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Abstract 

A new coronavirus, SARS-CoV-2, has recently emerged to cause a human pandemic. 

Whereas molecular diagnostic tests were rapidly developed, serologic assays are still lacking, yet 

urgently needed. Validated serologic assays are important for contact tracing, identifying the 

viral reservoir and epidemiological studies. Here, we developed serological assays for the 

detection of SARS-CoV-2 neutralizing, spike- and nucleocapsid-specific antibodies. Using 

serum samples from patients with PCR-confirmed infections of SARS-CoV-2, other 

coronaviruses, or other respiratory pathogenic infections, we validated and tested various 

antigens in different in-house and commercial ELISAs. We demonstrate that most PCR-

confirmed SARS-CoV-2 infected individuals seroconverted, as revealed by sensitive and specific 

in-house ELISAs. We found that commercial S1 IgG or IgA ELISAs were of lower specificity 

while sensitivity varied between the two, with IgA showing higher sensitivity. Overall, the 

validated assays described here can be instrumental for the detection of SARS-CoV-2-specific 

antibodies for diagnostic, seroepidemiological and vaccine evaluation studies. 
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Introduction 

In December 2019, a new coronavirus (CoV) emerged in China to cause an acute 

respiratory disease known as coronavirus disease 19 (COVID-19) (1). The virus was identified to 

be a betacoronavirus related to severe acute respiratory syndrome coronavirus (SARS-CoV) and 

thus, was named SARS-CoV-2 (2). In less than two decades, this virus is the third known 

coronavirus to cross the species barrier and cause severe respiratory infections in humans 

following SARS-CoV in 2003 and Middle East respiratory syndrome in 2012, yet with 

unprecedented spread compared to the earlier two. Due to the rapid rise in number of cases and 

uncontrolled and vast worldwide spread, the WHO has declared SARS-CoV-2 a pandemic. As of 

March 14th 2020, the virus has infected over 130,000 individuals in 122 countries, 3.7% of 

which had a fatal outcome (3). The rapid identification of the etiology and the sharing of the 

genetic sequence of the virus, followed by international collaborative efforts initiated due to the 

emergence of SARS-CoV-2 have led to the rapid availability of real-time PCR diagnostic assays 

that support the case ascertainment and tracking of the outbreak (4). The availability of these has 

helped in patient detection and efforts to contain the virus. However, specific and validated 

serologic assays are still lacking at the moment and are urgently needed to understand the 

epidemiology of SARS-CoV-2. 

Validated serologic assays are crucial for patient contact tracing, identifying the viral 

reservoir hosts and for epidemiological studies. Epidemiological studies are urgently needed to 

help uncover the burden of disease, in particular, the rate of asymptomatic infections, and to get 

better estimates on morbidity and mortality. Additionally, these epidemiological studies can help 

reveal the extent of virus spread in households, communities and specific settings; which could 

help guide control measures Serological assays are also needed for evaluation of the results of 

vaccine trials and development of therapeutic antibodies. Among the four coronavirus structural 

proteins, the spike (S) and the nucleocapsid (N) are the main immunogens (5). Here, we describe 

development of serological assays for the detection of virus neutralizing antibodies and 

antibodies to the nucleocapsid (N) protein and various spike (S) domains including the S1 

subunit, and receptor binding domain (RBD) of SARS-CoV-2 in ELISA format. Using a well-

characterized cohort of serum samples from PCR-confirmed SARS-CoV-2 and patients PCR-
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confirmed to be infected with seasonal coronaviruses and other respiratory pathogens, we 

validated and tested various antigens in different platforms developed in-house as well as a 

commercial platform. 

Materials and methods 

Serum Samples 

EMC samples  

Serum samples were collected from PCR-confirmed mild and severe COVID-19 patients (Table 

1) from France in accordance with the local ethical approvals. Samples used for assay validation 

were from persons PCR-diagnosed infections with of human coronaviruses (HCoV-229E, NL63 

or OC43), SARS, MERS, or with a range of other respiratory viruses (Table 1) as published 

previously (6). Samples from patients with recent CMV, EBV or mycoplasma pneumoniae 

infection were included as these have a higher likelihood of causing false positive results. We 

used serum samples from 45 healthy blood donors (Cohort A) as negative controls; Sanquin 

Blood Bank (Rotterdam, the Netherlands) obtained written informed consent for research use. 

