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Abstract 
 
Objective: Large clinical databases are increasingly being used for research and quality 

improvement, but there remains uncertainty about how computational and manual 

approaches can be used together to assess and improve the quality of extracted data. The 

General Medicine Inpatient Initiative (GEMINI) database extracts and standardizes a 

broad range of data from clinical and administrative hospital data systems, including 

information about attending physicians, room transfers, laboratory tests, diagnostic 

imaging reports, and outcomes such as death in-hospital. We describe computational data 

quality assessment and manual data validation techniques that were used for GEMINI. 

Methods: The GEMINI database currently contains 245,559 General Internal Medicine 

patient admissions at 7 hospital sites in Ontario, Canada from 2010-2017. We performed 

7 computational data quality checks followed by manual validation of 23,419 selected 

data points on a sample of 7,488 patients across participating hospitals. After iteratively 

re-extracting data as needed based on the computational data quality checks, we manually 

validated GEMINI data against the data that could be obtained using the hospital’s 

electronic medical record (i.e. the data clinicians would see when providing care), which 

we considered the gold standard. We calculated accuracy, sensitivity, specificity, and 

positive and negative predictive values of GEMINI data. 

Results: Computational checks identified multiple data quality issues – for example, the 

inclusion of cancelled radiology tests, a time shift of transfusion data, and mistakenly 

processing the symbol for sodium, “Na”, as a missing value. Manual data validation 

revealed that GEMINI data were ultimately highly reliable compared to the gold standard 

across nearly all data tables. One important data quality issue was identified by manual 
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validation that was not detected by computational checks, which was that the dates and 

times of blood transfusion data at one site were not reliable. This resulted in low 

sensitivity (66%) and positive predictive value (75%) for blood transfusion data at that 

site. Apart from this single issue, GEMINI data were highly reliable across all data tables, 

with high overall accuracy (ranging from 98-100%), sensitivity (95-100%), specificity 

(99-100%), positive predictive value (93-100%), and negative predictive value (99-

100%) compared to the gold standard. 

Discussion and Conclusion: Iterative assessment and improvement of data quality based 

primarily on computational checks permitted highly reliable extraction of multisite 

clinical and administrative data. Computational checks identified nearly all of the data 

quality issues in this initiative but one critical quality issue was only identified during 

manual validation. Combining computational checks and manual validation may be the 

optimal method for assessing and improving the quality of large multi-site clinical 

databases.  
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BACKGROUND AND SIGNIFICANCE 

Routinely collected clinical and administrative health data are increasingly being 

used in large databases for research and quality improvement.[1-4] In many health systems, 

the electronic data in hospitals are stored in a complex array of repositories with limited 

central oversight or standardization. Extracting data from these systems may be prone to 

errors. Ensuring data quality post-extraction is challenging but important,[5,6] particularly 

given the impact that large clinical databases might have on quality improvement, 

research and policy applications.  

 

There are several widely-cited frameworks used to assess data quality.[7-9] A 

systematic review by Weiskopf and colleagues identified five key data quality 

dimensions: completeness, correctness, concordance, plausibility, and currency.[10] The 

methodological approach to examining each dimension remains challenging and poorly 

described.[11] Manual data validation is often an important step to ensuring data 

quality.[12] This typically involves manually abstracting a subset of data directly from the 

source and comparing this to electronically extracted data.[13] However, manual chart 

reviews are resource-intensive[13-15] and difficult to scale as databases grow in size.[6] 

Computational data quality assessment has been proposed as an alternative method of 

ensuring data quality[16] Computational data quality assessment may include application 

of thresholds to ensure plausibility (e.g. birth date cannot be a future date), visual 

inspection of linear plots (e.g. to assess temporal trends), and outlier detection 

formulas.[7,17,18] 
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Our objective was to describe the combination of computational data quality 

assessment and manual data validation in a large, real-world, clinical dataset - the 

General Medicine Inpatient Initiative (GEMINI). This case study offers insights for 

approaches to ensure data quality in large datasets based on routinely collected clinical 

data. 
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METHODS 

 

Setting 

The General Medicine Inpatient Initiative (GEMINI) database collects 

administrative and clinical data for all patients admitted to or discharged from the general 

medicine inpatient service of seven hospital sites affiliated with the University of Toronto 

in Toronto and Mississauga, Ontario, Canada.[19] The seven hospitals include five 

academic health centres and two community-based teaching sites. At the time of this 

manuscript, data had been collected for 245,559 patient visits with discharge dates 

between April 1, 2010 and October 31, 2017. 

