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Abstract 37 

X-linked adrenoleukodystrophy (ALD) is a peroxisomal metabolic disorder with a highly 38 
complex clinical presentation. ALD is caused by mutations in the ABCD1 gene, and is characterized 39 
by the accumulation of very long-chain fatty acids in plasma and tissues. Disease-causing mutations 40 
are ‘loss of function’ mutations, with no prognostic value with respect to the clinical outcome of an 41 
individual. All male patients with ALD develop spinal cord disease and a peripheral neuropathy in 42 
adulthood, although age of onset is highly variable. However, the lifetime prevalence to develop 43 
progressive white matter lesions, termed cerebral ALD (CALD), is only about 60%. Early 44 
identification of transition to CALD is critical since it can be halted by allogeneic hematopoietic stem 45 
cell therapy only in an early stage. The primary goal of this study is to identify molecular markers 46 
which may be prognostic of cerebral demyelination from a simple blood sample, with the hope that 47 
blood-based assays can replace the current protocols for diagnosis. We collected six well-48 
characterized brother pairs affected by ALD and discordant for the presence of CALD and performed 49 
multi-omic profiling of blood samples including genome, epigenome, transcriptome, 50 
metabolome/lipidome, and proteome profiling. In our analysis we identify discordant genomic alleles 51 
present across all families as well as differentially abundant molecular features across the omics 52 
technologies. The analysis was focused on univariate modeling to discriminate the two phenotypic 53 
groups, but was unable to identify statistically significant candidate molecular markers. Our study 54 
highlights the issues caused by a large amount of inter-individual variation, and supports the 55 
emerging hypothesis that cerebral demyelination is a complex mix of environmental factors and/or 56 
heterogeneous genomic alleles. We confirm previous observations about the role of immune 57 
response, specifically auto-immunity and the potential role of PFN1 protein overabundance in CALD 58 
in a subset of the families. We envision our methodology as well as dataset has utility to the field for 59 
reproducing previous or enabling future modifier investigations.  60 

 61 
 62 

1 Introduction 63 
Adrenoleukodystrophy (ALD) is a rare peroxisomal X-linked degenerative disease (MIM 64 

300100), caused by deficiency of the ABC half-transporter encoded by the ABCD1 gene. Over 800 65 
different disease-causing loss-of-function ABCD1 mutations have been reported 66 
(www.adrenoleukodystrophy.info). Mutations lead to a defect in the import of very long-chain fatty 67 
acids (VLCFA) into peroxisomes for further degradation and a subsequent accumulation of VLCFA 68 
in plasma and tissues. The overall incidence is 1:17,000. In males, ALD often manifests with 69 
adrenocortical insufficiency in childhood (50% before 10 years)(Huffnagel, Laheji, et al. 2019). 70 
During adulthood virtually all male and, eventually, female patients develop a progressive 71 
myelopathy termed adrenomyeloneuropathy (Engelen et al. 2014, 2012). Additionally, during 72 
childhood or sometimes through adulthood male patients can develop cerebral demyelination, termed 73 
cerebral ALD (CALD). It is estimated that eventually more than 60% of male patients develop 74 
CALD(de Beer and Scheltens 2016)(Kemp, Berger, and Aubourg 2012). Untreated CALD is often 75 
progressive, but can spontaneously arrest in 10 - 20% of patients. It causes vegetative state and death 76 
2-3 years after onset, so early identification as well as careful and frequent monitoring of all male 77 
ALD patients is necessary. If diagnosed early, hematopoietic stem cell therapy can be used to halt 78 
further progression of cerebral ALD. To ensure timely stem cell therapy for males with CALD, 79 
affected individuals are subjected to rigorous neurological and MRI follow-ups that pose 80 
considerable physical, emotional and financial burden. As such, the unresolved and unpredictable 81 
phenotypic variability of ALD is a crucial roadblock for patient care.  82 
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As newborn screening for ALD has recently been implemented, there is an urgent need for 83 
identification of markers which may be prognostic of cerebral demyelination in many newly 84 
diagnosed patients around the world. Our research focuses on delineating the enormous phenotypic 85 
variability in ALD, with the overarching goal of identifying biomarkers prognostic of the 86 
advancement to CALD. If successful in identifying biomarkers with prognostic power, then the 87 
biomarkers could replace existing expensive monitoring protocols and potentially highlight 88 
therapeutic targets, as is the case with other rare genetic disorders. For example, in Spinal Muscular 89 
Atrophy, the genes PLS3 and CORO1C were identified as protective modifiers, unravelling impaired 90 
endocytosis as a rescue mechanism for the phenotype (Hosseinibarkooie et al. 2016). These 91 
modifiers were identified from studies focusing on siblings with discordant disease severity, and are 92 
opening novel therapeutic targets for treatment. Patients with ALD may benefit from similar research 93 
advances. 94 

Phenotypic discordance in individuals with the same ABCD1 genotype, including siblings and 95 
even monozygotic twins (Korenke et al. 1996), strongly supports the hypothesis that other modifying 96 
factors play a role in the progression of the disease (Kemp et al. 2016; Wiesinger, Eichler, and Berger 97 
2015). As yet, however, modifier studies using candidate gene approaches have had little success and 98 
resulted in the identification of only a single modifier gene (CYP4F2) with limited prognostic power 99 
(van Engen et al. 2016). Other candidate variants have been proposed, including a candidate cis-100 
regulatory SNP in the promoter region of ELOVL1—a gene involved in VLCFA synthesis (Ofman et 101 
al. 2010). The functional consequences of this SNP with respect to the expression of ELOVL1 in the 102 
brain is still under investigation (Kemp, Berger, and Aubourg 2012). The lack of modifier 103 
identification could be due to the limited genomic search space that was explored, which to date has 104 
focused only on candidate gene approaches. Owing to the small sample size inherent to rare disease 105 
cohorts, traditional genome wide association studies (GWAS) approaches are not feasible. 106 
Employing a strategy which utilizes family structure may allow for a narrower search space 107 
compared to GWAS, while allowing a broader interrogation of the genome than candidate gene 108 
approaches. Beyond a search space which involves genetic mapping, other high throughput “omics” 109 
technologies allow the exploration of complex biological systems at many levels. It is now possible 110 
to identify differences between individuals or phenotypic states at the DNA, methylated DNA, RNA, 111 
lipid, and protein levels. Our goal is to delineate personal molecular characteristics that contribute to 112 
phenotypic variability in male ALD siblings enabling the identification of biomarkers that 113 
prognosticate onset and progression of CALD.  Because modifying factors (Génin, Feingold, and 114 
Clerget-Darpoux 2008) could also include environmental, epigenetic and microbiome factors (Génin, 115 
Feingold, and Clerget-Darpoux 2008; Argmann et al. 2016), multi-omics approaches are key.  116 

