A prospect on the use of antiviral drugs to control local outbreaks of COVID-19

Andrea Torneri^{1†}, Pieter Libin^{2,3,4†}, Joris Vanderlocht², Anne-Mieke Vandamme^{4,5}, Johan Neyts⁴, Niel Hens^{1,2*}

 1 Centre for Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium

² Interuniversity Institute of Biostatistics and statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium

³ Artificial Intelligence lab, Department of computer science,

Vrije Universiteit Brussel, Brussels, Belgium

⁴ KU Leuven - University of Leuven, Department of Microbiology and Immunology
 Rega Institute for Medical Research, Clinical and epidemiological virology, Leuven, Belgium
 ⁵ Center for Global Health and Tropical Medicine, Unidade de Microbiologia,
 Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal

† joint first author * corresponding author

Abstract

Objective: Investigate the impact of using antiviral drugs to control local outbreaks of COVID-19.

Methods: Using a simulation-based model of viral transmission we tested the impact of different intervention measures for the control of COVID-19.

Results: The use of an antiviral drug, in combination with contact tracing, quarantine and isolation, results in a significant decrease of the mean final size and the peak incidence of local outbreaks of COVID-19, provided delays in contact tracing are small.

Conclusions: Integrating antiviral drugs together with contact tracing and quarantine is predicted through this model to be an effective tool for the control of local outbreaks of COVID-19. **Keywords:** antiviral drugs, isolation, quarantine

1 Introduction

- To control local outbreaks of COVID-19 we investigate the use of contact tracing and isolation in
- 2 combination with an antiviral compound. Even when perfect isolation is in place, it may not be
- sufficient to contain a local COVID-19 outbreak [5]. Therefore, in the absence of a vaccine, an an-
- tiviral drug in addition to isolation could be used to contain the current COVID-19 epidemic. Today
- there are no Corona-specific drugs and development of potent and safe drugs typically takes years.
- 6 However, there are a number of drugs, originally targeted towards other viral infections, in clinical
- 7 trials for their ability to control SARS-CoV-2 infection. Most of these drugs inhibit key components
- 8 of the coronavirus infection life cycle including viral entry, replication, RNA synthesis and protein
- synthesis. We therefore assume that an antiviral compound will reduce the viral load of an infected
- individual with COVID-19. For our modeling experiments we searched for an experimental drug
- for which viral load data were available to inform our model. Remdesivir, was recently shown to

inhibit SARS-CoV-2 in vitro [13] and is currently under evaluation in clinical trials. Remdesivir is an investigational broad-spectrum antiviral agent that has been developed against the Ebola-virus and which functions as a nucleotide-analog inhibitor of the viral RNA-dependent RNA polymerase and has activity against a wide range of RNA-viruses [14]. In addition, it is also active against SARS-CoV and MERS-CoV, which is expected given the high level of similarity between the genes that are involved in the replication cycle of these corona viruses. For the aforementioned reasons 17 we inform our model with data on the control of MERS-CoV viral load by Remdesivir in a translational murine model [11]. The animal model that was utilized was specifically developed to better approximate the pharmacokinetics and drug exposure profile in humans. Therefore, the measure 20 of viral titers in lung tissue at different time-points in this model serves as a reasonable proxy for viral dynamics upon compound exposure in the controlled setting of a viral challenge. To this end, we calibrate the model to represent the viral load decrease thereof. 23 In this manuscript we first present the effect of isolation, considering both home quarantine (for individuals that are part of a contact trace network and for infected individuals with mild symptoms) 25 and hospital isolation (for severe cases). We argue that when an individual is quarantined at home, this will only result in a partial reduction of contacts, accounting for contacts with household members and other isolation imperfectness. To compensate for this imperfect isolation, we consider the use of an antiviral compound. We test these different control measures in a simulation study that aims at representing, given the available information, the current COVID-19 epidemic.

2 Methods

2.1 Epidemiological model

The disease dynamics are depicted in the left panel of Figure 1. The possible transitions between epidemic classes are described by the arrows.

Figure 1: **Disease dynamics:** Possible transitions among the different epidemic compartments (left panel). A measure describing how infectiousness is distributed over time since infection (right panel).

