Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by

digital PCR

Lianhua Dong^{1#}, Junbo Zhou^{2#}, Chunyan Niu^{1#}, Quanyi Wang³, Yang Pan³, Xia Wang¹, Yongzhuo Zhang¹, Jiayi Yang¹, Manqing Liu², Yang Zhao¹, Tao Peng¹, Jie Xie¹, Yunhua Gao¹, Di Wang¹, Yun Zhao⁴, Xinhua Dai^{1*}, Xiang Fang^{1*}

1. Center for Advanced Measurement Science, National Institute of Metrology, 18

Beisanhuan East Road, Beijing 100013, People's Republic of China

- Department of Pathogen Detection, Wuhan Center for Disease Prevention and Control, 288 Machang Road, Wuhan, Hubei 430030, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Control and Prevention, No. 16, Hepingli Middle St., Beijing, P.R.China. 100013
- School of Life Science, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing, 400044, China

[#] First author contributed equally.

*Address correspondence to this author at: National Institute of Metrology, 18 Beisanhuan East Road, Beijing, China,100013. E-mail <u>daixh@nim.ac.cn</u>; fangxiang@nim.ac.cn.

Abstract:

Background: The outbreak of COVID-19 caused by a novel Coronavirus (termed SARS-CoV-2) has spread to over 120 countries around the world. Currently, real-time qPCR (RT-qPCR) is used as the gold standard for diagnostics of SARS-CoV-2. However, the positive rate of RT-qPCR assay of pharyngeal swab samples is reported to be 30~60%. More accurate and sensitive methods are urgently needed.

Method :We established a digital PCR (dPCR) protocol to detect SARS-CoV-2 on 194 clinical pharyngeal swab samples, including 103 suspected patients, 75 close contacts

and 16 supposed convalescents.

Results: The limit of blanks (LoBs) of the dPCR assays are about 1.6, 1.6 and 0.8 copies/reaction for ORF 1ab, N and E gene. The limit of detection (LoD) is 2 copies/reaction. The overall accuracy of ddPCR is 95.5 %. For the fever suspected patients, the accuracy of SARS-CoV-2 detection was significantly improved from 28.2% to 87.4% by dPCR. For close contacts, the suspect rate was greatly decreased from 21% down to 1%. In addition, quantification of the virus load for convalescents by dPCR showed that a longer observation in the hospital is needed for aged patients. Conclusion: dPCR could be a confirmatory method for suspected patients diagnosed by RT-qPCR. Furthermore, dPCR is more sensitive and suitable for low virus load specimens from the both patients under isolation and those under observation who may not be exhibiting clinical symptoms.

1. Introduction

In late December 2019, a number cases of pneumonia infection were reported in Wuhan, Hubei Province, China. It was officially named as Coronavirus disease (COVID-19) by the World Health Organization (WHO) and has since spread to 129 countries around the world till March 14, 2020 (1, 2). The pathogen causing the outbreak of disease was identified as a novel Coronavirus (termed SARS-CoV-2), belonging to the family *Coronaviridae*, order *Nidovirales*, all of which are enveloped, non-segmented positive-sense RNA viruses (3, 4). According to the WHO and Chinese Center for Disease Control and Prevention (CDC), the current gold standard for the diagnosis of SARS-CoV-2 infection is based on the real-time fluorescent quantitative PCR (RT-qPCR). However, RT-qPCR is reported to have issues of low positive rates for throat swab samples (5) and there were 3% of patients who had negative RT-qPCR test results at initial presentation while chest CT checks indicated typical symptoms of viral pneumonia(6). In order to identify and hospitalize COVID-19 patients in time, more sensitive and accurate tests are required.

Digital PCR (dPCR) is a technology which partitions nucleic acid molecules across a large number of smaller reactions and acquires amplification data of each partition at end point based on the intensity of fluorescence (7-9). Quantification is

performed by applying Poisson statistics to the proportion of the negative partitions to account for positive partitions that initially contained more than one target molecule. dPCR can offer greater precision than qPCR and is far simpler to use for copy number quantification due the binary nature in which the partitions are counted as positive or negative. Additionally, dPCR is more tolerant of PCR inhibition compared with qPCR due to partitioning and because it is an end-point PCR measurement and consequently less dependent on high PCR efficiency (10, 11).

