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Blood single cell immune profiling reveals the interferon-MAPK pathway

mediated adaptive immune response for COVID-19
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Abstract

The coronavirus disease 2019 (COVID-19) outbreak is an ongoing global health

emergence, but the pathogenesis remains unclear. We revealed blood cell immune

response profiles using 5’ mRNA, TCR and BCR V(D)J transcriptome analysis with

single-cell resolution. Data from 134,620 PBMCs and 83,387 TCR and 12,601 BCR

clones was obtained, and 56 blood cell subtypes and 23 new cell marker genes were

identified from 16 participants. The number of specific subtypes of immune cells

changed significantly when compared patients with controls. Activation of the

interferon-MAPK pathway is the major defense mechanism, but MAPK transcription

signaling is inhibited in cured patients. TCR and BCR V(D)J recombination is highly

diverse in generating different antibodies against SARS-CoV-2. Therefore, the

interferon-MAPK pathway and TCR- and BCR-produced antibodies play important

roles in the COVID-19 immune response. Immune deficiency or immune over-

response may result in the condition of patients with COVID-19 becoming critical or

severe.
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The battles between humans and the pathogenic viruses are never ending. Epidemic

diseases, including Zika (1), severe acute respitatory sundrome ( SARS) (2), and

Ebola (3), strike quickly, often killing hundreds of people during a single outbreak.

On December 31, 2019, a novel coronavirus (SARS-CoV-2), belonging to the

Orthocoronavirinae subfamily and distinct from middle east respiratory syndrome

(MERS)-CoV and SARS-CoV, emerged in Wuhan, China (4-6). The rapid person-to-

person spread of SARS-CoV-2, which causes the coronavirus disease 2019 (COVID-

19), presents an imminent threat to public health and has caused a global health

emergency (7-9). The World Health Organization emergency committee declared this

outbreak a “public health emergency of international concern” because of its 2.1%

mortality rate and person-to-person transmission (10). As of March 7, 2020, over

102,136 people have fallen ill with SARS-CoV-2, leading to 3,492 deaths in 93

countries, and the coronavirus continues to spread quickly all over the world.

Symptoms of COVID-19 included fever, myalgia, and fatigue, as well as dry cough,

shortness of breath, sputum production, headache, hemoptysis, sore throat, and

diarrhea. Lymphopenia, prolonged prothrombin time, and elevated lactate

dehydrogenase levels have also been observed in the patients with COVID-19 (6). A

computed tomography (CT) can identify bilateral patchy shadows or ground glass

opacity in the lungs (6, 8, 11-13). Despite the high infection and mortality rates, there

is no specific cure for the disease because its pathogenesis remains unclear.

The human adaptive immune system plays a critical role in defending against viral

infections. Many immune cells (such as leukocytes) and immune molecules (such as

specific plasma proteins) are intrinsic components of blood. Therefore, the functions

of blood and the immune system are inseparable. T cells and B cells are important in

the pathogenesis of many—perhaps all—immune-mediated diseases (14-17). A T cell

receptor (TCR) mediates recognition of pathogen-associated epitopes through

interactions with peptide and major histocompatibility complexes (pMHCs). TCRs

and B cell receptors (BCRs) are generated by genomic rearrangement at the germline

level, a process termed V(D)J recombination, which has the ability to generate

marked diversity among TCRs and BCRs. Parameterizing the elements of antigen-

specific immune repertoires across a diverse set of epitopes may generate powerful

applications in a variety of research fields for the diagnosis and treatment of

infectious diseases. Here, we focus on insights into blood immune responses to

COVID-19 using 5’ mRNA, TCR, and BCR V(D)J recombination analysis with
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single-cell resolution.

In this study, 16 participants were recruited from the Sichuan Province of China.

The basic information and clinical features of the patients are listed in Table S1. The

lung CT images of these subjects are shown in Fig. S1. There was one critical case

(patient 1, male, 34 years old), one severe case (patient 2, male, 43 years old), and six

moderate cases (patients 3-8) comprised of two males and four females aged 25-62

years old (Table S1). The two cured patients (patient 9, male, 40 years old and patient

10, female, 20 years old) were on the discharged day from hospital after they tested

negative for SARS-CoV-2 and the disease signs disappeared. Three healthy people

were included as normal controls (NC 1-3, Table S1). In order to differentiate the

COVID-19 immune response from other infectious diseases, thereby identifying the

unique COVID-19 immune response, we also recruited one case of influenza A

(patient 11), one case of acute pharyngitis (patient 12), and one case of cerebral

infarction (patient 13) as controls (Table S1).