All samples were stored at -20°C until use. The use of serum samples from the Netherlands was 

approved by the local medical ethical committee (MEC approval: 2014–414). Serum samples 

from SARS patients (7) were kindly provided by professor Malik Peiris, Hong Kong University. 

Berlin samples 

All serum samples from COVID-19 PCR-confirmed cases ( n = 9) were previously 

analyzed by recombinant SARS-CoV-2 Spike protein-based immunofluorescence test and plaque 

reduction neutralization (Wölfel et al submitted manuscript, 

doi:https://doi.org/10.1101/2020.03.05.20030502). Sera were tested as part of an extended 

diagnostic regimen upon informed written consent of patients. All non-SARS-CoV-2 sera (n=31) 

stemmed from the serum collection of the national consiliary laboratory for coronavirus 

detection at Charité, Berlin, Germany and were provided for diagnostic proposes upon informed 

written consent. The collection contained follow-up sera from PCR-confirmed human cases: n=4 

HCoV-229E, n=3 HCoV-HKU1, n=7 HCoV-OC43, n=3 MERS-CoV, n=6 HCoV-NL63, n=3 

SARS-CoV and n=6 common cold CoV antibody positive sera. 
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Protein expression 

The spike ectodomains of SARS-CoV-2 (residues 1–1,213; strain Wuhan-Hu-1; GenBank: 

QHD43416.1), SARS-CoV (residues 1–1,182; strain CUHK-W1; GenBank: AAP13567.1) and 

MERS-CoV (residues 1-1262; strain EMC; GenBank: YP_009047204.1) were expressed in HEK-

293T cells with a C-terminal trimerization motif and Strep-tag using the pCAGGS expression 

plasmid. Likewise, the SARS-CoV-2 S1 subunit or its subdomains (S;S1, residues 1-682; S1A, 

residues 1-294; RBD, residues 329-538; GenBank: QHD43416.1) were expressed in 293T cells as 

described in (Chunyan Wang et al., submitted manuscript; doi: 

https://doi.org/10.1101/2020.03.11.987958) . Spike S1 proteins of other HCoVs, –HKU1 (residues 

1–750), –OC43 (residues 1–760), NL63 (residues 1–717), 229E (residues 1–537), SARS-CoV 

(residues 1–676), and MERS-CoV were expressed as described earlier (6, 8). All the recombinant 

proteins were affinity purified from the culture supernatant by protein-A sepharose beads (Cat.no: 

17-0780-01, GE Healthcare) or streptactin beads (Cat.no: 2-1201-010, IBA) purification. Purity 

and integrity of all purified recombinant proteins was checked by coomassie stained SDS-PAGE. 

PRNT 

PRNT was used as a reference for this study, because neutralization assays are the 

standard for CoV serology. We tested serum samples for their neutralization capacity against 

SARS-CoV-2 (German isolate; GISAID ID EPI_ISL 406862; European Virus Archive Global # 

026V-03883) by plaque-reduction neutralization test (PRNT) as previously described for with 

some modifications (9). Heat-inactivated samples were 2-fold serially diluted in DMEM medium 

supplemented with NaHCO3, HEPES buffer, penicillin, streptomycin, and 1% fetal bovine 

serum, starting at a dilution of 1:10 in 50 μL. Fifty μL of the virus suspension (400 spot forming 

units) was added to each well and incubated at 37°C for 1 h. Following incubation, the mixtures 

were added on Vero-E6 cells and incubated at 37°C for 1 more hour. The cells were then washed 

and further incubated in medium for 8 h. After the incubation, the cells were fixed and stained 

with polyclonal rabbit anti-SARS-CoV antibody (Sino Biological). The cells were then fixed and 

stained using a rabbit anti-SARS-CoV serum and a secondary peroxidase-labelled goat anti-

rabbit IgG (Dako). The signal was developed using a precipitate forming TMB substrate (True 

Blue, KPL) and the number of infected cells per well were counted using the ImmunoSpot® 
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Image analyzer (CTL Europe GmbH). The serum neutralization titer is the reciprocal of the 

highest dilution resulting in an infection reduction of >50% (PRNT50). A titer of >20 was 

considered to be positive.  