In this study, we carefully selected a set of six well characterized brother pairs who have the 117 
same ABCD1 pathogenic allele but are discordant for cerebral ALD: one brother has CALD and the 118 
other has no white matter lesions on MRI (non-CALD). The brother pairs are close in age (no more 119 
than 2 years apart), and range in age from 6-38 years at sample collection (Table 1). Blood samples 120 
were obtained from each of these patients and underwent profiling through five omics technologies 121 
(Figure 1) including whole genome sequencing (WGS), RNA sequencing (RNA-seq), EPIC DNA 122 
methylation (DNAm) microarray, lipidomic profiling via liquid chromatography mass spectrometry 123 
(LCMS), and protein profiling by LCMS. Each omics dataset was processed to quantify/map 124 
features, undergo quality control analysis, and then used for group-wise comparisons between CALD 125 
and non-CALD phenotype groups using univariate analysis. We first investigated the potential for a 126 
single, shared modifier allele which could discriminate the two groups from the WGS data. Next, we 127 
systematically compared the groups for each of these omics data sets to find potential markers 128 
specific to the phenotype. We aggregated the datasets together after performing pairwise comparisons 129 
and identified heterogeneous signals within sub-groups of the 6 families. To the best of our 130 
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knowledge this is the most comprehensive study to date in terms of systems biology characterization 131 
of human ALD using a unique collection of samples. 132 

 133 

2 Materials and Methods 134 

2.1 Project Overview 135 

An overview of the project can be found in Figure 1, which depicts the project phases 136 
including patient phenotyping/sample collection, multi-omic data collection, feature 137 
quantification/processing, quality control, and group-wise comparisons between phenotype groups. 138 
In this project, six brother pairs affected by ALD but discordant for the presence of cerebral ALD 139 
were included. Patients were selected from the Dutch cohort, an ongoing prospective natural history 140 
study (Huffnagel, van Ballegoij, et al. 2019). Blood was drawn from the brother pairs and 141 
lymphocyte pellets or plasma was isolated. Lymphocyte pellets were used for whole WGS, RNA-seq, 142 
and DNAm. Fasted plasma was used for downstream LCMS analysis identifying either lipid or 143 
protein abundances. Data was then processed independently for each of the platforms including 144 
feature quantification/mapping, followed by platform specific quality control and group-wise 145 
comparisons. Details regarding sample collection, platform specifications, and specific methodology 146 
for each analysis performed in this project can be found in the Supplemental Methods section.  147 

2.2 Patient selection and phenotyping 148 

All patients were selected from the Dutch cohort, an ongoing prospective cohort study. All 149 
patients are examined yearly (by ME) and undergo an MRI of the brain at the time of examination. 150 
Samples are collected in the PEROX biobank. The presence of cerebral ALD is defined as the 151 
presence of white matter lesions in a distribution consistent with ALD. The classification of the sibs 152 
(CALD versus non-CALD) is valid at this time, but the non-affected individuals can theoretically 153 
convert to cerebral ALD.   154 

All samples were collected and stored in the PEROX Biobank according to a protocol 155 
(METC2015_066) approved by the biobank review board of the Amsterdam UMC (BioBank 156 
Toetsingscommissie AMC). All patients provided written informed consent for storage and use of 157 
materials for medical research. 158 
 159 
 160 

2.3 Feature quantification and data processing 161 

For each platform, the data was processed independently following best-practices guidelines 162 
from the groups generating the datasets. Details regarding feature quantification and assignment at 163 
the gene, lipid, protein, and differentially methylated region (DMR) level can be found in the 164 
Supplemental Methods section.  165 
 166 

2.4 Univariate modeling of CALD vs. non cerebral ALD 167 

Using univariate modeling techniques the prognostic power of each lipid, transcript (RNA) or protein 168 
is calculated as: 169 
 170 
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� �  �� � ��	 �  
 (eq1) 
 171 
 172 
in which y is the observed value and � the phenotype (0 or 1), � is the weight and fam the family 173 
cofactor. � is the remaining error. Because methylation of DNA changes with age (McEwen et al. 174 
2018), age is also included as a cofactor: 175 
 176 

� �  �� � ��	 � ��� �  
 (eq2) 
 177 
 178 
 179 
when analysing the DNAm results.  The significance (p-value) of the discriminating phenotype 180 
(fixed) and family (random) effects are determined by ordinary least squares modelling (OLS) of the 181 
data using the model from Eq. 1 in case of lipid and proteomic data (Harrison et al. 2018). In the case 182 
of methylation and RNA sequencing data the p-values are determined by maximum likelihood 183 
estimates (MLE) of the fixed and random effects using Limma (Ritchie et al. 2015) and edgeR 184 
respectively (Ritchie et al. 2015; Robinson, McCarthy, and Smyth 2010).  185 
 186 

2.5 Allele comparisons in whole genome sequencing data 187 

Details on data processing, including variant calling and comparing across samples can be 188 
found in the Supplemental Methods section. Briefly, allele comparisons were performed in whole 189 
genome sequencing data on jointly genotyped variant datasets. For SNVs and indels, variants were 190 
jointly genotyped and converted into a GEMINI database (Paila et al. 2013). This database was then 191 
queried to identify subsets of discriminating alleles. For structural variants and mobile element 192 
insertions, custom scripts were used to identify discordant genotypes from annotated jointly 193 
genotyped variant tables. Discordant genotypes, stored as unique variant identifiers, were then placed 194 
into Intervene for intersection analysis (Khan and Mathelier 2017).  195 
 196 