The peripheral blood mononuclear cells (PBMCs) of each individual were isolated

from the whole blood, and the single-cell mRNA sequencing (ScRNA-Seq) analysis

of the PBMCs was performed on the 10 X genomics platform with Chromium Next

GEM Single Cell V(D)J Reagent Kits v1.1 (Fig. 1A). After quality control, we

obtained 134,620 PBMC cells, 83,387 TCR clones, and 12,601 BCR clones from the

16 samples. In these samples, we identified 17 completely different PBMC cell types,

which could be further divided into 56 cell subtypes according to marker genes of the

134,620 cells (Fig. 1B, 1C, 1D and Table S2). The 17 cell types included CD4+ T

cells identified by LTB and IL7R markers, CD8+ T cells identified by LEF1 and

CD8A, CD1C+_B dendritic cells identified by BSET1 and CD1D, CD4+ cytotoxic T

cells identified by CST7 and CCL4, CD8 cytotoxic T cells identified by CD3D and

CD8A, and other cell types (Fig. 1C, Table S2). This suggests that human PBMCs

have evolved highly differentiated cell subtypes to resist the invasion of pathogens

(18). There were three main states in the analysis process for reconstructing the

developmental trajectories of the 56 cell subtypes, which showed a continuous

trajectory of differentiating PBMCs (Fig. 1E, Fig. S2). In addition, 23 totally new

candidate marker genes linked to 22 cell subtypes were identified (Fig. S3),

suggesting potential roles for these newly discovered cell markers in the identification

and functional study of these subtypes.

To investigate the immune cell behaviors of the 56 cell subtypes in different
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conditions of COVID-19, we compared the cell types of the eight patients with

critical, severe, or moderate COVID-19 conditions and the three normal controls (Fig.

2A). We observed that the proportion of the CD1C+_B dendritic cells (clusters 7, 13,

and 30), CD8 cytotoxic T cells (cluster 9), and plasmacytoid dendritic cells (cluster 36)

increased in patients with COVID-19, while the B cells (cluster 16) and CD4+ T

helper cells (cluster 51）decreased in the COVID-19 patients compared to the normal

controls (Fig. 2A), indicating that the number of specific clusters of immune cells

adjusts to fight SARS-CoV-2 aggression.

To further investigate the immune cell behaviors of each cell subtype in different

conditions of COVID-19, we separately compared the critical, severe, moderate, and

cured patients with the normal controls (Fig. 2A). For the critical condition (patient 1),

the proportion of 40 out of the 56 cell subtypes decreased; some subtypes, including

CD8+ T cell (cluster 52), CD4+ T cell (cluster 55,56) and plasmacytoid dendritic cell

(cluster 53), disappeared. These changes may suggest immunodeficiency in the

patient. This is consistent with the lower number of lymphocytes in the patient (0.75 ×

109/L) compared to the normal range (1.1-3.2 × 109/L, Table S1). However, some

other cell subtypes, including CD8 cytotoxic T cells (cluster 9), CD1C+_B dendritic

cells (cluter 7, 13, 19, 30, 39), effector CD8+ memory T (Tem) cells (cluster 14), and

CD141+CLEC9A+ dendritic cells (cluster 45), increased, suggesting the limited

immune response existed. In the severe condition (patient 2), the proportion of 45 of

the 56 cell types increased, which may suggest over-activation of immune cells,

including CD8+ T cells (cluster 1, 4, 18, 28 etc.), CD8 cytotoxic T cells (cluster 1 and

cluster 25), CD4+ cytotoxic T cells (cluster 8 and cluster 21), Naive CD8+ T cell

(cluster 2), plasmacytoid dendritic cell (cluster 53), and others. However,

AXL+SIGLEC6+ dendritic cells (cluster 54) decreased in this patient. In the moderate

condition (patients 3-8), the proportion of various cell types was between that of the

critical and severe conditions. In the cured patients, effector CD8+ memory T (Tem)

cells (cluster 14), megakaryocyte progenitor cells (cluster 23), CD1C+_B dendritic

cells (cluster 39), and CD141+CLEC9A+ dendritic cells (cluster 45) decreased

significantly. These results suggested a wide range of immune responses involved in

the blood circulation system after SARS-CoV-2 infection.