The PRNT for the German sera was done as described previously using Vero E6 cells 

(Wölfel et al submitted manuscript, doi:https://doi.org/10.1101/2020.03.05.20030502) (10). Prior 

to PRNT patient sera were heat-inactivated at 56°C for 30 minutes. For each dilution step 

(duplicate), patient sera were diluted in 200 ul OptiPro and mixed 1:1 with 200 ul virus solution 

containing 100 plaque forming units. The 400 ul serum-virus solution was vortexed gently and 

incubated at 37°C for 1 hour. Each 24-well was incubated with 200 ul serum-virus solution. 

After 1 hour at 37°C the supernatants were discarded, the cells were washed once with PBS and 

supplemented with 1.2% Avicel solution in DMEM. After 3 days at plates were fixed and 

inactivated using a 6% formaldehyde/PBS solution and stained with crystal violet. 

ELISA  

We performed Anti-SARS-CoV-2 IgG and IgA ELISA using beta-versions of two commercial 

kits (EUROIMMUN Medizinische Labordiagnostika AG, https://www.euroimmun.com) and 

performed the assay according to manufacturer’s protocol. Reagent wells of both assays are 

coated with recombinant structural protein (S1 domain) of SARS-CoV-2. The optical density 

(OD) was detected at 450 nm, and a ratio of the reading of each sample to the reading of the 

calibrator, included in the kit, was calculated for each sample (OD ratio). As the beta-version of 

the kit awaits CE validation, we determined an in-house cut-off value based on the mean 

background reactivity of all SARS-CoV-2-negative sera in the study multiplied by 3. In case of 

IgA this was OD ratio = 0.9 and for IgG OD ratio = 0.3. 

We performed the inhouse ELISAs by coating 96-well microtiter ELISA plates with in-house 

produced spike antigens (S or S1 of SARS-CoV-2, SARS-CoV or MERS-CoV; or SARS-CoV-2 

S1A, or RBD proteins) or SARS-N (Sinobiological) in PBS overnight at 4°C. Following 

blocking, diluted serum (1:100 or 2-fold serially diluted for titers) was added and incubated at 

37°C for 1h. Antigen-specific antibodies were detected using peroxidase-labeled rabbit anti–

human IgG (Dako, https://www.agilent.com) and TMB as a substrate. The absorbance of each 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 20, 2020. ; https://doi.org/10.1101/2020.03.18.20038059doi: medRxiv preprint 

https://www.agilent.com/
https://doi.org/10.1101/2020.03.18.20038059


6 

 

sample was measured at 450 nm. We set cutoffs at 6 standard deviations above the mean value of 

the negative cohort.  

S1 Protein Microarray  

Serum samples were previously tested for antibodies against the S1 of different coronaviruses as 

described earlier (6). 

Statistical Analysis 

The correlations between antibody responses detected by different ELISAs were and those 

detected by PRNT, as the gold standard for CoV serology, were analyzed using GraphPad Prism 

version 8 (https://www.graphpad.com).  

Results 

We evaluated SARS-CoV-2 specific antibody responses in severe and mild cases using 

serum samples collected at different times post-disease onset from three French PCR-confirmed 

CoVID-19 patients. We tested sera for SARS-CoV-2 specific antibodies using different ELISAs. 