2.6 Aggregation of signal across platforms 197 

To assess the added value of combining the different platforms, significant signals prior to 198 
multiple testing correction were collected for each omics platform and intersected at the annotated 199 
gene level (hg19). Because of the lack of a clear mapping of lipids to genes the lipidomics platform 200 
was excluded from this intersection allowing 4 possible intersections; DNAm-RNA, DNAm-Protein, 201 
RNA-Protein and the overall intersection of DNAm-RNA-Protein. Further investigation of a shared 202 
signal was performed by clustering the first 3 principal components (i.e. capturing the most variance) 203 
of the log fold changes (top 10 and p<0.05) of the combined platform data (including lipids). 204 
 205 

2.7 Assessing contribution of family effect per feature 206 

The data were modelled using the equations (above) in which both phenotypic and family effects are 207 
estimated. We partitioned the variance for the lipids, proteins, and RNA datasets to identify the 208 
contribution of the family effect, the phenotype effect, or the residual variance using the 209 
variancePartition package (Hoffman and Schadt 2016). The same was repeated for the DNA 210 
methylation dataset with the addition of the age, and phenotype:age variance terms. Next, we plotted 211 
the top two principal components for each omics dataset before and after the removal of the variance 212 
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contributed from the family effect with the limma:removeBatchEffect tool (Ritchie et al. 2015). 213 
Lastly, to determine the sensitivity/specificity of the findings for leaving out a one or two families all 214 
the analyses (excluding methylation data analysis) that were run for the case of all families were 215 
repeated with a one or two families left out (e.g. without fam 1, without fam 2, without fam 1 and 216 
fam 2, etc.). We encapsulated this information in separate upset plots for each platform.  217 
 218 

 219 

3 Results 220 

3.1 Lipidomics analysis of a fatty acid storage disorder 221 

Patients affected by ALD have a buildup of VLCFAs within cells in the body. Recent mass 222 
spectrometry advances allow for broad, untargeted profiling of lipids (Huffnagel, Dijkgraaf, et al. 223 
2019). We applied LCMS from plasma samples of each of the patients within this cohort as well as 224 
matched control samples.  225 
  First, we identified differential lipid abundances between ALD (both non-CALD and CALD) 226 
samples and control samples, with 139 lipids passing the threshold of  p-value < 0.05 (Eq. 1, OLS), 227 
and 17 lipids remaining significant after multiple testing correction (Bonferroni) (Figure S1, Table 228 
S1) (Methods). The measured lipids are plotted as a volcano plot, that is the log2 fold change of ALD 229 
over control versus corrected p-value (Figure 2A). We confirm that untargeted lipidomic profiling 230 
can distinguish ALD from control samples via principal component analysis, and also capture the 231 
expected differentially abundant lipids between control and ALD samples including the known ALD 232 
biomarker LPC(26:0) (Figure 2B,C).  233 
 Next, we compared CALD and non-CALD groups for differences in lipid abundance which 234 
could act as markers of cerebral demyelination. Of note, the principal component analysis which 235 
separates ALD from control did not separate CALD from non-CALD, i.e. the differences in lipid 236 
profiles between these two phenotypes are much less pronounced than the differences separating 237 
ALD patients from controls (Figure 2B). The measured lipids are plotted as a volcano plot, that is the 238 
log2 fold change of CALD over non-CALD versus transformed p-value (Figure 2D). In total 22 239 
lipids were found to have different abundances between the two groups with p-value <0.05, however 240 
none of the lipids remained significant after correcting for multiple testing (Table S2). The observed 241 
differences are much smaller between CALD and non-CALD compared to ALD and control, as 242 
highlighted by the differences in fold change axes (Figure 2A, D). Interestingly, there was a higher 243 
abundance in the non-CALD group for several key VLCFAs involved in ALD including PC(44:4) 244 
and Cer(d42:3), the latter reaching p-value < 0.05 (Figure 2C,E). While some lipids show a relatively 245 
large fold change between CALD and non-CALD groups as a whole, the signal is not consistent for 246 
every family. An example of this can be seen in SM(d36:2) or PS(43:3) (Figure S2). This limits the 247 
prognostic power of these lipids as consistent markers delineating the phenotype. Lastly, we 248 
observed a large range of lipid abundances within the control group for several of the differential 249 
lipids between CALD and non-CALD, which could indicate that these lipids are variable within 250 
healthy individuals and the signal we observe between CALD and non-CALD could be due to noise 251 
or variation in the healthy population (Figure 2E, Figure S1). 252 

 253 

3.2 Discordant genotype analysis for the identification of a modifier allele 254 
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Using whole genome sequencing, we investigated a range of variant classes for discordant 255 
alleles between siblings. These discordant alleles are then intersected across multiple families under 256 
the hypothesis that polymorphic differences contribute to cerebral demyelination.  257 

We first focused on alleles which emerged from previous modifier studies to see if they are 258 
confirmed. Proposed modifier alleles from target gene studies have identified two candidates within 259 
ELOVL1 (rs839765) and CYP4F2 (rs2108622) (van Engen et al. 2016; Kemp et al. 2012). Within 260 
this cohort, those modifier alleles do not segregate with ALD phenotype (Table 1), nor are the 261 
genotypes shared or lacking in the confidently phenotyped CALD patients. Furthermore, it has been 262 
suggested that APOE genotypes--which are a combination between two SNP sites to produce APOE2 263 
(ε2), APOE3 (ε3), and APOE4(ε4) alleles--may be markers of disease severity and cerebral 264 
progression (Orchard, Markowski, et al. 2019). These APOE alleles do not segregate with disease nor 265 
are they shared by all CALD patients. Together, these results suggest limited prognostic power of 266 
these alleles, and perhaps supports heterogeneous contributions of genetic background to disease 267 
progression.  268 

