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One sentence summary  

Neuropsychiatric CNVs across the genome reorganize brain connectivity architecture along          

dominant patterns contributing to complex idiopathic conditions. 
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Abstract 

Copy number variants (CNVs) are among the most highly penetrant genetic risk factors for              

neuropsychiatric disorders. Their impact on brain connectivity remains mostly unstudied. Because           

they confer risk for overlapping conditions, we hypothesized that they may converge on shared              

connectivity patterns. 

We performed connectome-wide analyses using resting-state functional MRI data from 436 carriers            

of neuropsychiatric CNVs at the 1q21.1, 15q11.2, 16p11.2, 22q11.2 loci, 4 “neutral effect” CNVs,              

66 carriers of scarcer neuropsychiatric CNVs, 756 individuals with idiopathic autism spectrum            

disorder (ASD), schizophrenia, attention deficit hyperactivity disorder, and 5,377 controls. 

Neuropsychiatric CNVs showed global shifts of mean connectivity. The effect size of CNVs on              

relative connectivity (adjusted for the mean) was correlated with the known level of neuropsychiatric              

risk conferred by CNVs. Individuals with idiopathic schizophrenia and ASD had similarities in             

connectivity with neuropsychiatric CNVs. We reported a linear relationship between connectivity           

and intolerance to haploinsufficiency measured for all genes encompassed by CNVs across 18 loci.              

This profile involved the thalamus, the basal ganglia, somatomotor and frontoparietal networks and             

was correlated with lower general intelligence and higher autism severity scores. An exploratory             

factor analysis confirmed the contribution of these regions to three latent components shared across              

CNVs and neuropsychiatric disorders. 

We posit that deleting genes intolerant to haploinsufficiency reorganize connectivity along general            

dimensions irrespective of where deletions occur in the genome. This haploinsufficiency brain            

signature opens new avenues to understand polygenicity in psychiatric conditions and the pleiotropic             

effect of CNVs on cognition and risk for neuropsychiatric disorders. 
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Introduction 

Genomic copy number variants (CNVs) are deletions (DEL) or duplications (DUP) of more than              

1000 base pairs of DNA. Rare CNVs with large effects have been associated with a range of                 

neurodevelopmental and psychiatric conditions ​(1, 2)​. Twelve recurrent CNVs have been           

individually associated with autism spectrum disorder (ASD) ​(3)​, eight with schizophrenia (SZ) ​(4)​,             

and eight with attention deficit hyperactivity disorder (ADHD) ​(5) but studies have shown that              

ultra-rare CNVs at many more genomic are also associated with these conditions ​(4, 6) ​. 

Functional connectivity (FC) studies have provided critical insight into the architecture of brain             

networks involved in neuropsychiatric disorders (NPs), but only a few studies have investigated             

networks modulated by CNVs ​(7–9)​. These large effect-size mutations can shed light on pathways              

connecting genetic risk to brain endophenotypes, such as FC. In a previous study, we characterized               

the connectome-wide effects of four CNVs that confer high risk for NPs (NP-CNVs). Deletions and               

duplications at the 16p11.2 and, to a lesser extent, at the 22q11.2 locus were associated with mirror                 

effects on global FC ​(9)​. For 16p11.2 deletion carriers, overconnectivity predominantly involved the             

ventral attention, motor, and frontoparietal networks relative to controls. 22q11.2 deletion carriers            

showed global underconnectivity, involving the anterior and lateral default mode network (DMN)            

and the limbic network. Connectivity profiles of the thalamus, somatomotor, posterior insula and             

cingulate showed significant similarities between NP-CNVs and idiopathic ASD, SZ but not ADHD. 

 

Previous studies were mainly performed one mutation at a time, with the notion that the function of                 

genes would shed light on the relationship between molecular mechanisms and phenotypes. Results             

from this approach have raised several questions including 1) How specific are the effects of CNVs,                

and are there any general rules linking the gene content of CNVs to intermediate brain phenotypes?                

2) How can one pursue the study of rare variants beyond the handful of CNVs and single nucleotide                  
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variants (SNV) frequent enough to conduct an individual association study? The hypothesis of             

shared neuroimaging alterations across NP-CNVs was recently investigated in 21 carriers of CNVs             

across the 22q11.2, 15q11.2, 1q21.1, 16p11.2 or 17q12 loci ​(10)​. Analysis of diffusion-weighted             

imaging (DWI) measures from the cingulum bundles suggested that macro- and microstructural            

properties were associated with the level of risk for psychiatric disorders conferred by CNVs. Using               

T1-weighted data, Warland and colleagues showed that the volumes of three subcortical brain             

regions (thalamus, hippocampus, and nucleus accumbens) were significantly reduced in a group of             

49 carriers of 4 SZ-associated CNVs in the UK Biobank (16p11.2 duplication, 22q11.2 deletion,              

15q11.2 deletion, and 1q21.1 deletion) ​(11) ​. 