Individuals are initially susceptible (S) and once infected, they enter the exposed class (E). The infection, that is at first asymptomatic (I_a) , can lead to the onset of mild (I_m) or severe symptoms (I_s) . Symptomatic individuals are hospitalized (H), where they are isolated, or are confined in home quarantine (Q), based on the severity of symptoms. Ultimately, all infectives are assumed to either recover from infection or die (R). Individuals that are hospitalized are immediately isolated; therefore they can no longer transmit the disease. The quarantined individuals, can still make contacts, although at a decreased rate.

The transition from the susceptible to the exposed class is governed by a stochastic process based on the notion of infectious contact processes [10]. First, contacts between individuals are generated.

When such contacts generated between susceptible and infectious people, these can result in an infection event according to a Bernoulli probability value based on the time since infection. This probability is computed, at a precise time point, as the product of two components: the infectiousness measure, $\nu(t)$, which quantifies the level of infectiousness over time, and the total amount of infectivity q, i.e. the number of infections over the contact rate [12]. The function $\nu(t)$ is defined over the exposed and infectious period, or analogously over the incubation and symptomatic period, along which it integrates to one. This function is scaled to have a similar shape among different infectives, based on their lengths of exposed and infectious period. According to this framework, an infectious individual makes effective contacts at a rate, r(t) given by:

$$r(t) = \lambda * q * \nu(t) \tag{1}$$

reproduction number. The two quantities are identical in an infinite and homogeneous population, where the probability of making two effective contacts with the same person is zero. For the considered population size, the probability of this event is extremely low. Therefore, throughout the manuscript, we approximate the reproduction number with the mean number of secondary 55 56 In the considered framework, isolation/quarantine is implemented by reducing the contact rate 57 λ at the time of diagnosis. To date, little is known about the difference in viral load among severe and mild cases. Zhou et al. [19] indicate that in nasal and throat swabs the viral load is higher in mild cases. However, virus was detected also in blood and stool sample [9]. Due to this 60 uncertainty, we assume that the same curve is defined for all the infected individuals. In this work, we assume the population to be homogeneous, closed and finite population. The former assumption was chosen because of the limited knowledge on the COVID-19 determinants as mentioned above. 63 The two latter assumptions relate to the control measures currently in place, e.g. in Italy, aiming at containing immigration and emigration in a country with an ongoing outbreak.

where λ is the contact rate. The mean number of effective contacts is an approximation of the

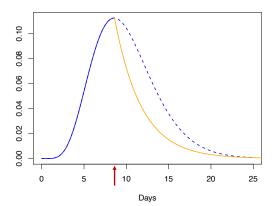
2.2 Simulation parameters and distributions

In Table 1 we report the parameters and distributions that were utilized in the simulation study.
Where distributions are not reported, the parameters are assumed to be constant. In the last column, when available, we report the references to the literature that justifies the choice of the parameter value, or distribution, we use.

Table 1: Model Parameters

Name	Mean Value (sd)	Distribution	Reference
Incubation period	5.2 days (2.8 days)	Weibull	[7; 17]
Symptomatic period length	18 days	Exponential	[19]
Time to hospitalization	1.6 days	Exponential	[1]
Reproduction number:	2.5		[2; 7; 16; 17]
Symptomatic Individuals	100%	-	Assumed
Severe cases	16%	-	[4]
Population size	500	-	Motivated in the text
Daily contact rate	12 contacts	-	[15]
Infectiousness measure	10 days (3.8 days)	Gamma	[9; 18; 19]

- We assume infectious individuals to make, on average, between two and three effective contacts.
- This value, is set accordingly to the current estimate of the basic reproduction number [2, 7, 16, 17].
- The infectiousness measure is set to represent the viral load observations reported in [9, 18, 19], the


peak of which is reached within a few days after symptoms onset. The total length is modeled as
the convolution of incubation and symptomatic period. Incubation and symptomatic period, are
set, respectively, to have a mean length of 5.2 days and 18 days. There is no precise estimate of the
length of the symptomatic period to date, thus we choose it according to the aggregated nasal and
throat swabs data [19]. The time to hospitalization is estimated from the data presented in [1]. We
assume that the time to hospitalization coincides with the time of diagnosis. At this time-point,
depending on the severity of the symptoms, individuals are isolated (severe cases) or quarantined
(mild cases). The population size is set to 500 to represent a localised outbreak of COVID-19.
Furthermore, we assume that the contact tracing starts when individuals are diagnosed.