In this study, we established one step RT-dPCR for detection of ORF1ab open reading frame 1ab (ORF1ab) and nucleocapsid protein (N) and E gene of SARS-CoV-2. Moreover, we compared RT-qPCR and RT-dPCR on 194 clinical samples and found RT-dPCR can significantly improve the sensitivity and accuracy of Coronavirus disease (COVID-19) diagnostics.

2. Materials and methods

2.1 Ethics statement

Data collection of cases and close contacts were determined by the National Health Commission of the People's Republic of China to be part of a continuing public health outbreak investigation and were thus considered exempt from institutional review board approval. The analysis was performed on existing samples collected during standard diagnostic tests, posing no extra burden to patients.

2.2 Clinical samples

Respiratory samples were obtained during February and March 2020 from patients hospitalized or close contacts tested by Beijing CDC (BJCDC), Wuhan CDC (WHCDC) and a government designated clinical test laboratory (Wuhan considering laboratory for medical test, KXR). RNA was extracted from clinical specimens by using the MagMAX-96 viral RNA isolation kit (Thermo Fisher Scientific). The typed avian influenza virus RNAs A/H3N2 Virus and Influenza B/Victoria Virus was available at Wuhan CDC. RNA extracts containing human coronaviruses (HCoV)-229E and (HCoV)-OC43 provided by BJCDC were tested in all three assays, respectively.

2.3 One step reverse transcription dPCR

The primer and probe sequences for detecting N and ORF1ab gene target of the SARS-CoV-2 published by Chinese center for disease control and prevention (CDC) were used for this study(*12*). For detecting E gene target, primer and probe recommended by world health organization (WHO) was used(*13*). The 20 μ L reaction mixture comprise 5 μ L of One-Step RT-ddPCR Supermix, 2 μ L of reverse transcriptase, 1 μ L of 300 mM DTT, 1 μ L of mixture of primers and probe and 11 μ L of RNA template. Each reaction mix was converted to droplets using the QX200 Droplet Generator (Bio-Rad, USA), transferred to a 96-well plate, heat sealed and amplified in a GeneAmp System 9700 thermal cycler (Applied Biosystems, USA). The thermal cycling conditions were as follows: 45 °C for 10 min (reverse transcription); 95°C for 5 min; and 40 cycles of 95°C for 15 sec, and 58°C for 30 sec. The cycled plate was then transferred to the QX200 Droplet Reader (Bio-Rad, USA) and analyzed using the QuantaSoft droplet reader software (V1.7.4, Bio-Rad, USA).

2.4. Limit of blank (LoB) and detection (LoD) of dPCR

To establish the limit of blank (LoB) (14), 60 blank measurements were obtained from 3 blank mutant samples on three days. 70 to 76 measurements from 4 samples with low concentration (1 to3 cp/reaction) were used to determine the limit of detection (LoD) according to the CLSI guideline of EP17-A(15).

2.5 RT-qPCR

Three different commercial RT-qPCR kits (Huirui from Shanghai Huirui Biotechnology Co., Ltd, BioGerm from Shanghai BioGerm Medical Biotechnology and Daan from Daan Gene Co., Ltd) were used for the detection. Briefly, a 25- μ L reaction containing 7.5 μ L of PCR reaction buffer, 5 μ L of primer and probe mixture and 5~11 μ L of RNA was prepared. Thermal cycling was performed at 50 °C for 15 min for reverse transcription, followed by 95°C for 5 min and then 45 cycles of 95 °C for 10 s, 55 °C for 45 s in ABI 7500 RT-PCR thermocycler.

3. Results

3.1 Dynamic Range of the dPCR assay.

The linear range was investigated by varying the mean copy number per droplet,

denoted as λ .(16) The precision or relative error of dPCR is related to λ because of dPCR relies on the Poisson statistics to account for droplets with multiple molecules.(17) The upper limit of the linearity was 7.8 copies/partition tested by N gene assay. To determine the lower limit of all three assays, serial dilutions of each RNA transcript were prepared (Table S-1). The measured targets matched the anticipated values in each tested interval. A good linearity (0.93<slope<1.02, R² \geq 0.9997) between the measured RNA target and the prepared value was observed over the range from approximately 10⁴ to 10⁰ copies/reaction (Fig. 1). Reactions containing a mean of 60 E, 66 N or 11 ORF1ab copies fulfilled the criterion for an LoQ with a CV lower than 25%.