In the current study, we asked two questions: 1) Do previous observations of connectivity alterations               

associated with 16p11.2 and 22q11.2 extend to other genomic loci? and 2) How can we close the gap                  

between the exponentially expanding landscape of rare neuropsychiatric variants and the knowledge            

of their effects on intermediate brain phenotypes? We recently tackled a similar question by              

investigating the statistical relationship between the coding gene content of rare CNVs and their              

effect on intelligence quotient (IQ). We showed that around 75% of the effect-size of any CNV on                 

IQ can be explained by linear models using the sum of the “probability of being loss-of-function                

intolerant” (pLI) scores ​(12) of all genes encompassed in the CNV ​(13)​. The pLI (probability               

loss-of-function intolerant) score is the probability that a given gene is intolerant to “protein loss of                

function” (pLoF). The score measures selective pressure and is based on lower-than-expected rates             

of variants leading to haploinsufficiency in the general population ​(12) ​.  

 

We aimed to 1) characterize the connectivity-profiles of CNVs at genomic loci previously associated              

with neurodevelopmental disorders (1q21.1, 15q11.2, 16p11.2 and 22q11.2), 2) assess whether           

connectivity-profiles of NP-CNVs may represent dimensions observed in idiopathic ASD, SZ, or            

ADHD, and 3) investigate the relationship between measures of pLI and connectivity across             

genomic loci. We gathered rsfMRI data on 502 carriers of deletions or duplications at the 1q21.1,                

5 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.18.20038505doi: medRxiv preprint 

https://paperpile.com/c/5pUyAz/AC68D
https://paperpile.com/c/5pUyAz/n8SBf
https://paperpile.com/c/5pUyAz/YVZg
https://paperpile.com/c/5pUyAz/uDVZ
https://paperpile.com/c/5pUyAz/YVZg
https://doi.org/10.1101/2020.03.18.20038505
http://creativecommons.org/licenses/by/4.0/


Manuscript​: The general impact of haploinsufficiency on brain connectivity underlies the 
pleiotropic effect of neuropsychiatric CNVs 

 
2q13, 15q11.2 (BP1-BP2), 15q13.3, 16p11.2 proximal, and 22q11.2 genomic loci as well as 66              

carriers of scarcer NP-CNVs at 8 additional genomic loci ​(6)​. Among these carriers were included 4                

“neutral effect” CNVs without prior association to neuropsychiatric conditions (2q13 CNVs,           

15q13.3 and TAR-1q21.1 duplications) ​(4, 6, 14)​. Three out of the five genetic-first cohorts used in                

this study have not yet been published. We also analyzed 756 subjects with idiopathic ASD,               

schizophrenia, or ADHD, and 5,377 controls (Table 1). 

Table 1. CNV carriers, individuals with idiopathic psychiatric conditions and controls after MRI             

quality control. Chr: chromosome number, coordinates are presented in Megabases (Mb) according            
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to Hg19. DEL: deletion; DUP: duplication; IPCs: Idiopathic Psychiatric Conditions; SZ:           

schizophrenia, ASD: Autism Spectrum Disorder; ADHD: Attention-Deficit/Hyperactivity-Disorder       

n = tot /clin: total number of participants /number of participants clinically ascertained. Age (in               

years); M: male; Motion: framewise displacement (in mm). Quantitative variables are expressed as             

the mean ± standard deviation. All sites scanned controls and sensitivity analyses were performed to               

investigate the potential bias introduced by differences in site, age and sex. Odd-ratios (OR) for the                

enrichment of CNVs in ASD and schizophrenia were previously published (a ​(6)​, b ​(4)​). OR for the                 

enrichment of CNVs in ADHD were not available. The four ‘Neutral-effect CNVs’ are highlighted              

by a light grey background. Additional NP-CNVs (n=66) included in the pLI analysis include              

NRXN1 (n=2 deletion), 13q12.1 (n=5 deletion, n=2 duplication), 16p12.1 (n=1 deletion, n=3            

duplication), 16p13.11 (n=4 deletion, n=6 duplication), 17p12 (n=5 deletion; n=1 duplication), TAR            

(n=2 deletion), 22q11.2 [B-D] (n=3 deletion, n=23 duplication), 2q11.2 (n=1 deletion, n=2            

duplication), 16p11.2 distal (n=1 duplication), 7q11.23 distal (n=1 duplication), 15q13.3 (n=1           

deletion), 14q32 (n=1 deletion) and 2 carriers of multiples CNVs. Detailed information relative to              

diagnosis, IQ, and motion, are available in Supplementary Tables 2-3. 

Results 

Neuropsychiatric CNVs cause global shifts of functional connectivity 

Deletions and duplications of several genomic loci showed a shift in mean FC (Figure 1a-e). There                

was a positive association between the number of genomic copies (deletion=1, duplication=3) and             

global connectivity for the 22q11.2 and 1q21.1 CNVs, and negative gene dosage effect for the               

16p11.2 CNVs (Figure 1a, 1d-e, Supplementary Tables 4-5). A negative shift was observed for both               

15q11.2 and 2q13 duplications (Figure 1b, 1c). In all subsequent analyses, we investigated relative              

FC, which is computed by adjusting for mean whole-brain connectivity (mC-adjusted). 
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CNV severity is linked to the effect-size on relative connectivity 

We previously showed that the severity of a CNV’s impact on cognition is strongly associated with                

measures of intolerance to haploinsufficiency such as the pLI ​(13)​. We, therefore, tested the              

relationship between pLI scores and the size of a CNV’s effect on FC across the 7 genomic loci                  

(listed in Table 2). We showed a significant correlation between pLI scores and effect sizes of                

deletions (​r ​=0.89, ​p​=0.03). There was no significant relationship for duplications. 

