein, and specifically one control recognizing N protein at the N terminal while another at 

the C terminal. This maybe due to the high conservation of N protein sequences across the 
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coronavirus species, this indicating we should be aware of the false positive when applying N 

protein for diagnosis. In contrast, S1 protein demonstrating a higher specificity. Thus an ideal 

choice of developing immune-diagnostics maybe the combining of both N protein and S1 protein. 

  We also compared the antibody responses against a variety versions of S1, including the full 

length, the RBD domain, the N terminal and the C terminal. The antibody response to RBD 

region is highly correlated with that to full length protein but with weaker signals, however, the 

correlations among other S1 versions are not significant, suggesting dominant epitopes that elicit 

antibodies might differ among individuals. Further study of detailed epitope mapping might give 

us a clear answer. 

  In this study, we also found the significant presence of IgG and IgM against ORF9b (13 out of 

29 cases) and NSP5 (3 out of 29 cases). ORF9b is predicted as an accessory protein, exhibiting 

high overall sequence similarity to SARS and SARS-like COVs ORF9b (V23I)3, and is likely to 

be a lipid binding protein33. Previous studies showed that SARS ORF9b suppresses innate 

immunity by targeting mitochondria34. Two previous studies have found antibody against SARS 

ORF9b presented in the sera of patients recovering from SARS35,36. Our study also demonstrates 

the potential of antibody against ORF9b for detection of convalescent COVID-19 patients. 

COVID-19 NSP5 is also highly homologous to SARS NSP5 (96% identity, 98% similarity). Its 

homologous proteins in a variety of coronaviruses have been proven to impair IFN response37-39. 

Our study is the first report to provide experimental evidence to show the existence of NSP5 

specific antibody in convalescents. Since NSP5 is a non-structural protein, theoretically, it should 

present only in the infected cells but not in virions. So antibody against NSP5 has the potential to 

be applied to distinguish between COVID-19 patients and healthy people immunized with 

inactivated virus. 

  We have analyzed the correlations between the COVID-19 specific IgG responses with clinical 

characteristics as well. It is expected that IgG responses improve over time within one or two 

months after onset25,31,32 and we did observe a significant correlation between IgG signals with 
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days after onset. We also found peak LDH was highly correlated with IgG response, especially 

for female patients. As many studies reported, LDH tends to have a higher level in severe 

COVID-19 patients and could be an indicator of severity26,27. In fact, it has been observed in 

SARS patients that more severe SARS is associated with more robust serological response26,40, 

similar association was confirmed in COVID-19 patients, especially for females. Interestingly, we 

observed high correlation between age with IgG response in female patients and in male patients 

with age less than 40 but not in older male patients, implying the humoral response against 

SARS-CoV-2 may differ in gender. It is reported that severe cases are significantly more frequent 

in aged patients and the mortality of male patients is higher than that of female, but the reason is 

not clear. Based on our observations, we assumed that the situation might be associated with the 

immune response. However, female patients, compared with male patients, may generate humoral 

response more efficiently. This difference should be considered during treatment. 

  There are some limitations of the current SARS-CoV-2 proteome microarray. Firstly, due to 

the difficulty of protein expression and purification, there are still 10 proteins missing3. We will 

try to obtain these proteins through vigorous optimization or other sources, interesting finding is 

anticipated in the near future for these missing proteins. Secondly, most of the proteins on the 

microarray are not expressed in mammalian cells, critical post-translational modifications, such 

as glycosylation is absent. It is known that there are 23 N-glycosylation sites on S protein, which 

is heavily glycosylated, and the glycosylation may play critical roles in antibody- antigen 

recognition5,41. We are preparing these proteins using mammalian cell systems. Once the 

microarray is upgraded with proteins purified from mammalian cells, PTM specific IgG/IgM 

response may could be elicited. Thirdly, only 29 samples at collected at a single time point were 

analyzed. Though there are some interesting findings, we believe some of the current conclusions 

could be strengthened by including more samples. Furthermore, longitudinal samples29,42 

collected at different time points from the same individual after diagnosis or even after cured may 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2020. ; https://doi.org/10.1101/2020.03.20.20039495doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.20.20039495
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

enable us to reveal the dynamics of the SARS-CoV-2 specific IgG/IgM responses. The data may 

could be further linked to the severity of COVID-19 among different patients. 

  The application of the SARS-CoV-2 proteome microarray is not limited to serum profiling. It 

could also be explored for host-pathogen interaction43, drug/ small molecule target 

identification44,45，and antibody specificity assessment46.  

  Through the same construction procedure, we could easily expand the microarray to a pan 

human coronavirus proteome microarray by including the other two severe coronaviruses, i.e., 

SARS-CoV11,47,48 and MERS-CoV47, as well as the four known mild human coronaviruses49,50, 

i.e., CoV 229E, CoV OC43, CoV HKU-1 and CoV NL63. By applying this microarray, we can 

assess the immune response to coronavirus on a systems level, and the possible cross-reactivity 

could be easily judged. 