Following infections, all three patients seroconverted between days 13 and 21 post onset of 

disease (Figure 1), and antibodies were elicited against the SARS-CoV-2 S and S1 subunit 

including the N-terminal (S1A) domain and the receptor binding domain (RBD). Since the N 

protein of SARS-CoV-2 is 90% similar to that of SARS-CoV (Table 2), we used SARS-CoV N 

as an antigen to test for SARS-CoV-2 N-directed antibodies in an ELISA format. We found that, 

following infection, antibodies were elicited against the N protein and when tested in a PRNT 

assay these sera were able to neutralize SARS-CoV-2. We observed cross-reactivity with the 

SARS-CoV S and S1 proteins, and to a lower extent with MERS-CoV S protein, but not with the 

MERS-CoV S1 protein (Figure 1 G-H). This was evident from analyzing the degree of 

similarity of the different CoV S protein domains to their corresponding SARS-CoV-2 proteins 

(Table 2), where SARS-CoV showed high similarities in all different S domains. The analysis 

showed that the spike S2 subunit is more conserved among CoVs and thus plays a role in the 

cross-reactivity seen when the whole S was used as an antigen. Thus, S1 is a more specific than 

S as an antigen for SARS-CoV-2 serological diagnosis. 
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We further assessed the specificity of the S1 assay using cohorts A-E (Table 1) 

comprising of sera from healthy blood donors (A), PCR-confirmed acute respiratory non-CoV 

infections (B), acute to convalescent PCR-confirmed alpha- and beta-HCoV infections (C), and 

PCR-confirmed MERS-CoV (D) and SARS-CoV (E) infections. None of the sera from 

specificity cohorts A-D were reactive in our in-house S1 ELISA at the set cut-off indicating 

100% specificity, whereas sera from SARS-CoV patients cross-reacted (Figure 2A). 

Additionally, the specificity of S1 as an antigen for SARS-CoV-2 serology was further supported 

by the fact that 87-100 % of the cohort A-C sera included in this study were seropositive for the 

endemic HCoVs (HCoV-HKU1, HCoV-OC43, HCoV-NL63, and -229E) as determined by the 

S1 protein microarray (Figure 2B). Nonetheless, all were seronegative for SARS-CoV and 

MERS-CoV. Using the same cohort, we also validated the specificity of the anti-nucleocapsid 

and anti-RBD IgG ELISAs for detecting SARS-CoV-2 specific antibodies. At the set cut-off, 

except of SARS-CoV patient sera, none of the control sera tested positive for anti-RBD nor anti-

nucleocapsid antibodies (Figure 2 C,D), whereas we detected seroconversion among the three 

COVID-19 patients. These validated ELISAs for different antigens can be useful for 

epidemiological studies as well as for evaluation of vaccine-induced immune responses. 

Next, we validated the sensitivity and specificity of 2 commercial ELISA kits for 

detecting S1-specific IgG and IgA antibodies using the same cohort (Table1, Figure 3). All 

three COVID-19 patients had reactive antibodies by both the IgG (6/10 serum samples) and IgA 

(7/10 serum samples) ELISAs (Figure 3). While SARS-CoV patient’s sera were reactive as 

noted earlier, we also detected reactivity of serum samples from the validation cohorts A-D; 

10/203 for IgA and 7/203 for IgG ELISAs. Two HCoV-OC43 (a β-CoV) patients’ sera were 

reactive in both IgG and IgA ELISA kits. We confirmed the cross-reactivity of the two sera by 

testing twelve serum samples from both patients collected at different time points, pre- and post-

OC43 infection. While all pre-infection sera were negative, all post-infection sera were reactive 

in both IgG and IgA based ELISAs. We have earlier reported cross-reactivity of these sera in a 

MERS-CoV S1 IgG ELISA kit (6). Further validation was also done in a different laboratory 

using 31 serum samples collected from 9 COVID-19 German patients (Wölfel et al submitted 

manuscript) at different time points (3-23 days post disease onset) as well as a specificity cohort 

comprising of 18 serum samples from HCoV (4x HCoV-229E, 3x HCoV-HKU1, 4x HCoV-
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NL63, 7x HCoV-OC43) as well as MERS-CoV (n=3) and SARS-CoV (n=3) infected persons 

collected 4-56 days post disease onset (Figure 4). All 9 COVID-19 patients were previously 

confirmed to seroconvert at days 6-15 post onset of disease using recombinant 

immunofluorescence test and PRNT. 8/9 seroconverted patients showed reactivity above the 

implemented cut-off values in the IgG and IgA ELISA. One patient (Figure 4, black line) 

maintained slightly below the cut-off which might be explained by an overall reduced antibody 

response of this patient (PRNT90=10). Overall, the IgA-based ELISA kit was more sensitive but 

less specific than the IgG based ELISA kit. 