Relative regional connectivity is robustly altered by high-risk neuropsychiatric CNVs 

The 16p11.2 deletion significantly altered 160 connections (76 positives, 84 negatives, FDR, q<0.05)             

with beta values ranging from -0.8 to 1.4 z-scores (z-scores based on the variance of the control                 

group, Table 2, Figure 1.k, Supplementary table 6). The altered connections mostly involved the              

ventral and dorsal posterior insula, the pre-supplementary motor cortex, the putamen, dorsal            

precuneus, and the left inferior parietal lobule. The 16p11.2 duplication significantly altered 4             

connections (1 positive, and 3 negatives), with beta values ranging from -0.9 to 0.7 z-scores). The                

altered connections mostly involved the amygdala-hippocampus complex, the cerebellum crus-II and           

VIIIab, and the caudate and accumbens nuclei (Table 2, Figure 1.l, Supplementary Table 6).  

The 22q11.2 deletion was associated with over-connectivity in 25 connections and underconnectivity            

in 21 connections (FDR, q < 0.05), with beta values ranging from -0.95 to 0.8 z-scores. The regions                  

showing the strongest FC alterations included the thalamus, the dorsal anterior and posterior             

cingulate cortices, the lateral fusiform gyrus, the temporal pole, and the anterior insula (Table 2,               

Figure 1.m, Supplementary Table 6). The 22q11.2 duplication did not show FC alterations that              

survived FDR.  
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15q11.2 and the 1q21.1 CNVs have mild effects on relative connectivity. 

The 15q11.2 deletion was associated with overconnectivity of one connection (FDR, q < 0.05)              

between the thalamus and the ventrolateral somatomotor network (Figure 1i, Table 2, Supplementary             

Table 6). In the 15q11.2 duplication carrier group, 27 connections were significantly altered (16              

negatives, and 11 positives, beta values [-0.51; 0.36], Table 2). Altered connections primarily             

involved the supramarginal, inferior temporal, occipitotemporal gyri, and the temporal pole (Figure            

1.j, Supplementary Table 6). 

The 1q21.1 deletion was associated with underconnectivity of three connections (FDR, q < 0.05)              

between by the lateral fusiform gyrus, the dorsal precuneus, the lateral occipitotemporal gyrus, the              

dorsal visual stream, and the dorsal posterior cingulate cortex, with beta values ranging from -1.0 to                

0.67 z-scores, (Table 2, Supplementary Table 6, and Figure 1.g). The 1q21.1 duplication showed 13               

connections that were significantly altered (4 negatives, and 9 positives, FDR, q < 0.05), with beta                

values ranging from -0.98 to 1.0 z-scores. Altered connections mostly involved the caudate nucleus,              

the posterior lateral visual network, the temporal pole, the cerebellum Crus-I, and the putamen              

(Figure 1.h, Table 2, Supplementary Table 6). 

We did not detect any significant effects of the 4 neutral effect CNVs (Tar 1q21.1 duplication,                

15q13.3 duplication and 2q13 deletion and duplication) on connectivity (Supplementary Table 6). 

9 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.18.20038505doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.18.20038505
http://creativecommons.org/licenses/by/4.0/


Manuscript​: The general impact of haploinsufficiency on brain connectivity underlies the 
pleiotropic effect of neuropsychiatric CNVs 

 

 

Figure 1. (a-e) Global effects of CNVs on connectivity. Density plots represent the distribution of               

the 2,080 beta estimates for the connectome wide association study (CWAS, whole-brain contrast of              

cases versus controls) of the CNVs, SZ, ASD, ADHD groups. Stars represent a significant global               

shift in mean FC. The same density plots are shown after adjusting for mean connectivity (o-p).                

X-axis values of all density plots represent z-scores of the Beta estimates, which were obtained from                

linear models computed using z-scored connectomes based on the variance of the control group.              

Brain maps (g-n) represent the percentage of altered connections (FDR corrected) per region.             

Del=Deletion, Dup=Duplication, ASD: autism spectrum disorder; SZ: schizophrenia; ADHD:         

attention deficit hyperactivity disorder; chr=chromosome.  

10 
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Table 2 ​. The number of significantly altered connections (FDR corrected) for each connectome wide              

association study (n=15) after adjusting for mean connectivity (Supplementary Table 4-5-6).  

∑ pLI: sum of pLI of all genes encompassed in each CNVs. pLI: the ​p​robability of being ​L​oss of                   

function ​I​ntolerant is a measure of gene’s intolerance to haploinsufficiency. DEL: deletion; DUP:             

duplication; ASD: autism spectrum disorder; SZ: schizophrenia; ADHD: attention deficit          

hyperactivity disorder. ​min-max: minimum-maximum of z-scored beta values; var: variance of           

z-scored beta values; n pos: number of positive connections; n neg: number of negative connections. 

Neuropsychiatric CNVs and idiopathic psychiatric conditions show whole-brain FC         

similarities 

We compared (Mann-Whitney) spatial similarities between CNV FC-profiles and IPC, with spatial            

similarities between CNV FC-profiles and controls (Figure 2c-d). This was performed for all 12              

CNVs and 3 IPCs (Figure 3a). Out of the 36 correlations, 12 survived FDR. Of those, most were                  

observed between large effect-size neuropsychiatric CNVs, SZ and ASD. Neutral CNVs (2q13            
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CNVs and 15q13.3 and TAR-1q21.1 duplication) did not show similarities with FC-profiles of             

individuals with IPC. 