3.2 Establishment of LoB and LoD for dPCR assay.

Sixty blank measurements obtained from 6 blank samples on five days were analyzed to determine the LoB. As the distribution of the 60 blank measurements is skewed (Figure S-1), the LoB was estimated nonparametrically as the 95th percentile of the measurements. The 15 highest blank values for each target are displayed in Table S-2. The 95th percentile corresponds to the 57.5 ordered observation (=60*(0.95/60+0.5))(15). Linear interpolation between the 57th and 58th observation yields a LoB estimate of 1.6, 1.6, and 0.8 copies/reaction for E, ORF1ab and N, respectively.

For determining the LoD of ORF1ab gene assay, 76 measurements were performed on five samples in 3 different runs on three different days to ensure the total assay variation is reflected. The distribution of the 76 measurement results from low concentration samples is not Gaussian (Fig. S2A) and so that nonparametric statistics was used according to the guideline of EP17-A. Consequently, the LoD is determined to be 2 copies/reaction, the lowest level material where the β -percentile is 5 %.

To determine the LoD of N and E assay, 83 measurements of E assay on 5 samples and 71 measurements of N assay on 4 samples were performed in 4 different runs. Similar to ORF1ab gene, the distribution of the 71 measurements for N gene and 83 measurements are not Gaussian (Fig. S2B an S2C), and so that nonparametric

statistics was used. Consequently, the LoD is determined to be 2 copies/ reaction.

3.3 Specificity testing

The Specificity of the assays for ORF1ab and E gene has been tested in a previous report. To further validate the specificity of all assays, Influenza virus were collected. All assays were tested on human clinical samples at Wuhan CDC and National institute of Metrology, China. All tests returned negative results (in table S3).

3.4 Comparison between RT-qPCR and RT-dPCR on febrile suspected patients

103 pharyngeal swabs were collected from febrile suspected SARS-CoV-2 infected patients and the relevant information is listed in table 1. Among the 103 specimens, 81 (P1 to P81) were tested at KXR with the H&R qPCR kit and 7 (P82-88) were tested at WHCDC by the Daan qPCR kit. Firstly, the criteria claimed by the H&R kit manufacturer are: Ct value≤35 are positive, Ct value >39.2 are negative, and 35<Ct<39.2 are equivocal. The criteria of the Daan qPCR kit are: ct>40, negative, ct =<40, positive, and equivocal if only one gene with ct =< 40 and no amplification for another gene. According to such criteria, 14 positive, 25 negative and 49 suspected SARS-CoV-2 infections were reported by qPCR.

For dPCR, three targets are tested in parallel and the determination of a positive result should meet the following criteria: quantification of any one of the three gene targets is ≥ 2 copies/ reaction. If no positive droplet was detected in FAM channel but positive droplets were detected in VIC indicating RNAseP positive for human reference control(18), the sample can be judged negative. If 0<result<2, it should be attributed to equivocal and need further check. According to such criteria, 44 out of 49 suspects and 17 out of 25 negatives were corrected to be positive by dPCR and the positive rate significantly increased. No positive droplet was detected for the 6 negatives and copy numbers were quantified under the established LoD for 7 suspects infections, due to either no virus sampled or ultra-low virus load in these specimens.

15 samples (from P89-P103) were tested at BJCDC with BioGermqPCR kit and assays recommended by Chinese CDC. Ct values were not available and only

negative or positive information were reported. Single gene target positive was determined to be SARS-CoV-2 positive based on parallel test with a commercial kit and Chinese CDC assays. Therefore, these 15 samples were reported positive by BJCDC. 8 qPCR negatives for ORF1ab were positive tested by dPCR, showing high sensitivity for ORF1ab by dPCR. Only 3 negatives for ORF1ab which can be complemented by E gene targets.