Next, for several variant classes, we performed a discordant analysis between siblings and 269 
intersected these alleles across families (Figure 3). We considered four genotypic categories termed 270 
dominant protective, recessive protective, dominant damaging, or recessive damaging based on the 271 
genotype (heterozygous: dominant or homozygous: recessive) and the sibling which carries the 272 
genotype (CALD: damaging or non-CALD: protective). Performing this genotypic analysis on SNVs 273 
and indels, we identified ~6.0x105 discordant candidate variants in the dominant categories from each 274 
family, and ~3.0x105 discordant candidate variants from the recessive categories (Figure 3A, Table 275 
S3). Despite the large number of discordant candidates per family, intersecting these sets across 276 
families reduces the candidates dramatically, resulting in only two candidate variants at the 277 
intersection of all 6 families (Figure 3B) (Table S4). A recessive damaging variant downstream of the 278 
WIBG/PYM1 gene (rs7980776) and recessive protective allele (rs55639747/rs61327784) within a 279 
CCDC67/DEUP1 intronic region (Figure S3 & S4). We validated our approach with a parallel 280 
pipeline utilizing the new DeepVariant tool (Poplin et al. 2018), which claims higher accuracy than 281 
GATK HaplotypeCaller (Table S4). There is high concordance between the two variant call sets, and 282 
they produced the same two variants within the intersection. A single additional variant was reported 283 
using DeepVariant under the recessive damaging model, however the variant did not pass the manual 284 
inspection quality assessment. In silico analysis of both variants suggests these variants have little 285 
functional effect, and the associated genes did not link to the cerebral demyelination phenotype 286 
(Supplemental Results).  287 

For the other variant classes, including structural variants (SVs) and mobile element 288 
insertions (MEIs), we performed joint genotyping to identify shared and discordant alleles in the 289 
same manner as SNVs and indels. We identified ~1500 and ~400 SVs in the dominant and recessive 290 
categories respectively, and ~400 and ~100 MEIs (Table S3). Unsurprisingly, these discordant events 291 
were not shared across more than 4 families (Table S4). We further manually inspected the regions 292 
around the discordant SNVs/indels identified above, and did not find any other segregating SVs or 293 
MEIs.  294 

Lastly, we extended our discordance analysis to the mitochondrial genome to examine 295 
candidate alleles which may show evidence of heteroplasmy which are not shared between two 296 
siblings.  We identified that between 129 and 547 mitochondrial variants per sample, of which 52 to 297 
476 are heteroplasmic, and none are consistent discriminating variants between phenotypes shared 298 
across all families (Table S5). Further, if we aggregated at the gene level, we did not find any 299 
heteroplasmic variants consistent across the same gene.  300 

In recognition of a study limitation--the fact that some non-CALD patients may progress to 301 
CALD--we further intersected alleles shared by all CALD patients. These variants were annotated by 302 
impact or as eQTLs defined in GTEx (Supplemental Methods). There were 48 variants present in the 303 
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heterozygous state across all CALD patients, where no non-CALD patients were heterozygous (Table 304 
S6). Of these, a haploblock containing 20 variants was identified overlapping the gene TPCN2, 305 
including a missense variant (rs3750965) (Figure S5). Interestingly, the only patient which was 306 
homozygous for this variant is the youngest non-CALD patient within the cohort, suggesting that this 307 
gene could be of significance should the patient develop the cerebral demyelination phenotype.  308 
 309 

3.3 Univariate modeling of phenotype differences across omics platforms 310 

Beyond identifying a single genetic modifier allele, the omics platforms allow for the 311 
identification of candidate molecular signatures which can discriminate between the CALD and non-312 
CALD phenotypes. Using univariate analysis we identify differences across each platform at the 313 
feature level, to search for a signal which can be used as a marker for transition to CALD. Further, 314 
we leverage these molecular signatures to provide insight into the pathogenesis of cerebral 315 
demyelination. 316 
 317 
3.3.1 Transcriptomics 318 

Examining RNA expression using RNA-seq provides a measurement for nearly all expressed 319 
protein coding genes in the genome. Differential gene expression was calculated between the two 320 
phenotype groups using the univariate model accounting for family effect (equation 1). There were 321 
199 genes found with a p-value < 0.05, although none remained significant after multiple testing 322 
correction (Bonferroni) (Figure 4A,B, Figure S6). This is likely due to the low number of samples 323 
and relatively small differences that were observed between the two groups. Furthermore, many of 324 
the genes identified as significant were inconsistent in one or more of the sibling pairs, limiting the 325 
diagnostic utility as a marker (Figure 4B). Despite not having significant genes after multiple testing 326 
correction, we performed enrichment analysis using GO (gene annotation) and KEGG (pathway 327 
annotation) to derive insights based on the 199 genes passing a threshold of p-value < 0.05 (Figure 328 
S7). Of note, elevated interferon related processes suggest that the host may be reacting to pathogens 329 
activating the immune system (Hoffmann, Schneider, and Rice 2015). It is therefore no surprise that 330 
3 chemokines (CXCL6, CXCL8 and IFI27)  were found in the top 10 differentially expressed genes. 331 
Amongst the remainder of the proteins encoded by the top 10 differentially expressed genes, the D-332 
Xylulokinase gene (XYLB) encodes for the protein that catalyzes the ATP-dependent phosphorylation 333 
of D-xylulose to produce xylulose-5-phosphate (Xu5P) therefore XYLB may play an important role in 334 
metabolic disease given that Xu5P is a key regulator of glucose metabolism and lipogenesis (Bunker 335 
et al. 2013).  GATM has been associated with statin intolerance (V Willrich et al. 2018) and its 336 
function to catalyze creatine and possibly affect the production of ceramides (Turer et al. 2017). 337 
MYOB1B is a protein that may participate in a process critical to neuronal development and function 338 
such as cell migration, neurite outgrowth and vesicular transport (Sittaramane and Chandrasekhar 339 
2008). 340 
 341 
 342 
3.3.2 Epigenomics 343 

DNA methylation has been linked to changes in gene expression, and is an important readout 344 
of some environmental impacts upon the cell. Measuring DNA methylation is typically done at 345 
specific methylation sites (CpGs), and then aggregated across regions where several sites have 346 
similar trends of methylation levels to find differentially methylated regions (DMRs). Here, we used 347 
the MethylationEPIC BeadChip which targets over 850,000 CpGs. Using LIMMA modeling 348 
including age as cofactor (equation 2) 264 CpGs had a nominal p-value <0.0005. Of these 264 CpGs, 349 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.19.20035063doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.19.20035063
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Running Title 