 

Figure 2. Method overview: a) CNVs are identified in unselected and neuropsychiatric populations.             

b) Connectome wide association studies (CWAS) between CNVs carriers and controls define a             

CNV-FC-profile (c) for each CNV (aim 1). d) Comparing (Mann-Whitney) 1] the spatial similarity              

between CNV FC-profile and individuals with IPCs, and 2] the spatial similarity between CNV              

FC-profile and controls (aim 2).  

e) To investigate the general effect of pLI on FC, we used CNVs at 18 genomic loci. We computed                   

the sum of pLI of all genes encompassed within each genomic loci. f) Each carrier obtains a score                  

corresponding to the gene content of his CNV. g) Mass univariate linear models draw a relationship                

between the pLI score (X) of each individual, and each of the 2080 functional connections (Y) 

h) Correlation at the regional level between pLI FC-profile and symptoms severity scores. 

NP: neuropsychiatric conditions; 16p: 16p11.2; 22q: 22q11.2; 1q:1q21.1; ASD: autism spectrum           

disorder; SZ: schizophrenia; ADHD: attention deficit hyperactivity disorder; mC: mean-connectivity          

adjustment. 
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Connectivity similarities between neuropsychiatric CNVs and idiopathic psychiatric        

conditions involve the thalamus, the basal ganglia and the posterior cingulate cortex 

We investigated whether whole-brain FC similarities between individuals with SZ, ASD, ADHD and             

CNVs were driven by particular regions. To do so, we applied the same approach as described above                 

at the regional level by decomposing the FC-profiles of each CNV into 64 seed regions. We found                 

that a set of regions including the thalamus, the caudate, the putamen, the posterior cingulate,               

temporal pole, and anterior insula exhibited high degrees of similarity between all neuropsychiatric             

CNVs FC-profiles and individuals with IPC (figure 3b, red regions, Supplementary Table 7, and              

Supplementary Figure 3). Only a few regional-level CNVs FC-profiles showed higher similarities            

with controls (Figure 3b, blue regions, Supplementary Figure 3). Individuals with SZ and ASD              

demonstrated the highest level of similarity with all neuropsychiatric CNVs compared to their             

respective controls. We did not detect significant similarities between the FC-profiles of “neutral”             

CNVs (2q13 deletion and duplication, and TAR-1q21.1 duplication) and individuals with IPC            

(Figure 3, Supplemental Figure 3, Supplementary Table 7). None of the similarity was correlated              

with motion.  
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Figure 3. Spatial similarities between FC-profiles of CNVs and idiopathic psychiatric conditions at             

the regional and connectome-wide level. (a) The whole-brain FC-profiles of CNVs were correlated             

to the individual FC-profiles of subjects with a psychiatric diagnosis, and their respective controls.              

The effect size (Mann-Whitney test statistic, rank biserial correlation) of the spatial similarity             

between the CNVs-FC-profiles and individuals with IPC are detailed in the table. Positive (red)              

reflects higher similarity between CNVs-FC-profiles and individuals with IPC, while negative (blue)            

reflects higher similarity with controls. Stars represent significant similarities after FDR correction            

for 36 tests. (b) The whole-brain FC-profiles of CNVs were decomposed into 64 seed-based regions               

and compared to the individual FC-profiles of subjects with a psychiatric diagnosis, and their              

respective controls. Regions with higher similarities between CNVs and IPC are presented in red              

hues for 2 examples: 15q11.2 deletion-FC-profile (left side) and 22q11.2 deletion-FC-profile (right            

side) to individual connectomes of SZ and controls. Colors reflect the effect size (rank-biserial              

correlation) of the similarity between CNV and idiopathic patients (all the 36 brain maps are               

available in Supplementary Figure 3, with corresponding statistical values in Supplementary Table            

7). (c) The spatial similarity between the whole-brain FC-profiles of CNVs and connectomes of IPC               

individuals. Connectors represent significant similarities between group-level CNVs-FC-profiles and         

the individual connectomes of either IPC cases or controls. Brain maps summarize FC similarities at               

the regional level between CNVs and ASD (right), ADHD (middle) and SZ. The color scale               

represents the number of times a region shows significant similarities between CNV FC-profiles and              

IPCs. (d) Brain map summarizes the frequency of regions involved in FC similarities between all               

NP-CNVs and all IPCs. Eg. the thalamus showed significant similarities in 9 comparisons:15q11.2             

deletion and ASD; 15q11.2 deletion and SZ; 16p11.2 deletion and ASD; 16p11.2 deletion and SZ;               

22q11.2 deletion and ASD, 22q11.2 deletion and SZ; 1q21.1 duplication and SZ; 15q13.3             

duplication and ASD; 22q11.2 duplication and SZ. ASD: autism spectrum disorder; SZ:            

schizophrenia; ADHD: attention deficit hyperactivity disorder; Del: deletion; Dup: duplication;          
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22q11: 22q11.2, 16p11: 16p11.2; 1q21: 1q21.1, TAR: 1q21.1-TAR, 15q11: 15q11.2, 15q13:           

15q13.3. 