  Taken together, we have constructed the first SARS-CoV-2 proteome microarray, this 

microarray could be applied for a variety of applications, including but not limited to in-depth 

IgG/ IgM response profiling. Through the analysis of convalescent sera on the microarray, we 

obtained the first overall picture of SARS-CoV-2 specific IgG/ IgM profile. We believe that the 

findings in this study will shed light in the development of more precise diagnostic kit, more 

appropriate treatment and effective vaccine for combating the global crisis that we are facing 

now. 
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Figure Legends 

 

Figure 1. The workflow of SARS-CoV-2 proteome microarray fabrication and serum 

profiling. A) The genome of SARS-CoV-2 and the 28 predicted proteins. B) The workflow of 

proteome microarray fabrication and serum profiling on the microarray. 

 

Figure S1. The SARS-CoV-2 proteins included in this proteome microarray. The Up panel is 

western blotting with an anti-6xHis antibody. The low panel is Coomassie staining. These proteins 

were prepared and collected from different sources. T: Tao Lab (our laboratory); B: Hangzhou 

Bioeast biotech. Co., Ltd.; K: Healthcode Co., Ltd.; S: Sanyou biopharmaceuticals Co., Ltd.; W: 

VACURE l Biotechnology Co., Ltd. Y: Sino biological Co., Ltd. 

 

Figure 2. SARS-CoV-2 proteome microarray layout and quality control. A) There are 14 

identical sub-arrays on a single microarray. A microarray was incubated with an anti-6xHis 

antibody to demonstrate the overall microarray quality (green). One sub-array is shown. To 

facilitate labeling, this sub-array is split into 3 parts. The proteins were printed in quadruplicate. 

The triangles indicate dilution titers of the same proteins. B) Representative sub-arrays probed with 

sera of a COVID-19 convalescent and a healthy control. The IgG and IgM responses are shown in 

green and red, respectively. C) and D) The correlations of the overall IgG and IgM signal intensities 

between two repeats probed with the same serum. E) Statistics of the Pearson correlation confidents 

among repeats probed with the same serum. 

 

Figure 3. The overall SARS-CoV-2 specific IgG profiles of the 29 convalescent sera against 

the proteins. Each square indicates the IgG antibody response against the protein (row) in the 

serum (column). Proteins are shown with names along with concentrations (μg/mL) and sources. 

Sera are shown with group information and serum number. NCP: Novel Coronavirus Patients or 
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COVID-19 patients; LC：Lung Cancer; NC：Normal Control. Blank means no serum. Three repeats 

were performed for serum NCP534 and NCP535. FI：Fluorescence Intensity. 

 

Figure 4. The overall SARS-CoV-2 specific IgM profiles of the 29 convalescent sera against 

the proteins. Each square indicates the IgM antibody response against the protein (row) in the 

serum (column). The rest are the same as that of Figure 3. 

 

Figure 5. IgG response to S and N proteins. A) Box plots of IgG response for S1 and S2 proteins. 

Each dot indicates one serum sample either from convalescent group (green) or control group 

(brown). Mean and standard deviation value for each group are indicated. The proteins labeled with 

red are over expression in mammalian cell lines. P values were calculated by t.test. **, p <0.01; *, 

p <0.05; n.s., not significant. B) Box plots of IgG response for N proteins. C) Pearson correlation 

coefficient matrix of IgG response among different S1 and S2 proteins. D-F) Correlations of overall 

IgG responses among different S1 proteins (D), S1 vs. RBD (E) and S1 vs. S2 (F). Each spot 

represents one sample. G) One part of a sub-microarray showed the IgG responses of two controls, 

i.e., LC169 and NC96 against N proteins, N-Cter and N-Nter indicated the C-terminal and N-

terminal of N protein, respectively. H-I) Correlations of the overall IgG responses among different 

N proteins (H) and N protein vs. S protein (I). J) Statistics of the Pearson correlation coefficients 

between IgG and IgM profile against a set of proteins. K) Correlations between IgG and IgM profile 

against S1_0.1_W. 

 

Figure S2. IgG response to S and N proteins. A-E）Correlations of the overall IgG responses 

among different dilutions of protein S1_S (A), two RDB proteins from different sources (B), S2-1 

vs. S2-2 (C), S1 vs. S1-4 (D) and S1 vs. S2 (E). F) Pearson correlation coefficient matrix of IgG 

responses among N proteins. Each spot represents one sample. G-I) Correlations of the overall IgG 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2020. ; https://doi.org/10.1101/2020.03.20.20039495doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.20.20039495
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

responses among different dilutions of protein N_W (A), N-Nter/ N-Cter vs. N protein (H) and N-

Cter vs. N-Nter (I). 