 

9 

16 passed the delta beta (i.e. difference between methylation levels of CALD vs non-CALD) of >5% 350 
(Table S8). When aggregating these loci into a DMR analysis, we identified 22 regions passing 351 
thresholds of FDR<0.05 and >10% methylation change (Figure 4C). Multiple CpGs map to the same 352 
gene and show a large delta beta, which we identified in the genes PTPRN2 and RGS14 (Figure 4D). 353 
RGS14 may alter calcium levels to enhance long term potentiation and learning (Lee et al. 2010).  354 
Due to its presence in neurosecretory vesicles, PTPRN2 has been implicated in insulin and 355 
neurotransmitter exocytosis (Sengelaub et al. 2016). Furthermore, PTPRN2 hypermethylation has 356 
been identified within a separate study which compared DNA methylation between CALD and non-357 
CALD patients (Schlüter et al. 2018).  358 

 359 
3.3.3 Proteomics 360 

In addition to profiling lipids, LCMS can be used for high throughput profiling of proteins thus 361 
enabling the identification of differential protein abundances between samples. Applying proteomics 362 
to these 12 patients yielded a quantification of 5,862 peptides which were matched against 351 363 
protein groups. Comparing CALD and non-CALD groups, we found 16 proteins with differential 364 
abundances (p < 0.05) (Figure 4E,F; Figure S8; Table S9). Investigating the top hits we find 4/16 365 
proteins associated with immunoglobulin heavy chain (IGHV4-34, IGHV3-30, IGHV3-7, and 366 
P0DOX6), 2/16 are associated with immunoglobulin kappa variables (IGKV6D-21 and IGKV1D-367 
33), and with P0DOX8 also being related to immunoglobulin, half of these proteins are related to the 368 
immune system (Parra et al. 2016). All of these immunoglobulin proteins were up-regulated in the 369 
CALD samples. Also related to the immune system is CD5L, a secreted glycoprotein that participates 370 
in host response to bacterial infection (Sanjurjo et al. 2015) and is also known to regulate lipid 371 
biosynthesis (Wang et al. 2015). Beyond immune system proteins, we identified proteins associated 372 
with the brain or with involvement in lipid metabolism. ECM1 has been associated with lipoid 373 
proteinosis in which brain damage develops over time and is associated with the development of 374 
cognitive disabilities and epileptic seizures (Zhang et al. 2014). The role of APOL1 is not yet clear 375 
but it has been associated with the lipid biology in the podocyte (Fornoni, Merscher, and Kopp 376 
2014). Copy number variants of MINPP1 have been associated with varying IP6 levels (Waugh 377 
2016) and IP6 has been reported to suppress lipid peroxidation (Foster et al. 2017). APOC3 is a key 378 
player in triglyceride-rich lipoprotein metabolism (Ramms and Gordts 2018) and regulated by the 379 
peroxisome proliferator-activated receptor-α (Liu et al. 2015). PFN1 has recently been reported in a 380 
CALD study which looked at markers of autoreactivity, identifying anti-PFN1 antibodies present in a 381 
large proportion of CALD patients (Orchard, Nascene, et al. 2019). Together, these protein signals 382 
could have significance with respect to the pathophysiology of cerebral demyelination, by 383 
highlighting differences around proteins involved in lipid metabolism as well as immune response.  384 
 385 
3.3.4 Estimating variance of family effect 386 

The univariate modeling of CALD vs. non-CALD for each of the individual omics platforms 387 
was unsuccessful in identifying significant hits after multiple testing correction. While traditional 388 
multiple testing correction methods may be too strict for the omics technologies, we still cannot rule 389 
out the possibility that our top hits arise by chance due to variability. Furthermore, our top hits per 390 
platform still exhibited a high amount of variance between families, and a lack of consistent signal in 391 
molecular features across the entire cohort (Figure 4 B, D, F). Within our model we included the 392 
effect of the family on the level of the measured signal, and thus we are able to capture the 393 
contribution of family structure to a feature’s abundance (equation 1, equation 2). To illustrate the 394 
contribution of these effects, we partitioned the variance contribution within our linear models 395 
(Methods). The phenotype effect, total family effect, and residual variance were extracted from our 396 
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model for each of the features within the RNA-seq, proteomics, and lipidomics platforms (Figure 397 
S9). As DNAm varies with age we additionally extracted the variance contributed from the age or 398 
phenotype-by-age effects. Clearly, the contribution of variance from the phenotype is small in the 399 
majority of features across all omics datasets, and a large residual variance indicates a high level of 400 
noise present in these high dimensional assays (Figure S9). We further demonstrated the 401 
heterogeneity in the data by subsetting the families and then repeating comparisons between CALD 402 
and non-CALD phenotypes. By leaving out one or two families, the � in equations 1-2 are re-403 
evaluated for the RNA, protein, and lipid datasets. The number of candidates increased with removal 404 
of each family, which could be interpreted as potential modifier signatures present in a subset of 405 
families, but absent from others (Figure S10).  406 
 407 

3.4 Integrating multi-omic datasets 408 

As it was our intention to identify molecular marker features underlying cerebral 409 
demyelination, we investigated the omics datasets independently to identify a consistent signal. 410 
However, owing to a large amount of inter-family variance, we are limited in our ability to identify a 411 
statistically significant feature which separates the two phenotypes. As the multi-omic assays should 412 
be complementary to each other, we searched for genes which showed differences between the 413 
groups in multiple assays. We searched the phenotype comparison between all families, as well as 414 
the results from the leave-one-out analysis, wherein we withheld a family and repeated the modeling 415 
between the two phenotype groups (Methods). Intersections showed overlapping evidence at the 416 
DNA methylation and RNA levels, as well as overlap between RNA and protein levels, for eight 417 
genes. Focusing only on the intersection of all families, only PTPRN2 has differential signal from 418 
both DNA methylation and RNA levels (Figure 4 B,D). Additional genes were identified in the 419 
leave-one-out subsets (Table 2).  420 