Finally, we compared the performance of the different ELISAs for the detection of 

antibodies among PCR-confirmed COVID-19 patients to that of PRNT, as the gold standard for 

CoV serology (Table 3). PRNT50 correlated strongly with the different ELISAs, with the 

commercial IgA showing the strongest correlation followed by the S and N ELISAs indicating 

their capacity to detect SARS-CoV-2 specific antibodies. However, a larger patient cohort is 

needed to assess the sensitivity of these platforms. 

Discussion 

Validated SARS-CoV-2 serological assays are currently lacking, yet urgently needed for 

contact tracing, epidemiological and vaccine evaluation studies. Since the N and the S proteins 

are the main immunogenic CoV proteins, we developed ELISA-based assays, which were able to 

detect antibodies to these two proteins along with the two spike domains, S1A and RBD. Those 

correlated strongly with virus neutralizing antibodies detected by a PRNT50 assay. Since the 

majority of the human population has antibodies against the four endemic human coronaviruses, 

it was crucial to verify the specificity of these assays to avoid false positive results. Additionally, 

the two zoonotic coronaviruses, SARS-CoV and MERS-CoV, are also beta-coronaviruses, 

raising potential for cross-reactivity. Among the spike protein antigens tested, the S1 was more 

specific than S in detecting SARS-CoV-2 antibodies, as MERS-CoV-S cross-reactive antibodies 

were detected in the serum of one of the COVID-19 patients which was not seen when MERS-

CoV S1 was used for testing. This could be explained by the high degree of conservation in the 

CoV S2 subunit relative to the S1 (Table 2). Therefore, consistent with our earlier findings for 

MERS-CoV serology (6), S1 is a specific antigen for SARS-CoV-2 diagnostics. 
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When testing the specificity S1 or its RBD for detecting SARS-CoV-2 antibodies, none 

of the sera form the validation cohorts (A-E) showed any reactivity; except for SARS-CoV 

patients sera. This - not-unexpected - cross-reactivity resulted from the high degree of similarity 

between the S1 and RBD of the SARS-CoV and SARS-CoV-2 (Table 2). However, SARS-CoV 

has not circulated in the human population since 2003, i.e. 17 years ago, and an earlier study 

reported waning of SARS-CoV-specific antibodies which made them undetectable in serum 

samples of 91% (21/23) of samples tested 6 years following infection (11). It is therefore 

unlikely that antibodies to this virus are present in the population and thus there could hardly be 

a chance that false positives result from SARS-CoV-antibodies reactivity. Meanwhile, we made 

use of the high degree of similarity between the SARS-CoV and SARS-CoV-2 proteins for the 

development of our inhouse N ELISA, where we used SARS-CoV N (90% similar to SARS-

CoV-2) as an antigen. The N-ELISA could detect SARS-CoV-2-specific antibodies with high 

specificity and sensitivity. Using the three different validated ELISAs, we found that antibody 

levels were higher following the severe infection compared to the mild ones; similar findings has 

been reported earlier for MERS-CoV (12, 13). However, this needs to be confirmed with a larger 

cohort of patients with varying degrees of severity, while it still highlights the potential need of a 

sensitive assay to avoid missing those with milder infections in epidemiological studies. Among 

the 3 inhouse ELISAs tested, the RBD and N ELISAs were more sensitive than S1 ELISA in 

detecting antibodies in mildly infected patients and showed stronger correlation with PRNT50 

titers. Therefore, detecting antibodies against two different antigens might be needed to confirm 

the findings and avoid false negatives in surveillance studies. However, the sensitivities of the 

assays need to be further validated with a larger cohort. 