 

GEMINI supports both research and quality improvement applications. The 

Ontario General Medicine Quality Improvement Network (GeMQIN)[20] uses data from 

the GEMINI database to create confidential individualized audit and feedback reports for 

eligible physicians at participating hospital sites.[21] The first version of these reports 

included six quality indicators (hospital length-of-stay, 30-day readmission, inpatient 

mortality, use of radiology tests, use of red blood cell transfusions, and use of routine 

blood-work), and directly informed front-line quality improvement efforts. It was a 

priority to ensure that high quality data were being used in physician audit-and-feedback 

reports. 

 

Ethics 

Research Ethics Board approval was obtained from each participating institution. 
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Data Extraction, Collection, and Processing 

Data extraction occurred over two cycles: 1) patients discharged between April 1, 

2010 to March 31, 2015 and 2) patients discharged between April 1, 2015 to October 31, 

2017.[4] A wide range of administrative and clinical data were extracted from a variety of 

data sources (Table 1): patient demographics, diagnostic codes, intervention procedure 

codes, admission and discharge times, cost of admission, test results from biochemistry, 

haematology and microbiology laboratories, radiology reports, in-hospital medication 

orders, vital signs, and blood transfusions. A template document describing requested 

data formats and standards was provided to each hospital site to facilitate data extraction. 

Data were extracted by local hospital staff and stored locally in shared network folders. 

 

After data were extracted, GEMINI staff de-identified the data at each hospital 

site and then securely transferred the data to a central repository. De-identification was 

performed by removing personally identifying variables from the dataset (e.g. medical 

record number, encounter number, date of birth, first name, last name, health card 

number and emergency room registration number).[22] Each patient admission was 

assigned a unique identifier that allowed for integration of various data tables at the 

central data repository and re-identification at the local hospital site for the purpose of 

manual validation.[23] A secure hash algorithm was applied to each patient’s provincial 

health insurance number, which allowed us to link encounters for the same patient across 

multiple institutions.[24] 
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In the central repository, GEMINI data were processed and organized into 21 

linkable data tables from each hospital site in order to group data into related categories 

(Table 1). Data were processed to ensure consistent formatting across hospital sites. Data 

quality was then iteratively assessed by computational data quality assessment and re-

extraction as needed, and finally by manual validation. 

 

Computational Data Quality Assessment 

The computational data quality assessments consisted of seven checks. Checks 1-

4 were designed to identify errors in data completeness associated with data extraction 

and transfer procedures and were applied to each data table. Checks 5-7 consisted of 

detailed inspection of select variables in each table (e.g. sodium tests result values in 

laboratory data table). Each check assessed different dimensions of data quality (Table 2). 

The checks are described in detail below: 

 

1. Admissions over time: We examined the number of patient admissions meeting 

the inclusion criteria at each hospital site and that were subsequently used to 

extract data from source systems. We produced a histogram of the proportion of 

patient admissions that are contained in each data table over time, based on 

discharge date. This explored whether data for patient admissions was 

systematically missing from any data table. (Appendix 2 Figure 1) 

 

2. Data volume over time: We examined the amount of data (as measured by 

number of rows/observations for each data table) by producing a histogram of 
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total data volume by date and time (if available). In contrast to Check 1, this 

check assessed missing data, rather than missing patient admissions. Temporal 

patterns of missingness as well as variations in trends were carefully inspected. 