Then, we analyzed the gene expression differences in each cell subtype of the

COVID-19 conditions and controls and identified a number of differentially

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.20033472doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.15.20033472


6
6

expressed (DE) genes (External Databases S1-S4). To further explore the enriched

signal pathways of the DE genes in each cell subtype, we analyzed the enriched

pathways of the DE genes in each cell cluster using local string network analysis. In

patients with critical, severe, moderate, or cured conditions, we found that 18 (in eight

cell subtypes), 18 (in 35 cell subtypes), 24 (in 35 cell subtypes), and 15 (in 21 cell

subtypes) signal pathways, respectively, were over-activated or inactivated for each

disease condition (Fig. 2B-F, Table S3-6). These significantly enriched signal

pathways were mainly involved in viral mRNA translation (high gene expressions in

AXL+SIGLEC6+ dendritic cells, CD4+ T cells, and other cells) (Fig. S4-5),

interaction alpha/beta signaling (Fig. S6-7), a mitogen-activated protein kinase

(MAPK) pathway (Fig. S8-9), immunology interactions between lymphoid and non-

lymphoid cells (CD1C+_B dendritic cells and CD4+ cytotoxic T cells) (Fig. S10-11),

and major histocompatibility complex (MHC) class II protein complex (B cells and

CD1C+_B dendritic cells) (Fig. S12-13), suggesting that antigen presentation for

targeting the virus was activated.

In the severe condition (patient 2), 18 signaling pathways were significantly

changed in more than half of the cell subtypes compared to the normal controls.

Among these pathways, the most important was over-activation of the interferon-

related signaling pathways, including 2’-5’-oligoadenylate synthase and type I

interferon signaling pathway（naive CD8+ T cells, CD4+ T cells, and other cells) and

interferon alpha/beta/gamma signaling (naive CD8+ T cells, CD4+ T cells, and other

cells) (Fig. 2C, Table S3). In other COVID-19 conditions, the interferon signal was

also over-activated to varying degrees. However, in the cured patients, the interferon

signal was just mildly activated compared to the patients with severe and moderate

conditions. In the cured condition, the signal pathway related to mRNA translation of

the virus was suppressed, while the signal pathway related to MAPK was significantly

enriched (Fig. 2C, Table S3-6). To detect whether these signaling pathway changes

were specific to COVID-19, we compared the COVID-19 patients with the patients

with influenza A (patient 11), acute pharyngitis (patient 12), and cerebral infarction

(patient 13) and found that the signaling pathways were still enriched after filtering

with these related disease controls (Fig. S14). Among these pathways, the interferon-

MAPK signaling pathway was the major blood immune response for COVID-19

infection.
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The activation of the MAPK signaling pathway by interferon involves a set of

defense mechanisms evolved by human beings to fight against viral infections (19-21).

To further explore the expression differences of genes involved in different cell types

in the various COVID-19 conditions, we analyzed the gene expressions in patients

with COVID-19 and compared them to those of the controls (Fig. 2G-J, Fig. S7). First,

we observed up-regulation expression of the interferon signal genes in the COVID-19

patients. Among them, interferon α-inducible protein 27 (IFI27), originally known to

involve in innate immunity and to intervene in cell proliferation (22), was

increasingly expressed in many cell types, including CD1C+_B dendritic cells,

CD1C-CD141- dendritic cells, CD141+CLEC9A+ dendritic cells, CD8 cytotoxic T

cells, and plasmacytoid dendritic cells. Second, the expressions of IFITM1, IFITM3,

and IFI6, which were shown to be related to interferon-related pathway and

associated with Influenza and West Nile Virus (23-26), were strikingly up-regulated

in all of these cells. The expression trends of these genes were similar in the four

COVID-19 conditions. The results indicate that interferon signals, especially

interferon alfa/beta/gamma and interferon type I, are activated in the blood of patients

with COVID-19.