Haploinsufficiency is associated with a profile of dysconnectivity shared across genomic           

loci 

To investigate the potential general effects of haploinsufficiency on FC, we used a model previously               

developed to estimate the effect size of any CNVs on general cognitive abilities ​(13)​. This model                

used as an explanatory variable the sum of pLI scores of all genes encompassed in all deletions and                  

duplications carried by an individual to explain FC (Figure 2g) ​(12)​. We analyzed all CNVs               

available: 502 CNVs carriers at 18 genomic loci and 4,427 individuals who did not carry a detectable                 

CNV and thus had a pLI score of zero (Table 1, Figure 2g, Supplementary methods).  

The pLI-associated profile for deletions (hereinafter referred to as haploinsufficiency profile) was            

characterized by a higher FC in 60 connections mainly involving the thalamus and a lower FC in 58                  

connections in the anterior cingulate, the pre-supplementary motor area, and the dorsomedial            

prefrontal cortex (Figure 4a-b, Supplementary Table 6). Since this linear model may be influenced              

by CNVs with the largest pLI scores, we performed a sensitivity analysis and showed that removing                

the 16p11.2, and the 22q11.2 deletions did not substantially impact the observed pattern of              

dysconnectivity (haploinsufficiency profile before and after exclusion were correlated at r=0.77,           

r=0.72, respectively). Our results suggest that this haploinsufficiency FC profile is present across             

genomic loci with an effect size correlated to pLI. We were likely underpowered to detect a                

pLI-associated FC-profile for duplications (only 3 connections survived FDR).  

We investigated the relationship between the haploinsufficiency FC-profile and general intelligence,           

autism, schizophrenia and ADHD severity measures (Figure 2.h). Individuals with lower general            

intelligence scores showed similarity with 20 out of the 64 regions of the haploinsufficiency              

FC-profile (Figure 4d-f, Supplementary Table 8). This negative association was significant across all             

3 cohorts with general intelligence measures (UKBB non-carriers, ABIDE autism and controls,            
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ADHD cases and controls). Autism severity scores (ADOS and SRS) also increased in individuals              

with higher similarities to pLI-FC-profile in 11 and 3 regions respectively (Supplementary Table 8).              

Regions driving correlation with intelligence and autism measures were partially overlapping (figure            

4d). None of these similarities was correlated to motion.  

A parsimonious set of FC dimensions may underlie the dysconnectivity observed across            

CNVs and idiopathic psychiatric conditions 

We asked if dysconnectivity profiles across all CNVs and IPCs could be summarized by latent               

components (LCs). We used the FC-profiles of 12 CNVs delineated in aim 1 (those with sample size                 

allowing CWAS) and 3 IPCs obtained by CWAS (Figure 1o-p, Supplementary results). We             

performed an exploratory factor analysis (EFA) using maximum likelihood as a fitting procedure             

across all CNVs and IPC FC-profiles. The EFA identified 3 LCs that explained 28% of the variance                 

between FC-profiles (Tucker-Lewis Index (TLI) of factoring reliability = 0.93, Root Mean Square             

Error Approximation index (RMSEA) =0.01, ​p​=0.42 for the null hypothesis that 3 factors were              

sufficient). Regions contributing the most across LCs included the thalamus, the temporal pole, the              

anterior cingulate, and the ventromedial prefrontal cortex (Supplementary Table 9). The third LC             

showed a high spatial similarity with the haploinsufficiency FC-profile (​r ​=0.57) (Figure 4c). 
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Figure 4. (a-b) Relationship between dysconnectivity and haploinsufficiency measured by pLI           

across genomic loci. (a) Brain map represents the percentage of altered connections (FDR corrected)              

per region. (b) Each chord represents a functional connection between 2 regions that are significantly               

associated with intolerance to haploinsufficiency (measured by pLI). All 64 seed regions are             

represented in the dark grey inner circle of the chord diagram. The width of the seed region in the                   

grey inner circle corresponds to the number of altered connections. Seed regions are grouped into 12                

functional networks (outer ring). Networks are represented in 12 brains around the diagram. Red              

chords represent overconnectivity and blue chords underconnectivity. Full names are available in            

Supplementary Table 10. 

(c) Exploratory Factor Analysis results across 15-FC profiles of alterations converging on 3 latent              

components (LCs). Value on each arrow represents ​standardized EFA loading (see Supplementary            

Method). ​We reported the 64 values for the corresponding 3 LCs into the 3 brain maps (red: positive                  

contribution, blue: negative contribution, Supplementary Table 9). 

(d) Individuals with higher similarity to the haploinsufficiency FC-profile have lower measures of             

general intelligence and higher autism severity measures. Colour codes represent Pearson r            
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computed between the 64 regions of the haploinsufficiency FC-profile and the regional profiles of              

individuals based on their cognitive and behavioural measures. IQ: Intelligence Quotient, ADOS:            

Autism Diagnostic Observation Schedule, SRS: Social Responsiveness Scale. 