(Appendix 2 Figure 2) 

 

3. Admission-specific data volume over time: We examined the total volume of 

data (as measured by number of rows/observations  for each data table) per 

patient admission to eliminate variation in data volume that may be driven by 

variations in the number of patient admissions over time. We produced a line 

graph (with a moving average) of data volume per patient admission by date and 

time (if available). (Figure 1) 

 

4. Distribution of data in relation to admission and discharge times: We 

examined the distribution of date and time labels on variables in each data table 

compared to the patient’s admission and discharge date and time (e.g. the 

difference in time between a radiology test and the patient’s admission date and 

time). This examined whether date and time information collected were plausible 

and ensured that we were not missing data from a specific portion of a patient’s 

hospitalization (e.g. emergency department stay). (Figure 2) 

 

5. Overall variable presence over time: We inspected the missingness of every 

variable from each data table using a heat map. The y-axis was populated with the 

list of variables in each data table and the x-axis was populated with each row of 
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data in each table, sequenced by admission date. (Appendix 2 Figure 3). This 

allowed us to identify temporal patterns and clustering in variable missingness.  

 
6. Specific variable presence over time: We assessed the quality of data 

categorization and standardization for a specific variable. Because naming 

conventions differ at each hospital site (e.g. for radiology or laboratory tests) and 

can change within hospital sites over time, data are manually mapped to 

categories or standard naming conventions to permit multi-site analysis. For each 

variable, we produced a line graph of the proportion of mapped data volume at 

each hospital site by date. Visual inspection of data volume over time allowed us 

to identify problems with mapping and standardization. (Figure 3)  

 

7. Plausibility check:  Each variable was inspected to ensure it contained plausible 

values. For categorical variables, we examined frequency tables. For numerical 

interval or continuous variables, we computed distributions and measures of 

central tendency (minimum, mean, median, maximum, and interquartile range). 

Specific data tables such as laboratory tests required further ad-hoc analysis. For 

example for each laboratory test type, we inspected the proportion of non-numeric 

test results, measurement units, and the numerical distribution of test result 

values. 

 

A data analyst visually reviewed each computational quality check to identify any 

potential issues of concern. Potential data quality issues could be identified as unexpected 

results, outliers, and disruptions in trends. These were subsequently investigated through 
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an iterative process. We first examined the original de-identified extracted data table to 

check if there were any errors with data processing (i.e. formatting, mislabelling, etc.). 

We next examined the extracted files at each hospital to determine whether there were 

any errors with deidentification or transfer (i.e. not all files transferred correctly). If the 

issue remained, we then worked with the hospital site to re-extract the problematic data 

and we then performed the computational data quality check again. If the issue persisted, 

a data abstractor manually reviewed data of individual problem cases directly from the 

patient records in the hospital electronic information system to identify differences 

between extracted data and the electronic information system. They then reported these 

differences to the local hospital site IT personnel to help fix the data quality issue. These 

processes typically led to correction of the data quality issue, after which time the 

computational data quality check was repeated. If these steps did not correct the data 

quality issue, the data remained in the GEMINI database but that specific data table was 

flagged such that it would not be used to inform any quality improvement efforts or 

academic research. Computational data quality checks occurred in the central data 

repository and did not require direct access to the source data at individual hospital sites.  

 

Manual Data Validation 

Manual data validation was performed on the GEMINI database that had been 

improved based on computational data quality assessment and iterative re-extraction from 

hospitals. GEMINI data were compared to data that could be accessed through each 

hospital’s electronic medical record (i.e. the information that clinicians see when 

providing care), which was taken to be the gold standard. We focused primarily on data 
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that were included in the physician audit-and-feedback reports. Thus, we manually 

validated data from six data tables (laboratory, radiology, physicians, admission, 

transfers, and transfusion). Two cycles of manual validation occurred, corresponding to 

each cycle of data extraction. Because two hospital sites share a single electronic 

information system, we grouped these two together and therefore refer to six hospital 

sites (A-F) for manual data verification. 