Then, in the downstream of the interferon signaling, we found that MAPK

signaling pathway transcription factors were activated in hospitalized patients with

COVID-19, including high expressions of FOS, JUN, JUNB, and DUSP1 (Fig. 2K-N,

Table S8). These genes were previously shown to regulate cell invasion, migration,

proliferation and innate immunity by inhibiting pro-inflammatory cytokine production

(27, 28). In three groups of inpatients with different conditions, the up-regulated

expression of these genes was observed in CD1C+_B dendritic cell, CD1C-CD141-

dendritic cell, CD141+CLEC9A+ dendritic cell, CD8 cytotoxic T cells, and

plasmacytoid dendritic cells. Interestingly, in contrast to the three groups of inpatients,

the expression pattern of these genes in the two cured patients was the opposite. In the

cured patients, down-regulated expression was detected, indicating that the MAPK

signaling pathway was inhibited in these cells. These results indicate that down-

regulation of the MAPK signal pathway may be one sign of patient recovery.

To further explore the antibody clonal proliferation of TCR and BCR in COVID-19,

we conducted TCR and BCR V(D)J single cell transcriptome analysis. Using

integration analysis, we detected 83,387 TCR cell clones and 12,601 BCR clones in

the 16 subjects (Fig. 3A). This result revealed the antibody repertoire in patients with
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COVID-19 and showed huge diversities of TCR and BCR clones in each individual.

In the critical condition (patient 1), the fewest TCR clones (1,232) were detected,

while, in the severe condition (patient 2), more TCR clones (7,161) were detected. In

one moderate patient (patient 8), the most TCR clones (20,370) were detected.

According to these findings, the fewer the TCR clones, the more severe the COVID-

19 condition. The distribution of all TCR clones and the number of TCR clones of

each patient are shown in Fig. 3B and Table S9. Using evolutionary analysis of the

top TCR antibody sequences revealed by TCR sequencing, we found that TCRα

sequences of CASSEGVGTPFDEQFF (patient 2), CASSLGLAGDLDEQFF and

CASNQGLAGGRLYNEQFF (patient 4), CASSQERGVYNEQFF (patient 6) and

CASSEVWASDHEQYF (patient 10) were closely related (Fig. S15), suggesting that

these antibody sequences may have a special activity for SARS-CoV-2 (and influenza

A). Compared to TCR, the number of BCR clones detected was much lower (Fig. 3C,

Table S10). However, very strong BCR antibodies were not induced in most of the

patients except in two moderate patients (patients 6 and 8).

In one moderate patient (patient 9) (Fig. 3D-G), we detected 361 clones of CDR3

IGLorK/IGH sequences of CQQYGSSPWTF/CARVAESYYDFWSAKWEGAFDIW

and 119 clones of CQQYNSYSF/CARSGPITIFGVVIKGRGGDAFDIW (Fig. 3C,

Table S10). In another moderate patient (patient 7), four high frequency clones were

identified, including CQQYYSIPSLTF/CATHRTYFDWLLPFDYW (179) (Fig. 3C,

Table S10). These results suggest that the antibodies produced by patients 7 and 9

may have a SARS-CoV-2 specific affinity.

We then analyzed top TCR encoded antibody sequences for known antigens, and

some of them were annotated in the VDJdb antigen categories database (Fig. 3H). In

patients with COVID-19, we detected immune responses to known antigens,

including Epstein-Barr virus (EBV), HIV-1, influenza A, yellow fever, and other RNA

viruses, as well as DNA viruses such as cytomegalovirus (CMV). In addition,

autoantigens were detected in the severe condition (patient 2) and the moderate

condition (patients 4, 8, and 9). In patient 2, the autoantigen response was obvious

activation, which indicated that this severe disease condition may be related to strong

autoimmunity. On the contrary, in the critical condition (patient 1), only two

antibodies against the Ebola EBV antigen were detected. These results further suggest

that the critical condition may be caused by insufficient immunity, while the severe

condition may be aggravated by excessive autoimmunity. In the normal condition, no
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immune response to these antigens was detected for NC 1 and NC 3; for the NC 2,

two antigens were detected (HIV-1 and influenza A) (Fig. 3H). For the patient with

influenza A (patient 11), the antigen and autoimmune responses of the yellow fever

virus were detected. For the patient with acute pharyngitis (patient 12), EBV, HIV-1,

influenza A and yellow fever virus antigens were detected, but there was no

autoimmune response. For the patient with cerebral infarction (patient 13), no known

antigens were detected. These results indicate that humans might use known immune

recognition (mainly known RNA viruses) to fight against SARS-CoV-2.