We further validated beta-versions of an IgA and an IgG S1 commercial ELISA in two 

different labs. While the IgA-based ELISA showed higher sensitivity than the IgG-based ELISA, 

the opposite was true for the specificity where the IgG ELISA was more specific than the IgA 

ELISA. Yet, we noted some cross reactivity in both ELISAs with serum samples from the same 

two HCoV-OC43 patients that cross reacted in a MERS-CoV S1 IgG ELISA (6) despite the 

different antigen coated. This indicates a response to another protein which could be in the 

blocking or coating matrix, apart from the specific antigen coated, resulting in this consistent 

false positive result. 
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Overall, the assays developed and validated in this study could be instrumental for patient 

contact tracing, serosurveillance studies, as well as vaccine evaluation studies. However, since 

various studies will be carried out in different labs, it is crucial to calibrate and standardize 

assays developed by different labs using well defined standard references as a part of diagnostic 

assay validation. This is not only needed to reduce interassay variability, but to also harmonize 

the results obtained from different labs using various assays (14). This is crucial for better 

comparison and interpertaion of results from different studies as well as evaluation of vaccine 

trials, allowing for uniform assessment of immunogenicity, efficacy and better understanding of 

correlates of immune protection (15). Thus, setting up reference panels is a vital element in our 

preparedness approaches to emerging viruses. 
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Table 1. Cohorts used to validate the specificity and sensitivity of assays for SARS-CoV-2 

Cohort Country Sample source Infection 
No. 

samples 

Postdiagnosi

s range 

A The Netherlands Healthy blood donors (negative cohort) NA 45 NA 

B The Netherlands Non-CoV respiratory infections† 

Adenovirus 5 2–4 w 

Bocavirus 2 2–4 w 

Enterovirus 2 2–4 w 

HMPV 9 2–4 w 

Influenza A 13 2–4 w 

Influenza B 6 2–4 w 

Rhinovirus 9 2–4 w 

RSV 9 2–4 w 

PIV-1 4 2–4 w 

PIV-3 4 2–4 w 

Mycoplasma pneumoniae 1 2–4 w 

CMV 5 2–4 w 

EBV 12 2–4 w 

C The Netherlands HCoV infections† 

α-CoV HCoV-229E 19 2 w–1 y 

α-CoV HCoV-NL63 18 2 w–1 y 

β-CoV HCoV-OC43 23 2 w–1 y 

D The Netherlands 

Zoonotic CoV infections† 

MERS-CoV 
2 

5 

10,228 

South Korea 9 mo 

E 
Hong Kong SARS-CoV 2  

F France RT-PCR confirmed SARS-CoV-2 infections 
Mild Infection 

Severe Infection 

6‡ 

4§ 

6-27 

6-27 

*Cohorts A–E were used to test assay specificity; cohort F was used to test assay sensitivity. CoV, coronavirus; CMV, Cytomegalovirus; 

EBV, Epstein-Barr virus; HCoV, human coronavirus; HMPV, human metapneumovirus; MERS, Middle East respiratory syndrome; mo, 

month; NA, not applicable; PIV, parainfluenza virus; RSV, respiratory syncytial virus.  

†Cross-reactivity. 

‡Samples taken from 2 patients at different time points. 

§Samples taken from 1 patient at different time points. 
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Table 2. Percentage amino acid identity of coronavirus spike and nucleocapsid proteins to SARS-CoV-2 proteins. 

 

  
N S S1 S2 S1A RBD 

Beta-CoV 

SARS-CoV 90 77 66 90 52 73 

MERS-CoV 49 33 24 43 nd nd 

HCoV-OC43 34 33 25 42 nd nd 

HCoV-HKU1 34 32 25 40 nd nd 

Alpha-CoV 
HCoV-229E 28 30 24 35 nd nd 

HCoV-NL63 29 28 21 36 nd nd 

SARS-CoV-2, HCoV-OC43, MERS-CoV, HCoV-HKU1, HCoV-NL63, SARS-CoV, HCoV-229E (Acc. nos. 

NC_045512.2, NC_006213.1, NC_019843.3, NC_006577.2, NC_005831.2, NC_004718.3, NC_002645.1). 