Among the 103 specimens, 29 positive, 25 negative and 49 suspected were reported by RT-qPCR. However, 61 samples including 17 negative and 44 suspected tested by qPCR were confirmed to be positive by dPCR, thus 90 patients in total whose SARS-CoV-2 nucleic acid were positive tested can be diagnosed with COVID-19. All the 103 patients were confirmed SARS-CoV-2 infection according to a follow-up survey. The accuracy of SARS-CoV-2 detection was significantly improved from 28.2% to 87.4% (Fig. 2).

3.5 Comparison on close contacts and convalescent

75 specimens were collected from contacts and close contacts. 48 specimens from contacts were reported negative based qPCR test by BJCDC on Feb 6 and were confirmed by dPCR on Feb 7 in table S4. According to a follow-up survey, all of them were in good health and isolation was lifted after 14 days.

27 specimens (table 2 and Fig. 3) were detected at WHCDC by qPCR with a kit from Daan gene on March 2, 4 and 6. According to qPCR result, 10 positive, one negative and 16 suspect were reported. It is very difficult to detect the SARS-CoV-2 nucleic acids due the low virus load at the early stage for the close contacts. However, 15 out of 16 equivocal and one negative can be determined positive by dPCR. The suspect rate was significantly decreased from 21% down to 1% according to the detection of dPCR. Consequently, except 5 patients can not be tracked, the rest 10 dPCR positive were confirmed as SARS-CoV-2 infected patients based on a follow-up survey.

Furthermore, among the 16 specimens corrected by dPCR, 6 persons (P14,18-21and P23 in table S5) were directed for secondary testing following an initial negative test 2 to 10 days prior. Based on qPCR results, further isolation and

observation was still needed to be conducted as the testing result is suspect or negative and no clinical symptoms were observed for them. However, if based on dPCR, all the six patients can be diagnosed with COVD-19 infected by SARS-CoV-2 and treatment could be conducted earlier. This indicates dPCR is more sensitive and suitable for low virus load specimens from the patients under isolation and observation without clinical symptoms, which is in agreement with the very recent online report (19).

Additionally, 16 pharyngeal swabs were collected from convalescent patients (Table 3). 12 positive, 3 suspect and 1 negative were reported by qPCR. However, all of these 16 patients are diagnosed to be positive by dPCR, indicating that all of them still need to be observed in hospital. Correlation between age and the RNA virus copy number was analysis (Fig.4). Interestingly, except P15, with increasing age, the copy number of virus load was much higher, which indicates a longer observation in the hospital is needed. We set up the threshold of 15, 20 and 25 copies/reaction for ORF1ab, N and E, respectively. The ORF1ab, N and E gene copy number were higher than their threshold for 100% patients elder than 60 and 75% (6 out 8 patients) elder than 55 (the median).

4. Discussion

RT-qPCR, as the standard method of diagnostics of SARS-CoV-2, plays an important role in this outbreak, though a low positive rate has been reported (5). A number of factors could affect RT-PCR testing results including sample collection and transportation, RNA extraction and storage, and proper performance of the kit (20). More recently, more than 145 RT-qPCR kits have been developed by the in vitro diagnostic manufactures (IVDs) in China (21). Among the qPCR kits, those with low sensitivity would cause high false negative rate or high equivocal rate. For the equivocal results it is necessary to conduct a retest, but due to the daily burden of thousands of incoming samples it is often impossible to do a same day retest. The testing laboratory should initially report a result based on a single test, while secondary sampling for a later retest does not need to be sent to the same laboratory. Therefore, availability of a highly sensitive and accurate confirmatory method is of

particular importance for the diagnosis of SARS-CoV-2 in this outbreak.

Currently, besides RT-qPCR, other methods such as next generation sequencing (NGS) and immunological detection of IgM and IgG could be used as confirmatory methods for diagnosis of COVID-19 according to the latest guideline of Diagnosis and Treatment of Pneumonitis Caused by SARS-CoV-2 (trial seventh version) published by National Health Commission (22). This would improve the false negative rate by applying multiple methods. However, diagnostics of nucleic acids is still considered as the gold standard as this is the most direct way to detect the presence of the virus. Thus, the established digital PCR method in this study could be a powerful complement method because it can significantly improve the positive rate for the suspect patients. Furthermore, it is very sensitive for the very low virus load in close contacts and suitable for monitoring the change of the virus load in the convalescent patients. An additional advantage of quantification of SARS-CoV-2 copy number by dPCR is that comparisons can be conducted between different dates and different laboratories as absolute quantitation of targets by dPCR provides high concordance between sites, runs and operators (14, 23, 24). However, it is not possible to compare Ct values on different runs or different machines. Thus, dPCR is an ideal method to for measuring the change of virus load in the convalescent patients.