In the multi-omic data we observed that several of the molecular features have trends of 421 
differential abundance/expression in a subset of the families. To illustrate this, and attempt to identify 422 
clusters within the data, we gathered per-family log2-fold-change of CALD over non-CALD for the 423 
top hits from the lipid, protein, and RNA datasets. We took this approach because it removes the 424 
differences in absolute levels of expression between families. Noticeably, the fold-change values are 425 
not consistent for each family, as evidenced by a lack of consistent colouring for each of the features 426 
(rows) within the heatmap (Figure S11 A). Family 2 and family 6 were more similar in their 427 
CALD/non-CALD ratios for these features. This is further supported by a principal component 428 
analysis, wherein family 2 and family 6 are separated from the other four families on the first 429 
principal component (Figure S11 C). However, this trend does not hold when the set of features is 430 
increased to all hits with p-value < 0.05 across the three platforms, as family 1 and 5 cluster together 431 
with the other four families as an outer group (Figure S11 B). Thus, clustering these families based 432 
on top differential features does not reveal confident sub-groupings within the small cohort.  433 

 434 

3.5 Specific modifier hypothesis testing 435 

Finding molecular markers which delineate cerebral demyelination in patients with ALD is an 436 
ongoing research problem. Additionally, understanding the pathophysiology of cerebral 437 
demyelination and potential disruption of the blood brain barrier has implications for diseases beyond 438 
ALD. Different hypotheses have been suggested, including involvement of the immune system in 439 
autoreactivity or as a response to severe viral infections. Using the multi-omics dataset, which gives 440 
us insight into the complexities of the underlying complex biological system, we tested recently 441 
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proposed modifiers of cerebral demyelination to see if there is evidence of their discriminatory power 442 
within the blood samples profiled in our dataset.  443 

It has recently been demonstrated that autoreactivity to profilin (PFN1) occurs in patients 444 
affected by CALD, and may be a discriminating marker of cerebral demyelination (Orchard, 445 
Nascene, et al. 2019). We investigated differences in PFN1 methylation, RNA, and protein levels 446 
between CALD and non-CALD patients to see if this observation is confirmed in our dataset. At the 447 
methylation and RNA level, we did not see a consistent signal differentiating the CALD and non-448 
CALD groups, but at the protein level we observe an increased amount of PFN1 in the CALD group 449 
for four out of six families (Figure 5 A, B, Figure 4F). This is consistent with the observation from 450 
the previous study that not all patients exhibit PFN1 autoreactivity, and the dramatically increased 451 
protein levels could precede or act as biomarkers of the autoimmune response within the subset of 452 
patients who exhibit this trend.  453 

Another study focused on DNA methylation (DNAm) as a marker of CALD, and investigated 454 
the intact white matter of brains from patients affected by ALD with and without the cerebral 455 
demyelination phenotype (Schlüter et al. 2018). Whether or not the signals they identify confirm 456 
within the blood within a separate cohort is important if these proposed marker genes are to be used 457 
within newborn screening. Within their analysis they identified differential methylation signals at 458 
several genes, two of which are LPIN1 and UNC45A. Within this cohort, we see no differential 459 
methylation signal in the blood for LPIN1, and a slight hypermethylation (although not significant) in 460 
UNC45A (Figure 5C,E). Investigating the RNA shows that while both these genes are highly 461 
expressed, there are no consistent differences between the two phenotype groups.  462 

Lastly, it is possible that a viral infection causing an immune response is the phenotypic trigger 463 
for progression to CALD, as this is suggested to be a candidate environmental modifier from other 464 
cerebral demyelination diseases including multiple sclerosis (Libbey, Lane, and Fujinami 2014). As 465 
is the case in several cancers, RNA-seq can capture actively expressing viral RNA within a sample. 466 
To test the hypothesis of whether or not we could observe different expressing viruses within the 467 
RNA-seq of these patients, we used the tool Centrifuge to identify traces of viral (or bacterial) 468 
sequences (Table S10) (Kim et al. 2016). Aside from identifying human, synthetic construct, and 469 
endogenous retrovirus, no significant viral or bacterial sequences were identified.  470 
 471 

4 Discussion 472 
 473 

In this study we took a systems biology approach to identify personal molecular 474 
characteristics, either genetic or molecular markers, which may prognosticate the onset of cerebral 475 
demyelination in patients affected by ALD. Identifying a single modifier consistent across all 476 
individuals has importance because of its potential utility as prognosticator or biomarker heralding 477 
the transition to cerebral demyelination, and this carries tremendous treatment implications.   478 

Our cohort was comprised of carefully phenotyped brothers affected by ALD who were 479 
discordant for the severe cerebral demyelination phenotype. We collected blood and performed high 480 
throughput experiments to profile the DNA, methylated DNA, RNA, lipids, and proteins. In 481 
summary, we did not find a strong, convincing, univariate marker which can differentiate all of the 482 
CALD and non-cerebral patients in this small cohort. There are several explanations for this negative 483 
result: the small cohort with only six discordant sibling pairs of different ethnic background, the 484 
possibility that one or more non-CALD patients may still develop cerebral demyelination, high inter-485 
individual variability, and finally the possibility of multiple modifiers and/or an exogenous or non 486 
genetic modifier such as infection or physical trauma. In spite of these limitations, we still emerged 487 
with interesting results from each of the omics platforms from this pilot study including discordant 488 
genotypes separating all CALD and non-CALD patients, confirmations of recently proposed CALD 489 
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modifiers, and a suspected involvement of differential activity within the immune system in patients 490 
with cerebral demyelination.  491 

In our genetic approach, we identified two discordant genotypes shared between all six 492 
brother-pairs: an intronic SNV in DEUP1 and an SNV downstream of WIBG. Although in silico 493 
analysis of the variants and the function of the associated genes did not link these alleles to the 494 
cerebral demyelination phenotype, it is of interest to see if they replicate in a larger cohort. 495 
Examining variants shared by all CALD patients led to the identification of a missense 496 
polymorphism in TPCN2, a gene which localizes to lysosomal membranes. This exists in a 497 
segregating haplotype block, and is absent from all non-CALD patients except for family 4--the 498 
youngest patient with the highest chance to develop cerebral demyelination--where the haploblock is 499 
homozygous. How this variant segregates in a larger patient cohort could be of interest. None of the 500 
previously proposed modifier alleles, emerging from GWAS or target-gene studies, confirmed within 501 
our cohort.  502 