2.3 Contact tracing and isolation

In order to implement contact tracing we keep track of a contact history \mathcal{H}_i for each individual i for all contacts made since the time of infection. When an individual i is found to be infected with SARS-CoV-2, a contact tracing procedure is started. We assume that each contact in \mathcal{H}_i will be traced back successfully with probability η . Depending on the considered scenario, tracedback individuals will be monitored, or put in quarantine/isolation if positive for SARS-Covid-2, 86 or injected with the antiviral drug and put in quarantine/isolation if positive for SARS-Covid-2. 87 We assume that traced-back individuals that test positive are isolated in the 16% of cases. The 88 quarantine will result in a decreased contact rate (i.e. imperfect isolation), λ_q , while in case of perfect isolation the contact rate is set to zero. Similarly, diagnosed individuals will also be quarantined: 90 at home (mild symptoms), with a decreased contact rate λ_q , or in the hospital (severe symptoms), 91 where we assume that perfect isolation is possible. We assume that 16% of infections is severe and require hospitalisation [4]. 93

2.4 Antiviral compounds

To compensate for imperfect isolation we investigate the use of antiviral compounds to reduce the infectiousness of an infected individual. We assume that, once the antiviral compound has been administered, the infectiousness measure will exponentially decay according to an inverse Malthusian growth model (shown in Figure 2) [8]. The rate of this decay is set to represent the reduction in viral load, due to Remdesevir, as reported in [11] for the MERS coronavirus.

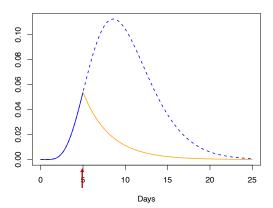


Figure 2: **Reduction of infectiousness.** The blue and the orange lines describe the infectiousness measure, respectively, before (dashed blue) and after antiviral injection (solid yellow). The red arrows indicate the injection times.

3 Scenarios

- We assume the following parameters for the reduction of contacts because of home quarantine: $\lambda_q = 0.1\lambda, 0.25\lambda, 0.5\lambda$ and for the probability of tracing back a contact in history \mathcal{H}_i : $\eta = 0.25, 0.5, 0.75$ [6]. Scenarios: In all the considered scenarios we assume that individuals are isolated, or quarantined, when diagnosed. Moreover, we assume that contact tracing starts at the time of diagnosis.
 - IAS: Traced individuals are monitored for two weeks, and isolated/quarantined if they show symptoms during this period. This scenario is similar to the baseline scenario described by Hellewell et al. [5] with the exception that in our description only severe cases are isolated while the mild are home quarantined. This scenario reflects more realistically the current practice of containment.
 - IBS: Traced individuals are isolated/quarantined, as soon as they test positive for SARS-COV-2. We assume that an individual that is infected tests positive 2 days after infection. Therefore, a traced individual is tested immediately when traced, and, if this test was negative, we test the individual again two days later.
- IBTBS: Diagnosed patient is immediately treated with the antiviral drug. Furthermore, traced individuals are isolated/quarantined and injected with the antiviral drug, as soon as they test positive for SARS-COV-2. We assume that an individual that is infected tests positive 2 days after infection. Therefore, a traced individual is tested immediately when traced, and, if this test was negative, we test the individual again two days later.
- For each scenario we run 5000 simulations. Among these, we compute the mean final size and the cases at peak for the one in which at least the 10% of individuals have been infected. Doing this, we only account for outbreaks that are most challenging to contain.

4 Results

Quarantine, isolation and antiviral treatments lead, in different levels, to the mitigation of the 106 outbreak by reducing the final size as well as by reducing the number of cases at the peak of 107 the epidemic. The containment performance depends, among all the scenarios, on the probability 108 to successfully trace contacts and on the reduction in contact rate due to quarantine (Figure 3). 109 Isolation and quarantine lead to a substantial decrease in mean final size and peak incidence. When 110 performed prior to symptom onset their efficacy increases, which is important, as there is a positive 111 probability of presymptomatic infection [3]. The antiviral treatment is shown to have a substantial 112 impact and, together with quarantine and isolation, significantly reduces the mean final size, the 113 peak incidence and the number of outbreaks that are most challenging to contain. 114

5 Discussion

We assume that we have sufficient antiviral drugs doses to treat all individuals that are encountered via the contact tracing procedure. This is motivated by the fact that we consider an emerging outbreak and the required number of doses will thus be limited.