 

A data abstractor manually reviewed data for a sample of patient admissions at 

each of the six sites. The data abstractor was not given access to the patient admission 

data stored in the GEMINI database meaning that they were “blinded” to any expected 

results. For 2010-2015 data, admissions were sampled randomly and with a more targeted 

approach to ensure sufficient sampling of rare events (Appendix 1): 

• 100 random admissions per site for laboratory data table (specific variables were 

haemoglobin, sodium, creatinine, calcium, aspartate transaminase, international 

normalized ratio, and troponin) 

• 100 random admissions per site for radiology data table (specific variables were 

computed tomography, plain radiography, ultrasound, magnetic resonance imaging, 

and echocardiography) 

• 200 random admissions per site for physician data table (specific variables were 

admitting physician name and discharging physician name) 

• 800 selected admissions per site for death, transfers, and transfusions data tables 

(specific variables being mortality, critical care unit transfer, and red blood cell 

transfusions, respectively). 
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Because we performed extensive manual data validation in the first cycle, we 

adopted a more targeted approach in the second cycle (2015-2017 data). For the second 

cycle, data were manually abstracted from a random sample of 5 admissions for each 

physician who would be receiving an audit-and-feedback report (approximately 20-30 

physicians at each site corresponding to 100-150 admissions at each site). 

 

The data abstractor recorded the result and date and time for the first (or only) 

occurrence of each specific variable to be validated in the hospital’s electronic medical 

record for each patient admission. This was considered the gold standard and was 

compared against the data in the GEMINI database. To avoid potential human recording 

errors, the data abstractor double-checked the electronic medical record in the event of a 

discrepancy between the GEMINI database and the manually recorded data. We report 

both cycles of data validation together. We calculated the sensitivity, specificity, positive 

predictive value, and negative predictive value of GEMINI database for each data table 

and for individual variables, overall and stratified by hospital site. We also calculated the 

overall accuracy (true values / total values) for each data table. Analyses were performed 

using R version 3.5.2. 
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RESULTS 

 

Computational Data Quality Assessment 

Each of the seven computational data quality assessment checks identified data 

quality issues, many of which were subsequently corrected (Table 3). For example, check 

3 (admission-specific data volume over time) identified a sharp implausible increase in 

radiology tests at Site B that resulted from the inappropriate inclusion of cancelled 

radiology tests in extracted data (Figure 1). Check 4 (distribution of data with admission 

and discharge times) identified an implausible time shift of transfusion data at Site F, 

which made it appear as if patients received transfusions after discharge (Figure 2). 

Check 5 (variable presence over time) identified a data processing and mapping issue 

whereby the raw hospital sodium test code was interpreted as null or missing during the 

second cycle of data extraction. This occurred because the abbreviation, “NA” (Figure 3), 

which refers to sodium in chemical notation, was interpreted as missing by our statistical 

software. 

 

When data quality errors were identified by computational checks, we attempted to 

determine which step of the data extraction, collection, and standardization process was 

the source of the error. Computational data quality checks identified errors arising from 

data extraction/transfer and processing (Table 3) and could hypothetically identify errors 

that occur during local de-identification, though we did not find an example of this.  

  

Manual Data Validation 
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Across all sites, data tables, and both cycles of manual validation, 23,419 data 

points were manually abstracted from 7,488 patient admissions. The specific number of 

data points for each data table and each specific variable at each site is listed in Appendix 

2. 

 

Compared to the gold standard of data manually abstracted from an electronic 

medical record, the GEMINI database was found to be highly sensitive (Table 4), ranging 

from 95%-100% across data tables, and highly specific, ranging from 99%-100% across 

data tables. The database was also found to have high positive and negative predictive 

values, with overall results ranging from 93-100% and 99-100%, respectively, across data 

tables. The overall accuracy of the database was found to be 98%-100% across data 

tables. 