 

Discussion 

Main findings 

We provided the first connectome-wide characterization of CNVs at the 1q21.1 and 15q11.2 loci and               

conducted a systematic comparison across 8 neuropsychiatric CNVs. Deletions and duplications at 6             

out 8 CNVs were associated with a global shift in mean connectivity with the largest effect at the                  

1q21.1 duplication locus. The effect size of CNVs on relative FC (mean-connectivity adjusted) was              

correlated with the known level of NP-risk conferred by CNVs. We identified connectivity             

architecture similarities between high-risk NP-CNVs and individuals with ASD, SZ and to a lesser              

extent ADHD. These similarities were driven by the thalamus, the posterior cingulate cortex, and the               

anterior insula. Four neutral control CNVs exhibited far less similarities with IPCs than large effect               

size NP-CNVs. Intolerance to haploinsufficiency measured by pLI score was related to a FC profile               

characterized by increased connectivity in the thalamus, basal ganglia, the somatomotor network and             

medial DMN, and decreased connectivity in the limbic, frontoparietal and anterior DMN. This             

haploinsufficiency profile was associated with lower measures of intelligence across three cohorts            

and an increase in autism severity scores. Using exploratory factor analysis, we validated these              

regions by showing their contribution to three latent components explaining 28% of FC variance              

across CNVs and neuropsychiatric conditions.  
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Bottom-up genetic-first versus top-down approaches 

The effect sizes of rare variants on functional neuroimaging traits are concordant with effects              

previously measured for the same variants on brain structure, cognitive and behavioural traits ​(13,              

15)​. This is in striking contrast with neuroimaging studies of behaviorally defined groups of patients               

that have required very large samples to reach reproducible results. On average, the effect sizes               

observed for FC and brain structure in SZ, ASD and ADHD range from 0.3 to 0.15 and lower ​(16,                   

17) which is discordant with the severity of those conditions that lie well beyond 2               

standard-deviation with respect to their impact on behavioural and adaptive traits. Therefore, while             

brain intermediate endophenotypes remain elusive in heterogeneous psychiatric conditions, genetic          

first strategies have the potential to provide key insights into underlying biological mechanisms. 

Pleiotropic effects in neuropsychiatric CNVs on brain connectivity 

GWAS studies have shown that the same set of SNPs confer risk for a range of different conditions,                  

suggesting pleiotropic effects ​(18)​. Similarly, CNVs increase risk for a range of psychiatric disorders              

including ASD, SZ, ADHD, as well as obsessive-compulsive, oppositional defiant, and tic disorders             

(19)​. Mechanisms underlying these apparent pleiotropic effects are unclear. Recent systematic           

cross-CNV analyses reported that impairments in many behavioural and cognitive traits were            

broadly similar for 12 NP-CNVs ​(19)​. There were only moderate qualitative profile differences in              

cognitive and behavioral measures between NP-CNVs ​(19) ​. Consistent with these findings, we           

showed that CNVs present similarities with several IPCs at the connectivity level. This may be               

related to connectivity-dimensions such as the FC profile defined by intolerance to            

haploinsufficiency associated with increased risk across several psychiatric conditions and cognitive           

deficits ​(13, 20)​. In line with these observations, cross-psychiatric diagnoses studies have delineated             

FC dimensions very similar to those associated with haploinsufficiency and involving the            

somatosensory motor network, DMN, thalamus and subcortical structures ​(21)​. This is consistent            

19 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.18.20038505doi: medRxiv preprint 

https://paperpile.com/c/5pUyAz/n80W+uDVZ
https://paperpile.com/c/5pUyAz/n80W+uDVZ
https://paperpile.com/c/5pUyAz/7IsA+rhho
https://paperpile.com/c/5pUyAz/7IsA+rhho
https://paperpile.com/c/5pUyAz/667a
https://paperpile.com/c/5pUyAz/H4Fw
https://paperpile.com/c/5pUyAz/H4Fw
https://paperpile.com/c/5pUyAz/H4Fw
https://paperpile.com/c/5pUyAz/uDVZ+Rr89
https://paperpile.com/c/5pUyAz/z6V7
https://doi.org/10.1101/2020.03.18.20038505
http://creativecommons.org/licenses/by/4.0/


Manuscript​: The general impact of haploinsufficiency on brain connectivity underlies the 
pleiotropic effect of neuropsychiatric CNVs 

 
with our current and previous findings showing that the FC patterns shared between CNVs and IPC                

were correlated to IQ and SRS ​(9) ​.  

Haploinsufficiency ​reorganizes brain connectivity according to a general FC-profile. 

We extended to connectivity some models which were initially developed to estimate the effect size               

of CNVs on IQ ​(13)​. This approach showed that deleting genes intolerant to haploinsufficiency              

(measured by pLI) may lead to a pattern of dysconnectivity irrespective of where the deletion occurs                

in the genome. This haploinsufficiency profile was associated with a decrease in intelligence             

measures in the general population and disease cohorts and increased severity on autism             

assessments. Such findings may help decipher why the same linear model using pLI as an               

explanatory variable can explain 75% of the effect of deletions on IQ irrespective of genomic               

location and point to mechanisms explaining why 70%–100% of any 1-MB windows in the human               

genome contributes to increased risk for SZ and ASD ​(20, 22)​. Intolerance to haploinsufficiency              

measured by pLI reflects a negative selection pressure unrelated to a particular molecular function.              

Non-specific effects of haploinsufficiency on cognition, behavior and FC could be related to             

emerging properties of the genome, rather than a limited set of biological pathways ​(23)​. In other                

words, changing gene dosage at any node of the genomic network may alter its efficiency leading to                 

a measurable effect on brain organization and behavior.  