Furthermore, we assume that all the individuals will show symptoms, sooner or later, during their infectious period, and therefore all infected individuals will be diagnosed. Due to the awareness of COVID-19 given by media and government officials, individuals are more likely to act upon even mild symptoms. This assumption is in line with the work of Hellewell et al. [5]. Moreover, we assume that all infected individuals will eventually be diagnosed. While this is a limitation of our

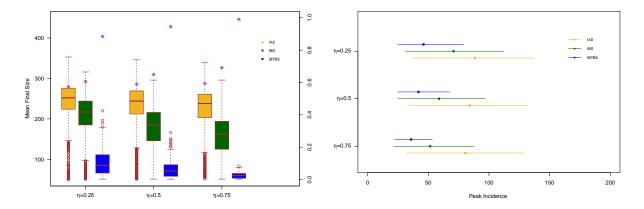


Figure 3: Mean final size and peak incidence. Left panel: distributions of the mean final size value for Scenario IAS (yellow), Scenario IBS (green) and Scenario IBTBS (blue) when the quarantine contact rate is $\lambda_q = 0.25\lambda$ together with the probability that a simulation leads to a number of cases smaller than the 10% of the population (purple asterisks). Right panel: Peak incidence together with the 2.5 % and the 97.5 % percentiles.

study, we argue that in the scenarios where we aggressively trace and treat the contacts of individuals, we are more likely to find (and constrain) cases that would otherwise go undetected.

123

124 125

126

127

128

129

130

13

132

133

134

135

136

137

138

139

140

141

142

143

144

146

147

148

149

150

151

152

In the hospital, we assume perfect isolation, meaning that infected individuals cannot spread the infection. However, health care workers are at risk and they could be infected by infected individuals in isolation [5].

In the IBS and IBTBS scenarios we assume that the traced individuals that test positive are isolated in the 16% of cases, even before showing actual severe symptoms. This is a simplification; a more realistic implementation would be to first quarantine cases and isolated them when the severe symptoms onset. We expect that our implementation may only slightly affect the outcomes, without influencing the conclusion that antivirals, in addition to isolation and quarantine, are effective to control an epidemic. Furthermore, in the sensitivity we tested analysis a scenario in which infection can be detected only after 4 days since infection, close to the incubation period, limiting the impact of a early isolation. In this case, we also highlight the importance of antiviral drugs.

Although this model is informed with data on the control of MERS-CoV viral load using prophylaxis with Remdesivir, it stands to reason that different classes of viral inhibitors control the viral load in different ways. Additionally, despite the sequence similarity of MERS-CoV and SARS-COV-2 it remains to be established whether the impact of Remdesivir (or other antivirals) on the viral load is similar. To this end, longitudinal data of the viral load on COVID-19 infected patients treated with different viral inhibitors will be informative. Furthermore, Sheahan et al. [11] demonstrated that the degree of the clinical benefit of Remdesivir for MERS depends on the viral dose and also on the timing of the treatment of the viral inhibitor. A lethal viral dose and delaying the initiation of antiviral treatment failed to fully prevent viral pathogenesis. Although Remdesivir proved effective at reducing the viral load also in these conditions, the argument for an early start of antiviral treatment is evident. Presumably, reducing the viral load with an antiviral compound loses its efficacy in advanced disease as the tissue damage is sustained by inflammatory processes in absence of the viral initiator. In our implementation, antiviral injections are immediately administered to successfully traced back individuals, mostly in their asymptomatic phase, and to the diagnosed patient. Therefore, we believe that the assumptions on the use of this drug, in the considered scenario, are reasonable.

6 Conclusion

The ongoing epidemic of COVID-19 threatens the health system of many countries. Control strate-153 gies are fundamental measures that public health officials must implement to contain this epidemic. 154 Isolation and quarantine can be of great importance, however, relying on their exclusive use could 155 fail to contain an ongoing outbreak. In addition, when several infected individuals need hospital 156 care, the number of cases at peak should be minimized as much as possible to avoid that regions 157 run out of hospital capacity. With this study we highlight the impact of a potential antiviral com-158 pound that reduces the viral load and, consequently, the infectiousness of infectives. We describe 159 the action of Remdesivir, however, the proposed investigation can be extended to other antivirals, 160 with the caveat that the efficacy of administering an antiviral compound, in addition to isolation 161 and quarantine, depends on the effectiveness of the respective drug. We show that the use of this 162 compound leads to a substantial reduction of the mean final size and the peak incidence. In ad-163 dition, the number of outbreaks that are most challenging to contain decreases when the antiviral 164 is administered to diagnosed and traced individuals. Therefore, the administration of an antiviral 165 drug, together with isolation and quarantine, is expected to have a major impact in the control of 166 local COVID-19 outbreaks. 167 We remain hopeful that the ongoing clinical trials will reveal an antiviral compound that can be 168 used as a treatment and prophylaxis. Yet, our work shows that such compounds have a great 169 potential to mitigate pandemics and research towards new drugs targeting different virus families 170 with pandemic potential is thus warranted. 171