 

Manual data validation identified one important data quality issue that was not 

flagged by computational approaches. Specifically, blood transfusion data at Site D had 

poor sensitivity (66%) and positive predictive value (75%), because of problems with the 

date and time that the transfusions reportedly occurred.  
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DISCUSSION 

 

 This paper reports the experience of an extensive data quality assessment effort 

involving a broad range of administrative and clinical data extracted from 7 hospital sites 

over 8 years. We highlight a feasible and pragmatic approach to computational data 

quality assessment and illustrate how various data quality issues were identified. After 

manual validation of over 23,000 data points, the GEMINI database was found to have an 

overall accuracy of 98%-100% compared with hospital site records. Our experience 

suggests that although computational data quality checks are effective, they may not 

identify all important data quality issues. Specifically, we identified crucial data quality 

issues in blood transfusion data at one hospital site that were not detected through 

computational data quality checks. The GEMINI experience suggests that computational 

and manual approaches should be used together to iteratively improve and validate 

databases that are extracted from clinical information systems. 

 

Data quality assessment is crucial before routinely collected data can be used for 

secondary purposes, such as research or quality improvement.[25] One flexible approach is 

to ensure that data are “fit-for-purpose” by data consumers, which has informed 

numerous frameworks and models for data quality assessment.[7,9,10,26,27] However, less 

has been published about how to operationalize these approaches, particularly in multi-

site clinical datasets.[7,28,29]  Kahn and colleagues describe a conceptual model and a 

number of computational rules to explore data quality in electronic health record-based 

research.[7] Similarly, van Hoeven and colleagues articulate an approach to assessing the 
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validity of linked data using computational methods and report its application in a 

specific case using transfusion data.[28] Terry and colleagues developed 11 measures of 

quality for primary health care data extracted from electronic medical records.[29] Each of 

these studies admirably documents the process of operationalizing conceptual data 

quality frameworks into real-world applications. These studies all focus on computational 

quality checks. Conversely, Baca and colleagues report a data validation effort of the 

Axon Registry, a clinical quality data registry, and focus entirely on the validation effort 

but do not describe computational efforts to assess and improve data quality within the 

registry.[30]  We have been unable to find any studies that report the experience of using 

both computational and manual approaches to data quality assessment. Our study extends 

the literature by operationalizing broad data quality domains, specifically using 

computational data checks to inform iterative data quality improvement, and reporting the 

effectiveness of this approach based on rigorous manual validation across a range of data 

types and healthcare organizations.   

 

The main implication of our study is that computational quality checks can 

identify most data quality issues but not all. Blood transfusion data in our study highlight 

the strengths and weaknesses of computational checks. Computational checks identified 

that transfusion data were time-shifted at one hospital, because some blood transfusions 

were apparently administered after patient discharge, which was implausible. However, 

computational checks missed major inaccuracies in the dates and times of blood 

transfusions at another hospital because the errors were not systematic and did not create 

any discernible patterns. The GEMINI experience suggests that although manual data 
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validation is labour-intensive, it may be necessary to ensure high quality data. Starting 

with computational checks and targeting manual data validation with a “fit-for-purpose” 

strategy (as we did in our second data collection cycle when we validated a smaller 

sample based on physician quality reports) may minimize manual workload without 

sacrificing data quality.  

 

 Our study is limited in several ways. First, we only performed manual validation 

on certain data tables, stemming from our “fit-for-purpose” approach focused on audit-

and-feedback reports.[26] Given that this included a breadth of data tables, we feel that our 

findings are likely generalizable to other data tables within GEMINI. Second, although 

we describe the need to manually review the visual computational data quality checks, we 

were unable to quantify the labour hours required for either computational quality 

assessment or manual validation. Third, our approach to manual data validation cannot 

address data quality issues at the source system (e.g. missing values or incorrect data 

entry) as these are already embedded into the data, which form our ‘gold standard’. 