The Thalamus is a central hub across psychiatric disorders and rare neuropsychiatric            

variants  

Recent models of thalamic functions revealed a far more complex contribution than a simple passive               

relay with extensive connections to the entire cerebral cortex. Functional MRI studies have             

demonstrated that thalamocortical and corticothalamic pathways are engaged in memory, attention,           

and mental representations through specific thalamic subdivisions ​(24, 25)​. fMRI studies have            

reported involvement of the thalamus across several NPs including ASD, SZ, and major depression              
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(26–28)​. Our study also highlighted the thalamus as a functional hub highly sensitive to altered gene                

dosage across loci. The thalamic connectivity-pattern in high-risk NP-CNVs carriers also showed the             

highest similarities with those of ASD, SZ, and ADHD. Finer parcellation of the thalamus ​(24) will                

provide insight into the relationship between functional alterations related to CNVs and IPCs. 

Limitations 

Previous studies have shown that the effect size of duplications is 2 to 3 fold smaller than deletions                  

for cognitive ​(20) and neuroanatomical measures ​(15, 29)​. A similar phenomenon was observed in              

this study and much larger samples of duplication carriers will be required to accurately characterize               

their effects on FC.  

Our study was designed to search for shared effects but we are not implying that most of the FC                   

alterations are common across CNVs. It will require much more data on many more genomic loci to                 

delineate the potential specific effects of any given genomic variant.  

This multisite study associating clinically and non-clinically ascertained cohorts may have           

introduced biases. Several confounding factors including sex bias, age differences, and medication            

status may also have influenced some of the results. However, carefully conducted sensitivity             

analyses, investigating all of these confounders, and performing sensitivity analyses matching           

control group for sex, site, age, motion and excluding IDP with medications provided similar results.               

Finally, we could not perform EFA with all 2,080 connections due to the insufficient number of                

CNV carriers. By moving to regional patterns, directionality is no longer taken into account. Larger               

samples are required to confirm and further characterise these latent components. 

Conclusion 

Our results suggest that deletions and duplications across the genome may converge upon a              

parsimonious set of connectivity dimensions involved in cognition and idiopathic NPs. Such findings             
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raise the question on the nature of the relationship between the molecular functions of genes               

included in CNVs and functional changes of large scale brain networks. General haploinsufficiency             

connectivity profiles will likely extend to a large number of genomic loci and may help decipher                

why broad groups of genomic variants confer risk to the same neuropsychiatric conditions. 

Materials and Methods 

Sample 

We analyzed 6,635 individuals from nine datasets (Table 1, Supplementary Materials and Methods).  

CNVs carriers and controls  

Genetic-first cohorts were recruited based on the presence of a CNV, regardless of symptomatology,              

by five consortia (three out of five have never been published before): the Simons Variation in                

Individuals Project (VIP) consortium data (16p11.2 and 1q21.1 CNVs carriers) ​(30)​, the University             

of California, Los Angeles (22q11.2 CNVs carriers), the Brain Canada cross NP-CNVs project             

(CHU Sainte Justine, Montreal, Canada), the Define cross NP-CNVs Project (Cardiff, UK), and the              

Lausanne Prisma project (16p11.2 and 1q21.1 CNVs carriers) (see Supplementary Materials and            

Methods for individual dataset description). 

CNVs were also identified in an unselected population (UK Biobank) (see Supplementary Materials             

and Methods for the CNV calling procedure and final sample description).  

Idiopathic psychiatric conditions and respective controls 

Individuals with idiopathic ASD and their respective controls were sampled from the ABIDE1             

multicenter dataset ​(31)​. Individuals with idiopathic SZ and their respective controls were obtained             

from aggregated fMRI data of 10 studies. Individuals diagnosed with ADHD (DSM-IV) and their              
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respective controls were obtained from the ADHD-200 dataset ​(32, 33)​(see Supplementary Materials            

and Methods for individual dataset description). 

 

Imaging data were acquired with site-specific MRI sequences. Each cohort analyzed in this study              

was approved by the research ethics review boards of the respective institutions. Signed informed              

consent was obtained from all participants or their legal guardian before participation. Secondary             

analyses of the listed datasets for the purpose of this project were approved by the research ethics                 

review board at Sainte Justine Hospital. After data preprocessing and quality control, we included a               

total of 6,635 individuals (Table 1). 

Preprocessing and QC procedures 

All datasets were preprocessed using the same parameters with the same Neuroimaging Analysis Kit              

(NIAK) version 0.12.4, an Octave-based open-source processing and analysis pipeline ​(34)​.           

Preprocessed data were visually controlled for quality of the co-registration, head motion, and             

related artefacts by two raters (Supplementary Materials and Methods). 

Computing connectomes 

We segmented the brain into ​64 functional seed-based regions defined by the multi-resolution MIST              

brain parcellation ​(35)​. FC was computed as the ​temporal pairwise Pearson’s correlation between the              

average time series of the 64 seed-based regions, and then Fisher-z transformed. ​The connectome of               

each individual encompassed 2,080 connectivity values: ​(63x64)/2 = 2016 region-to-region          

connectivity + 64 within seed-based region connectivity​. ​We chose the 64 parcel atlas of the               

multi-resolution MIST parcellation as it falls within the range of network resolution previously             

identified to be maximally sensitive to functional connectivity alterations in neurodevelopmental           

disorders such as ASD (Supplementary Table 10) ​(36)​. We corrected for multiple comparisons using              

a false discovery rate strategy ​(37) ​. 
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Statistical analyses were performed in Python using the scikit-learn library ​(38)​. Analyses were             

visualized in Python and R. Code for all analyses and visualizations is available online through the                

GitHub platform with Jupyter notebook: 

https://github.com/claramoreau9/NeuropsychiatricCNVs_Connectivity​. 