 

Figure S3. IgM Antibody response to S and N proteins. A) Box plots of IgM responses to S1 

and S2 proteins. Each dot indicates one serum sample either from patient group (green) or control 

group (brown). Mean and standard deviation for each group are indicated. The proteins labeled 

with red are over-expressed in 293T. P values were calculated by t test. **, p <0.01; *, p <0.05; 

n.s., not significant. B) Box plots of IgM responses to N proteins. C) Pearson correlation coefficient 

matrix of IgM responses among S1 and S2 proteins of different versions from different sources. 

(D-H) Correlations of the overall IgM responses among S1 proteins (D), S1 vs. RBD (E), S1 vs. 

S2 proteins (F), different N proteins (G) and N vs. S proteins (H). Each spot represents one sample. 

 

Figure 6. IgG response to other SARS-CoV-2 proteins. A) Other SARS-CoV-2 proteins that 

were recognized by IgG from the convalescent sera, in comparison to that of the controls. B-C) 

Anti-ORF9b IgG (B) or anti-NSP5 IgG (C) in patient and control group. Each dot represents one 

serum sample. Mean and standard deviation value for each group are indicated. The dashed line 

indicates cutoff value calculated as mean plus 3x standard deviation of the control group. P values 

were calculated by t test. D-E) Correlations of the overall IgG responses for N or S1 protein vs. 

ORF9b (D) or NSP5 (E). 

 

Figure 7. Correlation with clinical characteristics. A) Correlations of S1 IgG responses with 

Days after COVID-19 onset. Each spot indicates one COVID-19 patient. B）Correlations of S1 

IgG responses with age either for female (blue) or male (pink). The red arrows indicate patients 

with mild symptoms while others with common symptoms. C) S1 IgG responses in groups of 

different age and gender. P values were calculated by t test. **, p <0.01; *, p <0.05; n.s., not 
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 25 

significant. D-I) Correlations of S1 IgG responses with Age for male (age <40) (D), Age for female 

(E), LDH for male (F), LDH for female (G), Ly% for male (H) and Ly% for female (I). Each spot 

indicates one patient from the corresponding group. For E), only the patients with 18-24 days after 

onset were selected. For G), only the female patients with 18-24 days after onset and ranging in 

age from 20 to 60. 

 

Figure S4. Correlation with clinical characteristics. A) Correlations of N protein specific IgG 

responses with days after onset. The red arrows indicate patients with mild symptoms while others 

with regular symptoms. B-L) Correlations of S1 specific IgG or N specific IgG with Days after 

onset, Age, LDH or Ly% in different groups, specifically, Days after onset vs. Age for male (age 

<40) (B), N protein specific IgG vs. Age for male (age <40)(C), S1 protein specific IgG vs. Age 

for female (D), N protein specific IgG vs. Age for female (E), Days after onset vs. Age for female 

patients with18-24 days after onset (F), N protein specific IgG vs. Age for female patients with18-

24 days after onset (G), S1 protein specific IgG vs. LDH for female; (H), Age or Days after onset 

vs. LDH for female patients with 18-24 days after onset and ranging in age from 20 to 60. (I), N 

protein specific IgG vs. LDH for female patients with 18-24 days after onset and ranging in age 

from 20 to 60. (J), N protein specific IgG vs. Ly% for female (K) and Age vs. Ly% for female (L). 

For F) and G), only the patients with 18-24 days after onset were selected. 
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Figure 2.  SARS-COV-2 proteome microarray Layout and quality control.
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Figure 3. The overall SARS-CoV-2 specific IgG profiles of the

29 sera against the proteins.
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Figure 4. The overall SARS-CoV-2 specific IgM profiles of the 29
sera against the proteins.
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Figure 5. Antibody response to S and N proteins.
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Figure S2. IgG response to S and N proteins.
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Figure S3. IgM response to S and N proteins.
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Figure 6. IgG response to other SARS-CoV-2 proteins.
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Table 1. Serum samples tested in this study.

Patient Group n=29

Gender
Male 13

Female 16

Age 42.3±13.8 

Severity
mild cases 3

common cases 26

Days after onset 22.3±5.4

hospital stay (days) 17.9±5.7

Control group n=21

Lung cancer patients 10

Gender
Male 5

Female 5

Age 55.9±7.3

sample collection data (year) 2017

Health control 11

Gender
Male 6

Female 5

Age 45.1±12.9

sample collection data (year) 2017-2018

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2020. ; https://doi.org/10.1101/2020.03.20.20039495doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.20.20039495
http://creativecommons.org/licenses/by-nc-nd/4.0/

	SARS-CoV-2 proteome microarray 2020-3-18-JHW - 2(1)(1)
	Jiang et., Figures 2020-3-18