Finally, we focused on traditional domains of data quality, but future research could 

further assess non-traditional aspects such as context, representation, and accessibility.[27] 
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CONCLUSION 

The GEMINI experience highlights the importance of an iterative data quality 

assessment methodology that combines computational and manual techniques. Through 

this approach, GEMINI has achieved highly reliable data extraction and collection from 

hospital sites. Our findings demonstrate that computational data quality assessment and 

manual validation are complementary and combining these should be the ideal method to 

assess the quality of large clinical databases. Future research should focus on methods to 

reduce the amount of manual validation that is needed, and to assess non-traditional 

aspects of data quality.
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Tables & Figures 
 
Table 1. GEMINI database structure. 
Source Data table Description 
Discharge Abstract 
Database* Admission Inpatient administrative information  
Discharge Abstract 
Database* Diagnosis 

Inpatient discharge diagnoses, classified 
using ICD-10 codes. 

Discharge Abstract 
Database* Intervention 

Inpatient interventions, classified based 
on CCI code 

Discharge Abstract 
Database* 

Case Mix Group 

Patient risk groups based on case mix 
grouping methodology from the 
Canadian Institute for Health 
Information 

Discharge Abstract 
Database* Special Care Unit 

Use of critical care and other special 
care units 

Discharge Abstract 
Database* HIG Weight  

Patient risk groups based on Ontario-
specific grouping methodology  

National Ambulatory 
Care Reporting 
System* ED Admission 

Emergency department administrative 
information  

National Ambulatory 
Care Reporting 
System* ED Consults 

Consultations performed in the 
emergency department 

National Ambulatory 
Care Reporting 
System* ED Diagnosis 

Diagnoses based on emergency 
department visit, classified using ICD-
10 codes. 

National Ambulatory 
Care Reporting 
System* ED Intervention 

Interventions in the emergency 
department, classified based on CCI 
code 

National Ambulatory 
Care Reporting 
System* ED Case Mix 

Group 

Emergency department case mix 
grouping methodology from the 
Canadian Institute for Health 
Information  

Hospital ADT system Admission-
Discharge 

Admission date, time, and service 
information 

Hospital ADT system Transfers In-hospital room transfer information 
Hospital ADT system 

Physicians 
Physician information for each 
admission 

Hospital Electronic 
Information System Echocardiography Echocardiography data 
Hospital Electronic 
Information System Laboratory 

Haematology and biochemistry 
laboratory data 

Hospital Electronic 
Information System Microbiology Microbiology laboratory data 
Hospital Electronic Pharmacy In-hospital medication orders 
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Information System 
Hospital Electronic 
Information System Radiology Radiology data 
Hospital Electronic 
Information System Transfusion Blood transfusion data 
Hospital Electronic 
Information System Vitals Vital signs data 
 
Table 1 Legend: *Data are extracted from hospital sites, based on what each hospital site 
reports to the Canadian Institute for Health Information for the Discharge Abstract Database 
and National Ambulatory Care Reporting System. Abbreviations: ADT = admission, 
discharge, transfer, ICD-10 = 10th revision of the International Statistical Classification of 
Diseases and Related Health Problems, CCI = Canadian Classification of Health 
Interventions, HIG = Health Based Allocation Model (HBAM) Inpatient Group, ED = 
Emergency Department 
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Table 2. Summary of computational data quality checks. 

Check Name Level Description Quality Dimensions 
Assessed 

1 Patient 
admissions over 
time 

Data table Proportion of all GEMINI patient 
admissions that are present in the 
data table, by date 

Completeness 

2 Data volume 
over time 

Data table Data volume per data table, by date Completeness 

3 Admission-
specific data 
volume over 
time 

Data table Data volume per patient admission, 
by date 

Completeness 
Plausibility 

4 Distribution of 
data in relation 
to admission 
and discharge 
times 

Data table Data volume in relation to 
admission time and discharge time 

Completeness 
Plausibility 

5 Variable 
presence over 
time 

Variable Heat map of missing data for each 
variable, by date 

Completeness 
Plausibility 

6 Specific 
variable 
presence over 
time 

Variable Proportion of data within a data 
table that pertains to a certain 
variable after data processing, by 
date 