Although our analysis was burdened by high inter-individual variability, we were able to 503 
identify univariate molecular markers with increased confidence due to replication--by multiple 504 
omics levels and/or by confirming previously proposed modifier markers. A recent study (Schlüter et 505 
al. 2018) showed CALD patients with DNA hypermethylation within PTPRN2, which we confirm in 506 
our study and support with decreased mRNA expression in CALD patients (both platforms reaching 507 
p-value <0.05 before multiple testing correction). The same study showed hypermethylation of 508 
LPIN1 and UNC45A, the latter of which we confirm (although not statistically significant) as slightly 509 
hypermethylated in CALD samples. Of note, that study used brain tissue to derive their signal 510 
whereas we use blood samples. Another study utilized CSF and blood plasma, including longitudinal 511 
data from ALD patients pre- and post cerebral demyelination, to identify autoreactivity to Profilin 1 512 
(PFN1) within CALD patients (Orchard, Nascene, et al. 2019). They observed auto-antigens to PFN1 513 
in the blood, and increased PFN1 levels in CSF, in ~50% of CALD patients. In our cohort, four out 514 
of six patients exhibit increased PFN1 protein levels, in-line with the observation that PFN1 515 
phenotype is not ubiquitous across all CALD patients. We further contribute to this observation by 516 
showing no differences at the DNAm or mRNA levels, pointing towards a separate mechanism of 517 
upregulation/overabundance of PFN1.  518 

As ALD is a peroxisomal disorder, the lipidomic analysis presented here is of interest. The 519 
lipid profiling data confirmed previous observations regarding VLCFA abundance differences in 520 
ALD samples when compared to controls. Specifically, the phosphatidylcholines (PC) species 521 
containing very long-chain fatty acids are more abundant in the ALD group compared to the control 522 
group. Furthermore, the suitability of LPC(C26:0) to function as a marker for ALD in newborn 523 
screening was confirmed. Differences in lipid abundance between CALD and non-CALD groups did 524 
not reach significance after multiple testing correction, likely due to a lack of consistent lipid 525 
differences between all brother pairs. Nevertheless, the differential lipids between CALD and non-526 
CALD provide insight into the pathophysiology of CALD as CALD patients had lower levels of 527 
sphingomyelin and its precursor ceramide, in line with disease progression. This could support the 528 
findings that the sphingolipid systems hold important roles in CNS disorders like Alzheimer’s, 529 
Parkinson’s and Huntington’s (Assi et al. 2013). 530 

Beyond identifying phenotype-stratifying molecular features, we investigated the top hits at 531 
the gene-level from each omics platform for any relation to the pathophysiology of CALD. Literature 532 
searches highlighted genes involved in lipid metabolism, the nervous system, and the immune 533 
system. Gene Ontology and KEGG pathways further supported these observations. Larger datasets 534 
are needed to draw conclusions from differentially abundant molecular features.  535 

Throughout this work we have identified certain limitations of our approach which should be 536 
considered in future work focused on modifiers of rare disease, especially for other inborn errors of 537 
metabolism (e.g. Gaucher disease). First, we suffered from having a small number of samples and a 538 
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high number of observed features. For future univariate marker investigations we recommend 539 
focusing only on protein or mRNA and increasing the number of samples. Second, our genetic 540 
analysis was limited by the possibility of future transition to the CALD state for any of our non-541 
CALD patients, especially those patients who have not reached maturity. Recent epidemiological 542 
analysis shows that cerebral demyelination can occur throughout the lifetime of an ALD patient 543 
(Huffnagel, Laheji, et al. 2019), so genetic studies should focus on older (60-70 years old) patients 544 
who have not developed the cerebral demyelination phenotype. While discordant brother pairs 545 
reaching old age are challenging to find, a collection of genotyped non-CALD patients older than 60-546 
70 years of age could serve as a good control. Third, we are limited in capturing relevant biological 547 
insights because we are profiling blood not CSF/brain tissue. Lastly, while we profile DNA 548 
methylation, we don’t capture other components of the environment which could have an impact 549 
including microbiome and pathogen exposure history.  550 

With newborn screening now a reality for ALD, prognostication and timing of therapy 551 
becomes more relevant than ever before; thus modifier studies to decipher a protector or marker for 552 
cerebral demyelination will continue (Moser and Fatemi 2018). We believe that this dataset can 553 
continue to be mined and used for testing the replication of proposed phenotypic markers. Further, 554 
the data within this study could be used as part of a larger dataset examining multivariate signals 555 
differentiating the two classes. Whether it is a collection of genetic markers or a pattern of multiple 556 
molecular features, it is clear that there is a need for a larger sample size. As such, we make the 557 
measurements through this study available for future use to the community, with the hopes that the 558 
data can serve as a secondary confirmation of new modifier hypotheses, or as part of a larger dataset 559 
for investigating the complex nature of cerebral demyelination.  560 

 561 
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 750 
 751 
Figure 1 – Project overview 752 
An overview of the data and processes involved in the project including samples from two brothers 753 
across unrelated families, blood isolated into lymphocytes and plasma, and then profiling with five 754 
omics technologies including WGS for the genome, DNA methylation (DNAm) via the 850K EPIC 755 
microarray, transcriptome profiling with RNA sequencing (RNA-seq), metabolome profiling with 756 
liquid chromatography mass spectrometry (LCMS), and protein profiling with LCMS. These data are 757 
then taken through feature quantification/processing, quality control metrics, and group-wise 758 
comparison through univariate modeling.  759 
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 760 
Figure 2 – Lipidomic analysis of ALD 761 
The univariate analysis comparing the lipid abundances between control vs ALD, and CALD vs non-762 
CALD is depicted. A) Volcano plot showing the log2 fold change between ALD and control (CRTL) 763 
samples for all of the measured metabolites within the LCMS assay, versus the -log10 transformed 764 
adjusted p-value. B) Principal component analysis plot showing the first two principal components 765 
which can discriminate between control (blue) and ALD (orange:non-CALD, green:CALD) samples. 766 
C) Boxplots showing the abundances of a known marker for ALD, LPC(26:0), and another lipid 767 
differentially abundant between ALD and control samples. Values are lipid abundances measured on 768 
LCMS. D) Volcano plot showing the log2 fold change between CALD and non-CALD samples 769 
versus the -log10 transformed p-value. E) Boxplots for lipids different between CALD and non-770 
CALD before p-value correction. For A) and D), the lipids are coloured according to their assigned 771 
class and their size corresponds to the lipid chain length. For boxplots: ^ represents unadjusted p-772 
values of comparison between ALD and control, * represents unadjusted p-values of comparison 773 
between CALD and non-CALD. 774 
  775 
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 776 
 777 