CONCLUSIONS

This work demonstrates that dPCR significantly improves accuracy and reduces the false negative rate of diagnostics of SARS-CoV-2, which could be a powerful complement to the current RT-qPCR. Furthermore, dPCR is more sensitive and suitable for low virus load specimens from the patients under isolation and observation who may not be exhibiting clinical symptoms.

ASSOCIATED CONTENT

Research Funding: Fundamental Research Funds for Central Public welfare

Scientific research Institutes sponsored by National Institute of Metrology, P.R. China

(31-ZYZJ2001/AKYYJ2009)

Acknowledgments: We would like to thank Academy of Military Medical Sciences for providing the purified virus RNA for method validation, Wuhan considering laboratory for medical test for conducting the dPCR measurement and BioRad, China for donating the one step RT-dPCR mastermix.

References

1. Simpson D, Feeney S, Boyle C, Stitt AW. Retinal vegf mrna measured by sybr green i fluorescence: A versatile approach to quantitative pcr. Molecular Vision 2000;6:178 - 83.

2. Https://www.Who.Int/emergencies/diseases/novel-coronavirus-2019.

3. Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol 2015;1282:1-23.

4. Han Q, Lin Q, Jin S, You L. Recent insights into 2019-ncov: A brief but comprehensive review. Journal of Infection 2020:https://doi.org/10.1016/j.jinf.2020.02.010.

5. Yang Y, Yang M, Shen C, Wang F, Yuan J, Li J, et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-ncov infections.Doi: Https://doi.Org/10.1101/2020.02.11.20021493. 2020.

6. Xingzhi Xie, Zheng Zhong, Wei Zhao, Chao Zheng, Fei Wang, Liu. J. Chest ct for typical 2019-ncov pneumonia: Relationship to negative rt-pcr testing. Radiology 2020.

7. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. High-throughput droplet digital pcr system for absolute quantitation of DNA copy number. Anal Chem 2011;83:8604-10.

8. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. Absolute quantification by droplet digital pcr versus analog real-time pcr. Nature methods 2013;10:1003-5.

9. Vogelstein B, Kinzler KW. Digital pcr. Proc Natl Acad Sci U S A 1999;96:9236-41.

10. Dingle TC, Sedlak RH, Cook L, Jerome KR. Tolerance of droplet-digital pcr vs real-time quantitative pcr to inhibitory substances. Clinical chemistry 2013;59:1668-70.

11. Wu Y, Strain MC, Lada SM, Luong T, Rought SE, Gianella S, et al. Highly precise measurement of hiv DNA by droplet digital pcr. PLoS ONE 2013;8:e55943.

12. China-prevention and control plan of new coronavirus pneumonia. 2020.

13. Diagnostic detection of 2019-ncov by real-time rt-pcr. 2020.

14. Dong L, Wang X, Wang S, Du M, Niu C, Yang J, et al. Interlaboratory assessment of droplet digital pcr for quantification of braf v600e mutation using a novel DNA reference material. Talanta 2019;207:120293.

15. Daniel WT, Kristian L, M.D, Marina K, David AA, Patricia EG, Robert LJ, et al. Protocols for determination of limits of detection and limits of quantitation; approved guideline. EP17-A;24.

16. Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, et al. The digital miqe guidelines: minimum information for publication of quantitative digital pcr experiments. Clinical Chemistry 2013;59:892-902.

17. Weaver S, Dube S, Mir A, Qin J, Sun G, Ramakrishnan R. Taking qpcr to a higher level: Analysis of cnv reveals the power of high throughput qpcr to enhance quantitative resolution. Methods 2010;50:271-6.

18. Strain MC, Lada SM, Luong T, Rought SE, Gianella S, Terry VH, et al. Highly precise measurement of hiv DNA by droplet digital pcr. PLOS ONE 2013.