Completeness 
Plausibility 

7 Accuracy check Variable Categorical variables: report 
frequencies 
Numeric variables: report measures 
of central tendency and distribution 

Correctness 
Concordance 
Plausibility 

 
Table 2 Description: 

Seven computational data quality assessment checks were conducted on entire data tables of 

specific variables prior to manual validation to assess different dimensions of data quality 

(reported in a systematic review by Weiskopf and colleagues).[10] We describe each check in 

detail under the Methods section. A data analyst visually reviewed each check to identify 

issues (unexpected results, outliers, disruptions in trends), which then underwent a step-wise 

approach including any of data re-extraction, communication with site-specific IT personnel, 

and manual chart review to correct the issue. 
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Table 3. Examples of errors identified using computational data quality checks. 
Quality 
Check 

Example of Data Quality Issue 
Identified 

Cause of Issue Manual chart review 
required to investigate and 
fix 

1. Patient 
admissions 
over time 

Missing ED data extraction for 
certain patient admissions in 
2015 at one site (Appendix 2 
Figure 1) 

Data extraction/transfer No 

2. Data 
volume over 
time 

Missing transfusion data during 
two time periods at one 
institution (Appendix 2 Figure 
2)  

Data extraction/transfer No 

3. Admission-
specific data 
volume over 
time 

Incorrectly included cancelled 
radiology tests resulting in sharp 
increase in radiology tests at one 
institution (Figure 1) 

Data extraction/transfer Yes 

4. Distribution 
of data in 
relation to 
admission and 
discharge 
times 

Transfusion data at one site was 
time-shifted, leading to the 
timestamp on certain 
transfusions being after patient 
discharge (Figure 2) 

Data extraction/transfer Yes 

5. Overall 
variable 
presence over 
time 

Glasgow Coma Scale data at one 
institution was missing 
(Appendix 2 Figure 3) 

Unclear cause at this 
time 

Yes 

6. Specific 
variable 
presence over 
time 

At site B, “NA” was used to 
describe sodium tests. At the 
data processing stage, statistical 
software recognized this as a 
null/missing value. (Figure 3) 

Data processing at 
central repository  

No 

7. Plausibility 
check 

No quality issues identified Data extraction/transfer No 

 
Table 3 Description: 

Each computational data quality assessment check identified a data quality issue, the causes 

of which were determined to be data extraction/transfer, data processing, or hypothetically 

local de-identification (though we did not find an example of this). Some issues that were 
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identified by the computational checks required a manual chart review to fix, while others 

did not. 
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Table 4. Manual data validation results for each data table, overall and stratified by site. 
Variable Laboratory Radiology Physicians Death Transfer Transfusion 

Overall 

N 5648 5092 2449 3814 3300 3116 
Accuracy 100% 100% 98% 100% 100% 98% 
Sens. 100% 100% 98% 100% 100% 95% 
Spec. 100% 100% * 100% 99% 99% 
PPV 100% 100% 100% 100% 96% 93% 
NPV 100% 100% * 100% 100% 99% 

Hospital 
Site A 

N 1300 1000 400 800 800 800 
Sens. 100% 99% 94% 100% 100% 100% 
Spec. 100% 100% * 100% 100% 100% 
PPV 100% 100% 99% 100% 100% 100% 
NPV 100% 100% * 100% 100% 100% 

Hospital 
Site B 

N 950 820 400 90 ** 90 
Sens. 100% 100% 98% 100% ** 95% 
Spec. 100% 100% * 100% ** 97% 
PPV 100% 100% 100% 100% ** 90% 
NPV 100% 100% * 100% ** 99% 

Hospital 
Site C 

N 960 1040 560 980 800 982 
Sens. 100% 100% 100% 100% 100% 100% 
Spec. 100% 100% * 100% 99% 100% 
PPV 100% 100% 100% 100% 91% 97% 
NPV 100% 100% * 100% 100% 100% 

Hospital 
Site D 

N 860 740 360 280 200 280 
Sens. 100% 100% 98% 100% 100% 66% 
Spec. 100% 100% * 100% 100% 95% 
PPV 100% 100% 100% 100% 100% 75% 
NPV 100% 100% * 100% 100% 93% 