Statistical analyses 

All of the following analyses are summarised in Supplemental Materials and Methods (Objective             

and methods, Supplementary Table 1). 

Connectome-wide association studies (CWAS) 

We performed fifteen CWAS: comparing FC between cases and controls for five CNVs (15q11.2,              

1q21.1, 2q13, 16p11.2 and 22q11.2, for deletion and duplication carriers), for TAR-1q21.1 and             

15q13.3 duplications carriers, and for three idiopathic psychiatric cohorts (ASD, SZ, and ADHD).             

Controls were pooled across all CNV cohorts (n=4,427). Controls were separately pooled across the              

three idiopathic groups (IPCs, n=950, Table 1). FC was standardized (z-scored) based on the              

variance of the respective control group. CWAS was conducted by linear regression at the              

connectome level, in which z-scored FC was the dependent variable and clinical status the              

explanatory variable. Models were adjusted for sex, scanning site, head motion, mean connectivity,             

and age. We determined whether a connection was significantly altered by the clinical status effect               

by testing whether the β value (regression coefficient associated with the clinical status variable) was               

significantly different from 0 using a two-tailed ​t​-test. This regression test was applied independently              

to each of the 2,080 functional connections. We corrected for the number of tests (2,080) using the                 

Benjamini-Hochberg correction for FDR at a threshold of q ​< 0.05 ​(37)​, following the              

recommendations of Bellec ​et al. ​ 2015 ​(39)​. 

We defined the global FC shift as the average of the β values across all 2,080 connections. We tested                   

whether the observed global FC shifts were significantly different from zero by conducting a              

permutation test, shuffling the clinical status labels of the individuals included in each CWAS (using               
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10,000 replications). We thus estimated a valid permutation-based ​p​-value associated with the            

observed global FC shift ​(40) ​.  

 

Two additional CWAS were performed to assess the linear effect of pLI deletion and duplication               

scores on FC. The CNV pLI annotation is described in the Supplementary Materials and Methods.               

This analysis was performed only among the CNVs cohorts, controlling for sex, scanning site, head               

motion, mean connectivity, and age. FC was standardized (z-scored) based on the variance of the               

entire sample. 

Similarity of whole-brain connectivity-profiles between idiopathic psychiatric conditions        

and CNVs 

We tested the similarity between dysconnectivity measured across the 3 IPCs and the 12 CNVs. This                

similarity was tested by correlating, at the whole-brain level, individual connectomes of cases and              

controls of IPCs to the CNVs-connectivity-profiles (group level; Figure 2cd). Controls used to             

compute the similarity with psychiatric conditions have not been used to compute the CNVs-FC              

profiles in the first place. The group-level FC-profile was defined as the 2,080 β values obtained                

from the contrast of cases vs. controls (aim1.2). This was repeated between all CNVs (n=12) and the                 

3 conditions (n=36 similarity tests).  

Individual connectomes of IPC cases and controls were used after independently adjusting for sex,              

scanning site, mean connectivity, head motion, and age. Similarity scores were derived by             

computing Pearson’s correlations between the whole brain connectomes. We asked whether IPC            

cases compared to the IPC controls had significantly higher (or lower) similarity to whole-brain              

CNV-profile using a Mann-Whitney U test. We reported significant group differences after FDR             

correction accounting for the 36 tests (​q ​< 0.05). 
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Similarity of regional connectivity-profiles between idiopathic conditions and CNVs 

The same approach described above was performed at the regional level. We calculated a similarity               

score between individual adjusted connectomes and the 12 CNVs FC-profiles. FC-profiles were            

broken down into 64 region-level FC-profiles and similarity scores were derived by computing             

Pearson’s correlations between the 64 β values associated with a particular region. For each region,               

we tested whether individuals with a psychiatric diagnosis had significantly higher (or lower)             

similarity to CNVs FC-profiles than controls using a Mann-Whitney U test. We reported significant              

group differences after FDR correction (​q ​< 0.05) for the number of regions (n=64).  

We investigated the relationship between severity scores and similarity with pLI-FC profile.            

Similarities of individuals with pLI FC-profiles were correlated (Pearson’s r) with severity scores.             

The p-values associated with these correlations were corrected for multiple comparisons (FDR, ​q ​<              

0.05). 

Exploratory factorial analysis 

Exploratory Factor Analysis (EFA) was performed using the maximum likelihood (mle) method.            

Factors were allowed to rotate. Analyses were performed using the ​psych and the ​stats packages in R                 

3.4.1 ​(41)​. Factor models were fit iteratively and compared using three criteria: TLI ≥ 0.90, RMSEA                

≤ 0.10 and a smaller Bayesian Information Criteria relative to other models. The model with the best                 

fit has been retained. We used FC-profiles of 12 CNVs and 3 IPCs obtained by CWAS (aim 1.2).                  

The EFA identified 3 latent components (LC) to obtain a non-significant p-value (test for the null                

hypothesis that 3 factors were sufficient). We extracted ​standardized EFA loading scores per LC. ​We               

used the Nilearn package ​(38) to report the 64 ​standardized ​loading scores per LC into 3 brain maps.                  

We computed the Pearson correlation between the pLI deletion FC-profile and each of the three LCs. 
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