Figure 3 – Discordant genotype analysis  778 
A) Number of discordant genotypes in each category for each of the 6 families, with description of 779 
genotypes for non-CALD and CALD pairs per genotypic category (per-category means are 780 
displayed). B) Upon intersection of discordant genotypes, the number of variants which exist within 781 
any intersection with set sizes of 1-6, meaning the set size of 6 is the intersection of all families, and 782 
a set of 1 are discordant variants only found in one family.  783 

  784 
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 785 

Figure 4 – Multi-omic analysis  786 
A) Volcano plot showing p-value and log2 fold change of gene expression from RNA-seq. 787 
Significant genes at p < 0.05 (orange dots), non-significant genes (blue dots). B) Selected genes 788 
plotted as normalized RNA-seq values with boxplots for each group where each line/point is 789 
coloured by family. C) Volcano plot of DNA methylation over CpG probes from EPIC array, with 790 
non-significant (p > 0.05) DMR probes (blue dots), significant CpGs at the DMR level (red Xs), 791 
higher methylated non-CALD probes (orange dots), and higher methylated CALD probes (green 792 
dots). D) DNAm over two significant DMRs within PTPRN2 and RGS14, points coloured by family 793 
and lines coloured by phenotype, with shading denoting inner quartile range. E) Volcano plot of 794 
protein levels from LCMS with non significant proteins (blue), significant proteins with log2 fold-795 
change (CALD / non-CALD) of -1 to 1 (green), and log2 fold-change greater than 1 (orange). F) 796 
Selected proteins which passed the p-value threshold of 0.05.  797 
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 798 
Figure 5 – Testing previously suggested markers 799 
DNA methylation and mRNA abundance for PFN1 (A,B), UNC45A (C,D), and LPIN1 (E,F). DNA 800 
methylation is shown for all CpGs associated to the listed genes, with the non-CALD mean 801 
methylation shown as a blue line with standard error shading, and the orange dashed line showing the 802 
mean methylation of CALD. Individual points are shown and colored by family. RNA expression is 803 
shown as a boxplot for non-CALD and CALD phenotype groups, with individual families labeled 804 
with family 1 as blue, family 2 as orange, family 3 as green, family 4 as red, family 5 as purple, and 805 
family 6 as brown. 806 
 807 
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 808 

12 Tables 809 
 810 
 811 
Family Age Phenotype ABCD1 

Mutation 
ELOVL1 
(A>G) 

CYP4F2 
(C>T) 

APOE 
rs429358 

APOE 
rs7412 

APOE 
Genotype 

1 
1 

28 CALD c.1390C>T G/G T/T T/T C/C ε3 / ε3 
28 non-CALD G/G C/T T/T C/C ε3 / ε3 

2 
2 

30 CALD c.1899delC A/G C/C T/T C/C ε3 / ε3 
30 non-CALD A/G C/C T/T C/C ε3 / ε3 

3 38 CALD c.1992-
2A>G 

A/G C/C T/T C/C ε3 / ε3 
3 36 non-CALD A/G C/C T/T C/C ε3 / ε3 
4 6 CALD c.659T>C A/A C/T T/T T/T ε2 / ε2 
4 8 non-CALD A/A C/T T/T T/T ε2 / ε2 
5 16 CALD c.1866-

2A>T 
A/G C/C T/C C/C ε3 / ε4 

5 18 non-CALD G/G C/C T/C C/C ε3 / ε4 
6 27 CALD c.892G>A A/A C/C T/C C/C ε3 / ε4 
6 25 non-CALD A/G C/C T/C C/C ε3 / ε4 
 812 
Table 1 - Summary of patients within ALD cohort 813 
The family number, patient ID, age at sample collection, ALD phenotype, ABCD1 variant, and 814 
genotypes for previously associated modifier alleles for all patients within the cohort.  815 
 816 

 817 

 818 

Comparison DNAm & RNA DNAm & Protein RNA & Protein DNAm & RNA & 
Protein 

 
all_families 

 
PTPRN2(↑ - ↓) 

 
� 

 
� 

 
� 

wo_fam_1 � � � � 
wo_fam_2 � � � � 
wo_fam_3 HLA-DQB1(↓-↓), 

IL5RA(↓ - ↑),KIF19 (↑- ↓) 
� � � 

wo_fam_4 � � � � 
wo_fam_5 � � ICAM1(↑ - ↓), APOL1(↑ - 

↑), CD14(↑ - ↑) 
� 

wo_fam_6 � � JCHAIN(↑ - ↑) � 
 819 
Table 2 - Intersections of significant hits from multiple platforms 820 
For each comparison including all families, and each possible 5x5 comparison between CALD and 821 
non-CALD, the significant hits (p-value < 0.05 before multiple testing correction) from DNA 822 
methylation (DNAm), RNA-sequencing (RNA), and protein LCMS (Protein) were intersected. (↑ 823 
means up-regulated/higher for CALD, ↓ means lower in CALD). 824 
 825 

 826 
 827 

 828 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.19.20035063doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.19.20035063
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Running Title 

 
24 

This is a provisional file, not the final typeset article 

 829 
 830 
 831 
 832 
 833 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.19.20035063doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.19.20035063
http://creativecommons.org/licenses/by-nc-nd/4.0/