Hospital 
Site E 

N 588 707 339 769 700 69 
Sens. 100% 100% 99% 100% 100% 100% 
Spec. 100% 100% * 100% 99% 95% 
PPV 100% 100% 99% 100% 95% 80% 
NPV 100% 100% * 100% 100% 100% 

Hospital 
Site F 

N 890 785 390 895 800 895 
Sens. 100% 99% 99% 100% 100% 96% 
Spec. 100% 100% * 100% 100% 99% 
PPV 100% 99% 99% 100% 98% 92% 
NPV 100% 100% * 100% 100% 99% 

Table 4 Legend:  
N=Number of data points, which is distinct from number of patient admissions. For 
example, at site A, 1000 radiology data points were manually checked, but these came 
from 200 patient admissions for each type of radiology test. *For physician variables 
(accuracy of admitting and discharging physician names), specificity and negative 
predictive value cannot be calculated given the lack of true negatives (i.e. every 
individual should theoretically have an admitting and discharging physician, making the 
number of true negatives equal to 0). **Site B used paper charts for critical care transfer 
thus manual data validation was not feasible.
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Figure 1.  Data volume of radiology tests per patient admission by date at three sites. 
 
 
Figure 1 Description: 

This is an example of Computational Data Quality Check 3: The x-axis represents the 

date and the y-axis represents the mean number of radiology tests per patient admission. 

Sites C and D represent the expected situation, where the number of radiology procedures 

per patient admission (green lines) and the moving average (blue line) are relatively 

consistent over time, and within the pre-specified thresholds (bottom and top grey dotted 

lines represent one standard deviation away from the overall mean). The sharp increase in 

the average number of tests at Site B between 2015-17 identifies a potential issue, as this 

level of increase is implausible. Re-extraction did not correct the issue initially. 

Subsequent manual investigation identified that the extraction had inadvertently included 

cancelled radiology tests. After successful data re-extraction, without the inclusion of 

cancelled tests, the aberrancy in the plot was no longer present.  
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Figure 2A. Distribution of the time between transfusion events and the time of admission 
across three hospital sites. 
 

 
 
Figure 2B. Distribution of the time between transfusion events and the time of discharge 
across three hospital sites. 
 
Figure 2 Description: 
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This is an example of Computational Data Quality Check 4: The x-axis represents the 

time of the transfusions event in relation to the admission (figure 3A - negative values 

indicating a time before admission date and time) and discharge (figure 3B – positive 

values indicate a time after discharge date and time). The y-axis represents the volume of 

transfusion events that occurred at the time on the x-axis. The plots demonstrate that at 

Site F, there are no transfusion events prior to admission (at Time<0 Hours). Upon first 

glance, this suggested missing emergency department transfusion data (i.e. patient in the 

emergency room and receives a transfusion prior to the admission order) but the issue 

could not be corrected after re-extraction efforts and discussions with the site data 

extraction team. The plots also indicate that Site F conducted many transfusions post-

discharge (at Time>0 Hours), which would be unlikely. The combination of time from 

admission, time to discharge, and subsequent manual investigation uncovered a time shift 

for transfusion data at Site F. This time shift was then corrected in the GEMINI database. 
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Figure 3: Volume of hemoglobin and sodium laboratory test data over time. 
 
Figure 3 Description: 

This is an example of Computational Data Quality Check 6: The x-axis represents the 

date. The left y-axis represents the percentage of hemoglobin and sodium tests out of all 

laboratory tests. The right y-axis represents the percentage of all laboratory data that has 

been standardized across sites (blue line, many less common laboratory tests had not yet 

been standardized). There is a sudden decrease in the volume of sodium tests after April 

1, 2015, at Site B corresponding to the second round of data extraction. Further 

investigation revealed that statistical software using default settings mistakenly processed 

the symbol for sodium “Na” as a null/missing value.  
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