Type I interferon (IFN-I) is crucial for promoting antiviral defenses through the

induction of antiviral effectors (29). In this study, our single cell transcriptome results

revealed that a set of genes involved in the interferon-MAPK pathway were up-

regulated in the COVID-19 patients. To further validate this finding, we performed

quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR)

testing to detect the expressions of IRF27, BST2, and FOS in another cohort of three

critical, three server, 19 moderate, three mild and 10 cured patients with COVID-19

and five normal controls (Fig. 4A). IIF27, an immune biomarker which was reported

to be related to cell proliferation and invasion and could discriminate between

influenza and bacteria in patients with suspected respiratory infection (30), showed

the most strongest up-regulation in COVID-2019 patients’ PBMCs in the interferon

signaling pathway in the single cell transcriptome data. The real-time PCR results

showed that IRF27 was up-regulated 8.1 times more in critical patients, 51.7 times in

severe patients, 39.9 times in moderate patients, 38.6 times in mild patients, and 29.5

times in cured patients compared to the normal controls (Fig. 4A). These results

suggest that IRF27 is a candidate marker gene for SARS-CoV-2 infection. BST2,

which was previously shown to play a role in pre-B-cell growth (31), also showed up-

expression in COVID-19 patients. Consistent with our single cell transcription data,

the expression profile of FOS, which is a transcription factor mediating MAPK

pathway signaling, showed up-regulation in COVID-19 patients but down-regulation

in cured patients. This result suggests that FOS is a candidate marker gene for cured

COVID-19 patients. We further performed PBMC immunofluorescence testing to

compare the protein expressions of IFI27 between patients with COVID-19 and

controls. Immunofluorescence staining showed that IFI27 was highly expressed in the

whole lymphocyte of patients with COVID-19, but only partially expressed on the

lymphocyte of the controls (Fig. 4B).
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In summary, we demonstrated that SARS-CoV-2 can enter the blood through the

circulatory system and cause a blood immune response after infection through the

respiratory system. Therefore, in patients with COVID-19, the damage is related to

multiple organs (32). The leukocyte immune responses involve many cell subtypes,

including CD8+ T cells, CD8 cytotoxic T cells, CD4+ T cells, CD4+ cytotoxic T cells,

CD1C+_B dendritic cells and other cell subtypes. After the virus reaches the blood

immune cells, it might replicate-mainly in AXL+SIGLEC6+ dendritic cells, CD4+ T

cells, and naive CD8+ T cells and might activate multiple cell subtypes of the

interferon signal pathway to produce effectors, such as IFI27, IFITM1 and IFITM3, to

fight the SARS-CoV-2 virus. The similar process also happened to Influenza and West

Nile Virus infection in human (23, 24). Through downstream activation of MAPK, the

expression of downstream effectors is activated by key transcription factors, such as

FOS, JUN, and JUNB, which lead to a wide range of antiviral responses in the blood

system (Fig. 4C). These results suggested that the immune response may come back

the normal situation when the patients recovery, and the MAPK signal is thus

inhibited.

In conclusion, in this study, we revealed the immune response process of SARS-

CoV-2 entering the blood circulation system using immune profiling analysis with

single-cell resolution. In the critical condition, the number of different cell types,

expressed genes, and TCR/BCR responses indicated a relationship between the

critical nature of the patient’s condition and his immunodeficiency. On the contrary,

the severe condition was shown to be related to a strong autoimmune response and

over-activated interferon pathway. These results suggested that immune deficiency or

immune over-reacts may make patients with COVID-19 go to worse condition

because of their imbalance adaptive immune response (33-35). Our study also shows

that the activation of the interferon-MAPK signaling pathway and TCR- and BCR-

produced antibodies play key roles in combating SARS-CoV-2 infection. These

results will provide important information for COVID-19 treatment and drug

development.
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Fig. S1 CT images of the lungs of the 10 COVID-19 patients. V(D)J analysis showed
varying degrees of ground glass-like changes in the lungs.