Acknowledgements

This work is funded by the Epipose project from the European Union's SC1-PHE-CORONAVIRUS2020 programme, project number 101003688 and by the European Union's Horizon 2020 research
and innovation programme (grant agreement 682540 — TransMID). A.T. acknowledges support
from the special research fund of the University of Antwerp. P.L. was supported by funding from the
Flemish Government under the "Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen"
programme.

Author contributions

A.T. contributed to the conceptualization of the study, the construction and implementation of the 178 mathematical model, the experimental setting and the writing of the manuscript. P.L. contributed 179 to the conceptualization of the study, the construction of the mathematical model, the experimental 180 setting and the writing of the manuscript. J.V. contributed to the construction of the mathemat-181 ical model, the experimental setting and the writing of the manuscript. A.V. contributed to the 182 conceptualization of the study and the writing of the manuscript. J.N. contributed to the conceptu-183 alization of the study and the writing of the manuscript. N.H. contributed to the conceptualization 184 of the study, the construction of the mathematical model, the experimental setting, the writing of 185 the manuscript and the project supervision. 186

Competing interests

Besides his employment at the Hasselt University, JV is employed at Bioqube Ventures. Bioqube Ventures was not involved in this work, nor does it prosper financially as a result of the current study. The other authors declare that they have no competing interests.

Materials and Correspondence

Correspondence and material requests should be addressed to Prof. Dr. Niel Hens. Source code of our model and experiments can be found on https://github.com/AndreaTorneri/ViralTransm.

7 Sensitivity Analysis

We report in Figure 4 and 5 the sensitivity analysis for the quarantine contact rate: $\lambda_q = 0.1\lambda, 0.5\lambda$. The introduction of an antiviral compound substantially contributes in reducing the mean final size, the peak incidence and the probability of a challenging outbreak in all the considered settings. This decrease, compared to the scenario in which only isolation/quarantine is implemented, increases when quarantine is less effective (left panels). In Figure 6 and 7, we vary the reproduction number that is set, respectively, to $\mathcal{R}_0 = 2$ and $\mathcal{R}_0 = 3$. The effect of the antiviral drug, in addition to isolation and quarantine, increases when the reproduction number increases. In case of $\mathcal{R}_0 = 3$, the peak incidence decreases when the antiviral compound is used, compared to control measures based only on isolation and quarantine after symptoms onset.

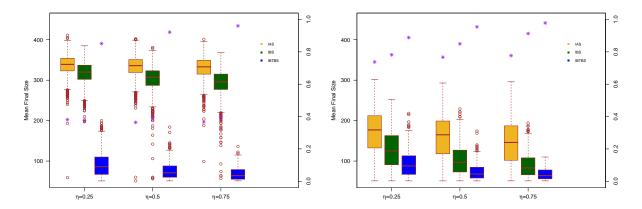


Figure 4: Distributions of the mean final size value for Scenario IAS (yellow), Scenario IBS (green) and Scenario IBTBS (blue) when the quarantine contact rate is $\lambda_q = 0.5$ (left panel) and $\lambda_q = 0.1$ (right panel) together with the probability that a simulation leads to a number of cases smaller than the 10% of the population (purple asterisks)

In Figure 8 we investigate the effect of a longer time needed for the test to detect an infectious individual. We assume the test is positive when performed on an infectious individual who has been infected since at least 4 days. Simulations show a substantial increase, both in the mean final size and the peak incidence for the IBS scenario. Instead, the use of an antiviral drug results also in this case of remarkable impact in both the final size and the peak incidence.