Protein sequences were aligned using ClustalW. N, nucleocapsid; S, spike; S1,The N-terminal subunit of 

the spike protein; S2, the C-terminal subunit of the spike protein; S1A, domain A of the spike S1 

subunit; RBD, receptor binding domain; nd, not done. 
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Table 3. Correlations between ODs/OD ratios vs PRNT results of the PCR-confirmed COVID-19 

patients tested in Rotterdam (A, n=10 serum samples collected 6-27 days post diagnosis from 3 French 

COVID-19 patients) and Berlin (B, n=31 serum samples collected 3-23 days post disease onset from 9 

German COVID-19 patients). 

A   Inhouse ELISAs Euroimmun 

  S1 N RBD S S1A IgA IgG 

PRNT50 SARS2 

Spearman r r 0.87 0.94 0.92 0.94 0.93 0.98 0.92 

P value P (two-tailed) 0.0021 0.0002 0.0005 0.0002 0.0003 <0.0001 0.0005 

  
P value 

summary 
** *** *** *** *** **** *** 

                    

PRNT90 SARS2 

Spearman r r 0.88 0.88 0.88 0.88 0.88 0.93 0.88 

P value P (two-tailed) 0.0024 0.0024 0.0024 0.0024 0.0024 0.0008 0.002 

  
P value 

summary 
** ** ** ** ** *** ** 

          
B 

  
Euroimmun 

     
  IgA IgG 

PRNT50 SARS2 

Spearman r r 0.63 0.5077 

P value P (two-tailed) 0.056 0.1368 

  
P value 
summary 

ns ns 

         

PRNT90 SARS2 

Spearman r r 0.7922 0.8525 

P value P (two-tailed) 0.0004 <0.0001 

  
P value 
summary 

*** **** 

ns, non-significant P > 0.05; * reflects significance level: **, P ≤ 0.01; ***, P ≤ 

0.001; ****, P ≤ 0.0001 
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Figure 1: Kinetics of antibody responses against SARS-CoV-2 following infection. We tested one severe 

(red) and two mild (green and black) SARS-CoV-2 patients for antibody responses against the (A) Spike 

(S), (B) spike S1 subunit, (C) spike N-terminal (S1A) domain, (D) receptor binding domain, (E) 

nucleocapsid proteins using ELISAs. (F) Virus neutralizing antibodies were tested using the plaque 

reduction neutralization assay (PRNT). Reactivities of sera form the three patients at different time points 

against whole spikes (G) and S1 (H) of SARS-CoV-2, SARS-CoV and MERS-CoV were tested by 

ELISA. SARS-CoV, severe acute respiratory syndrome coronavirus; MERS-CoV, Middle East 

respiratory syndrome coronavirus;  
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Figure 2: Validation of the use of S1 (A,B), receptor binding domain (RBD; C) and nucleocapsid (N; D)-

based ELISAs for detection of SARS-CoV-2 Infections. 
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Figure 3: Validation of two commercial ELISAs for the detection of SARS-CoV-2 specific IgG 

(A,C,E,G) and IgA (B,D,F,H) antibodies. (A,B) validation of the specificity of the two ELISA platforms. 

Kinetics of antibody responses in three COVID-19 patients (C,D). Cross-reactivity of some HCoV-OC43 

sera in the commercial platforms (E,F). Correlation between antibody responses detected by the ELISAs 

and the plaque reduction neutralization assay (PRNT50; G,H). 
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Figure 4: Sensitivity of the two commercial ELISAs for the detection of SARS-CoV-2 specific IgG 

(A,C,E) and IgA (B,D,F) antibodies. Kinetics of antibody responses in 9 COVID-19 patients from 

Germany (A,B). Correlation between antibody responses detected by the ELISAs and the plaque 

reduction neutralization assay (PRNT50; C,D). (E,F) The kits were tested for specificity using18 serum 

samples from HCoV (4x HCoV-229E, 3x HCoV-HKU1, 4x HCoV-NL63, 7x HCoV-OC43)  as well as 

MERS-CoV (n=3) and SARS-CoV (n=3) infected persons. 
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