Fig. S2 Trajectory of differentiating PBMCs of 56 cell subtypes.

Fig. S3 Violin map and distributed cell (sub)types of 23 newly identified marker
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D. Cured vs normal
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F. SARS-COV-2 vs influenza A
G. SARS-COV-2 vs acute pharyngitis
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Fig. S5 viral mRNA gene expression in 56 cell types

Fig. S6 Differential expression patterns of interaction alpha/beta signaling genes in
COVID-19 patients vs other diseases
A. SARS-COV-2 vs influenza A
B. SARS-COV-2 vs acute pharyngitis
C. SARS-COV-2 vs cerebral infarction

Fig. S7 mRNA gene expression in 56 cell types of interaction alpha/beta signaling

Fig. S8 Differential expression patterns of MAPK signaling genes in COVID-19
patients vs other diseases
A. SARS-COV-2 vs influenza A
B. SARS-COV-2 vs acute pharyngitis
C. SARS-COV-2 vs cerebral infarction

Fig. S9 mRNA gene expression in 56 cell types of MAPK pathways

Fig. S10 Differential expression patterns of immunoregulatory interactions between a
lymphoid cell and a non-lymphoid cell and cytolysis genes in COVID-19 patients vs
controls
A. Critical vs normal
B. Severe vs normal
C. Moderate vs normal
D. Cured vs normal
E. SARS-COV-2 vs normal
F. SARS-COV-2 vs influenza A
G. SARS-COV-2 vs acute pharyngitis
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H. SARS-COV-2 vs cerebral infarction

Fig. S11 mRNA gene expression in 56 cell types of immunoregulatory interactions
between a lymphoid cell and a non-lymphoid cell and cytolysis genes

Fig. S12 Differential expression patterns of MHC class genes in COVID-19 patients
vs controls
A. Critical vs normal
B. Severe vs normal
C. Moderate vs normal
D. Cured vs normal
E. SARS-COV-2 vs normal
F. SARS-COV-2 vs influenza A
G. SARS-COV-2 vs acute pharyngitis
H. SARS-COV-2 vs cerebral infarction

Fig. S13 MHC class gene expression in 56 cell types

Fig. S14 Enriched pathways in COVID-19 vs other disease conditions
A. SARS-COV-2 vs influenza A
B. SARS-COV-2 vs acute pharyngitis
C. SARS-COV-2 vs cerebral infarction

Fig. S15 Evolutionary conservation analysis of top TCR- and BCR-produced
antibodies
A. TCRA
B. TCRB
C. IGH
D. LGL
E. IGK

Table S1 Clinical and blood routine test information of all participants, analyzed using
V(D)J transcriptome analysis

Table S2 List of known marker genes, new marker genes, and highly expressed genes
of 56 cell (sub) groups, identified by integrated analysis of all sequenced samples

Table S3 Significant enriched pathways of each cell (sub)type in a critical patient
compared with the normal controls

Table S4 Significant enriched pathways of each cell (sub)type in a severe patient
compared with the normal controls

Table S5 Significant enriched pathways of each cell (sub)type in moderate patients
compared with the normal controls

Table S6 Significant enriched pathways of each cell (sub)type in cured patients
compared with the normal controls
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Table S7 The differential expression of interferon-related genes in each cell (sub)type
of the COVID-19 patients compared with the normal controls

Table S8 The differential expression of MAPK signal genes in each cell (sub)type of
the COVID-19 patients compared with the normal controls

Table S9 List of the most enriched clone antibodies in each patient using TCR single
cell transcriptome analysis

Table S10 List of the most enriched clone antibodies in each patient using BCR single
cell transcriptome analysis

External Database S1 Differential expressed genes in each cell subtype in a COVID-
19 critical patient and the normal controls

External Database S2 Differential expressed genes in each cell subtype between a
COVID-19 severe patient and the normal controls