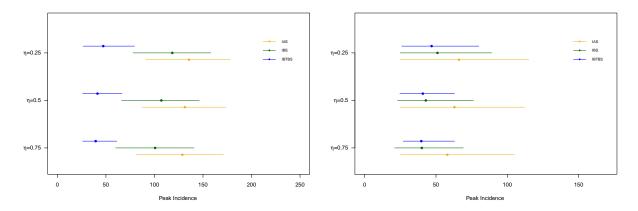


Figure 5: Mean peak incidence for Scenario IAS (yellow), Scenario IBS (green), Scenario IATBS (red) and Scenario IBTBS (blue) when the quarantine contact rate is $\lambda_q = 0.1\lambda$ (left panel) and $\lambda_q = 0.5\lambda$ (right panel) together with 2.5% and 97.5% percentiles.

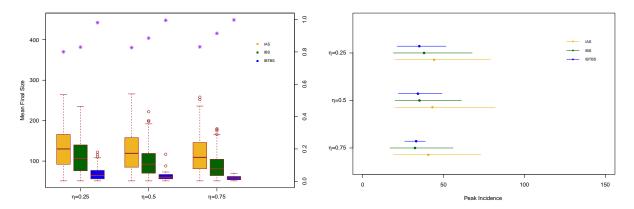


Figure 6: Mean final size distribution (left panel) and mean peak incidence for Scenario IAS (yellow), Scenario IBS (green) and Scenario IBTBS (blue) when the quarantine contact rate is $\lambda_q = 0.25\lambda$, and $\mathcal{R}_0 = 2$. In the left panel, for each scenario we report the probability that a simulation leads to a number of cases smaller than the 10% of the population (purple asterisks). In the right panel, together with the point estimates we report the 2.5% and 97.5 % percentiles.

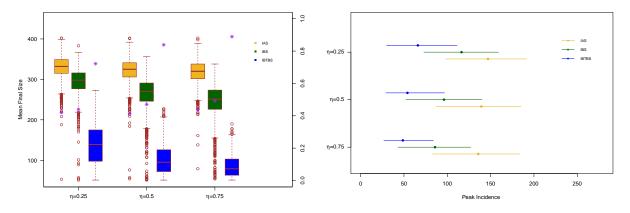


Figure 7: Mean final size distribution (left panel) and mean peak incidence for Scenario IAS (yellow), Scenario IBS (green) and Scenario IBTBS (blue) when the quarantine contact rate is $\lambda_q = 0.25\lambda$, and $\mathcal{R}_0 = 3$. In the left panel, for each scenario we report the probability that a simulation leads to a number of cases smaller than the 10% of the population (purple asterisks). In the right panel, together with the point estimates we report the 2.5% and 97.5 % percentiles.

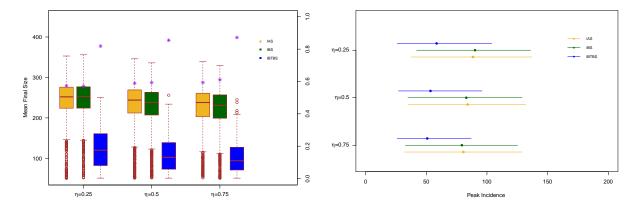


Figure 8: Mean final size distribution (left panel) and mean peak incidence for Scenario IAS (yellow), Scenario IBS (green) and Scenario IBTBS (blue) when the quarantine contact rate is $\lambda_q = 0.25\lambda$, $\mathcal{R}_0 = 2.5$ and the test detect positively an infectious individual after 4 days since infection. In the left panel, for each scenario we report the probability that a simulation leads to a number of cases smaller than the 10% of the population (purple asterisks). In the right panel, together with the point estimates we report the 2.5% and 97.5 % percentiles.