External Database S3 Differential expressed genes in each cell subtype between
COVID-19 moderate patients and the normal controls

External Database S4 Differential expressed genes in each cell subtype between
COVID-19 cured patients and the normal controls
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Fig. 1 Cellular composition of the PBMCs in COVID-19 patients and controls. (A)
Schematic of single-cell immune transcriptome profiles of the PBMCs in COVID-19
patients and normal controls. The PBMCs were isolated for constructing single cell 5’
mRNA, TCR, and BCR libraries using chromium single cell V(D)J v1.1 reagent kits
of 10x genomics chemistry. (B) Integration analysis results of COVID-19 patients and
normal controls showing principle component (PC), t-SNE algorithm, and UMAP
algorithm visualization. In total, 56 cell subtypes were identified. (C) Seventeen
different cell types. From these types, the 56 cell subtypes were derived. (D) Cell
subtypes in each main cell type (only cell types with two or more subtypes are
displayed). (E) Cell differentiation trajectory analysis, which indicates three states of
cells.
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Fig. 2 The interferon-MAPK pathway is the key response in PBMCs for SARS-CoV-2
infection. (A) Comparisons of cell type behaviors of patients with COVID-19 and
normal controls. (B) Cell subtypes and the number of pathways significantly differed
between patients with COVID-19 and the normal controls. (C-F) The enrichment
pathways of differential expressed (DE) genes in each cell subtype. (C) The critical
patient (patient 1) vs normal controls. (D) The severe patient (patient 2) vs normal
controls. (E) The moderate patients (patients 3-6) vs normal controls. (F) The cured
patients (patient 9 and 10) vs normal controls. (G-J) Log2 fold changes of interferon
pathway genes in critical, severe, moderate, and cured patients with COVID-19 vs
normal controls, respectively. Each point represents a different cell subtype. (K-N)
Log2 fold changes of MAPK pathway genes in critical, severe, moderate, and cured
patients with COVID-19 vs normal controls, respectively. Each point represents a
different cell subtype.
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Fig. 3 TCR and BCR V(D)J clone expression in patients with COVID-19. (A) The
figure on the left shows the number of TCR clones detected by V(D)J in each patient,
and the figure on the right shows the number of BCR clones detected by V(D)J in
each patient. (B) The distribution of TCR clones in cell clusters of patients with
COVID-19. The light blue dots indicate the distribution of all TRAV and TRBV
clones, and the dark blue dots indicate the antibody sequence and quantity of the
clone with the strongest TCR clone signal of the patient 8 (moderate condition). (C)
The distribution of BCR clones in the cell clusters of each patient. Among them, light
blue dots indicate the distribution of total IGHV, IGLV, and IGKV in this patient. The
dark blue dots indicate the clones with the strongest signals in this patient. Patient 9
has the strongest B cell antibodies among all COVID-19 patients. (D) V-J heatmap of
IGH + IGK + IGL in the B cells of patient 9. (E) The left and right graphs represent
the isotype frequency of the heavy chain and the light chain detected in the B cells of
patient 9, respectively. (F) The distribution of paired isotypes in the B cells of patient
9. Abscissa includes different chains, and the ordinate is frequency. (G) The usage of
the V gene in the B cells of patient 9. (H) List of the known antigens and antibodies in
patients with COVID-19.
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Fig. 4 The interferon-MAPK pathway in response to SARS-CoV-2 infection. (A)
Real-time PCR validation of IFI27 and BST2 in the interferon pathway and FOS in
the MAPK pathway. IFI27 and BST2 are up-regulated in patients with COVID-19.
FOS is up-regulated in hospitalized patients but down-regulated in cured patients. (B)
Immunofluorescence staining of IFI27 in PBMCs of patients with COVID-19 and
normal controls. (C) Anti-SARS-CoV-2 response of the blood system. After the virus
reaches the blood immune cells, it can activate multiple cell subtypes of the interferon
signal pathway to produce effectors, such as IFI27, IFITM1, and IFITM3, to fight the
virus. Through downstream activation of MAPK, the expression of downstream
effectors is activated by key transcription factors, FOS, JUN, and JUNB, which lead
to a wide range of antiviral responses in the blood system.
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