References

- [1] J. A. Backer, D. Klinkenberg, and J. Wallinga. Incubation period of 2019 novel coronavirus (2019-ncov) infections among travellers from wuhan, china, 20–28 january 2020. *Eurosurveillance*, 25(5), 2020.
- [2] A. Flahault. Has china faced only a herald wave of sars-cov-2? The Lancet, 2020.
- [3] T. Ganyani, C. Kremer, D. Chen, A. Torneri, C. Faes, J. Wallinga, and N. Hens. Estimating the generation interval for covid-19 based on symptom onset data. *medRxiv*, 2020.
- [4] W.-j. Guan, Z.-y. Ni, Y. Hu, W.-h. Liang, C.-q. Ou, J.-x. He, L. Liu, H. Shan, C.-l. Lei, D. S. Hui, B. Du, L.-j. Li, G. Zeng, K.-Y. Yuen, R.-c. Chen, C.-l. Tang, T. Wang, P.-y. Chen, J. Xiang, S.-y. Li, J.-l. Wang, Z.-j. Liang, Y.-x. Peng, L. Wei, Y. Liu, Y.-h. Hu, P. Peng, J.-m. Wang, J.-y. Liu, Z. Chen, G. Li, Z.-j. Zheng, S.-q. Qiu, J. Luo, C.-j. Ye, S.-y. Zhu, and N.-s. Zhong. Clinical characteristics of coronavirus disease 2019 in china. New England Journal of Medicine, 2020.
- [5] J. Hellewell, S. Abbott, A. Gimma, N. I. Bosse, C. I. Jarvis, T. W. Russell, J. D. Munday, A. J. Kucharski, W. J. Edmunds, F. Sun, et al. Feasibility of controlling covid-19 outbreaks by isolation of cases and contacts. *The Lancet Global Health*, 2020.
- [6] D. Klinkenberg, C. Fraser, and H. Heesterbeek. The effectiveness of contact tracing in emerging epidemics. *PloS one*, 1(1), 2006.
- [7] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S. Leung, E. H. Lau, J. Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T. T. Lam, J. T. Wu, G. F. Gao, B. J. Cowling, B. Yang, G. M. Leung, and Z. Feng. Early transmission dynamics in wuhan, china, of novel coronavirus infected pneumonia. New England Journal of Medicine, 2020.
- [8] T. R. Malthus, D. Winch, and P. James. *Malthus: 'An Essay on the Principle of Population'*. Cambridge University Press, 1992.
- [9] Y. Pan, D. Zhang, P. Yang, L. L. M. Poon, and Q. Wang. Viral load of sars-cov-2 in clinical samples. *The Lancet Infectious Diseases*, 2020.
- [10] P. H. Rhodes, M. E. Halloran, and I. M. Longini Jr. Counting process models for infectious disease data: distinguishing exposure to infection from susceptibility. *Journal of the Royal*

- Statistical Society: Series B (Methodological), 58(4):751–762, 1996.
- [11] T. P. Sheahan, A. C. Sims, S. R. Leist, A. Schäfer, J. Won, A. J. Brown, S. A. Montgomery, A. Hogg, D. Babusis, M. O. Clarke, J. E. Spahn, L. Bauer, S. Sellers, D. Porter, J. Y. Feng, T. Cihlar, R. Jordan, M. R. Denison, and R. S. Baric. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against mers-cov. *Nature Communications*, 11(1):222, 2020.
- [12] Å. Svensson. A note on generation times in epidemic models. *Mathematical biosciences*, 208(1):300–311, 2007.
- [13] M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, and G. Xiao. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-ncov) in vitro. *Cell research*, 30(3):269–271, 2020.
- [14] T. K. Warren, R. Jordan, M. K. Lo, A. S. Ray, R. L. Mackman, V. Soloveva, D. Siegel, M. Perron, R. Bannister, H. C. Hui, et al. Therapeutic efficacy of the small molecule gs-5734 against ebola virus in rhesus monkeys. *Nature*, 531(7594):381–385, 2016.
- [15] L. Willem, T. V. Hoang, S. Funk, P. Coletti, P. Beutels, and N. Hens. Socrates: An online tool leveraging a social contact data sharing initiative to assess mitigation strategies for covid-19. medRxiv, 2020.
- [16] World Health Organization. Coronavirus disease 2019 (covid-19). situation report 46.
- [17] J. Zhang, M. Litvinova, W. Wang, Y. Wang, X. Deng, X. Chen, M. Li, W. Zheng, L. Yi, X. Chen, Q. Wu, Y. Liang, X. Wang, J. Yang, K. Sun, I. M. Longini, M. E. Halloran, P. Wu, B. J. Cowling, S. Merler, C. Viboud, A. Vespignani, M. Ajelli, and H. Yu. Evolving epidemiology of novel coronavirus diseases 2019 and possible interruption of local transmission outside hubei province in china: a descriptive and modeling study. medRxiv, 2020.
- [18] P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H. Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, X.-R. Shen, X. Wang, X.-S. Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, F.-X. Zhan, Y.-Y. Wang, G.-F. Xiao, and Z.-L. Shi. A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature*, 2020.
- [19] L. Zou, F. Ruan, M. Huang, L. Liang, H. Huang, Z. Hong, J. Yu, M. Kang, Y. Song, J. Xia, et al. Sars-cov-2 viral load in upper respiratory specimens of infected patients. *New England Journal of Medicine*, 2020.