19. Https://www.Medrxiv.Org/content/10.1101/2020.02.29.20029439v1.

20. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest ct and rt-pcr testing in coronavirus disease 2019 (covid-19) in china: A report of 1014 cases. Radiology 2020:200642.

21. Https://www.Sohu.Com/a/377833693_120051606.

22. Leps^{*} J, S^{*}milauer P. Multivariate analysis of ecological data using canoco. 2003.

23. Whale AS, Jones GM, Jernej P, Dreo T, Redshaw N, Akyürek S, et al. Assessment of digital pcr as a primary reference measurement procedure to support advances in precision medicine. Clinical Chemistry 2018;64:1296-307.

24. Yoo H-B, Park S-R, Dong L, Wang J, Sui Z, Pavšič J, et al. International comparison of enumeration-based quantification of DNA copy-concentration using

flow cytometric counting and digital polymerase chain reaction. Analytical Chemistry 2016;88:12169-76.

Figure 1. Validated range of the dPCR assays for E, ORF1ab and N gene. Evaluation of linearity of samples containing E, ORF1ab and N gene molecules over the extended λ range (0.0002 < λ < 7.83). Data are shown in mean with standard deviation

for each dilution series $(3 \le n \le 10)$.

Figure 2. Diagnostics of SARS-CoV-2 by RT-qPCR and dPCR on 103 febrile suspected patients. 25 samples positive, 29 negative and 49 suspected were reported by RT-Qpcr (A). 90 positive, 6 negative and 7 equivocal were determined by dPCR (B).

Figure 3. Diagnostics of SARS-CoV-2 by RT-qPCR and dPCR on 75 close contacts. 10 positive, 49 negative and 16 suspected were reported by RT-Qpcr (A). 26 positive, 48 negative and 1 equivocal were determined by dPCR (B).

Figure 4. Correlation analysis between age and target gene copy number of ORF1ab (A), N (B) and E (C). The horizontal line representing the threshold of 15, 20 and 25 copies/reaction for ORF1ab, N and E, respectively. The ORF1ab, N and E gene copy number were higher than their threshold for 100% patients elder than 60 and 75% (6 out 8 patients) elder than 55 (the median).

		ORF1ab gene N gene E gene							
Patient	Reported	qPCR	dPCR	qPCR	dPCR	dPCR			
number	result	Ct	copies/reaction	Ct copies/reaction		copies/reaction	Result by dPCR	clinical status	
P1	Positive	31.71	7248	27.9	4892	4892 5156.4		Viral pneumonia, Fever cough	
P2	Positive	32.06	3208	29.51	2212	3160	Positive	Viral pneumonia, Fever cough	
P3	Positive	32.95	2460	30.79	1064	1480.6	Positive	Viral pneumonia, Fever cough	
P4	Positive	34.18	1108	30.91	1048	840.8	Positive	Viral pneumonia, Fever cough	
P5	Positive	34.3	1062	33.06	242	842	Positive	Viral pneumonia, Fever cough	
P6	Positive	34.47	1046	33.86	226	836.4	Positive	Viral pneumonia, Fever cough	
P7	Positive	35.07	542	33.99	228.1	428.6	Positive	Viral pneumonia, Fever cough	
P8	Suspect	35.6	302	32.14	562	424.4	Positive	Viral pneumonia, Fever cough	
P9	Suspect	36.18	187.6	35.89	58	130.2	Positive	Viral pneumonia, Fever cough	
P10	Suspect	36.19	179.8	32.97	426	132	Positive	Viral pneumonia, Fever cough	
P11	Suspect	36.1	186	35.49	24	70	Positive	Viral pneumonia, Fever cough	
P12	Suspect	36.58	170	34.81	11	34	Positive	Viral pneumonia, Fever cough	
P13	Suspect	36.87	110	35.27	1.8	24	Positive	Viral pneumonia, Fever cough	
P14	Suspect	36.91	96	35.02	9.4	28	Positive	Viral pneumonia, Fever cough	
P15	Suspect	36.99	102	36.57	8.6	9	Positive	Viral pneumonia, Fever cough	
P16	Suspect	37.91	84	37.41	24.6	68.8	Positive	Viral pneumonia, Fever cough	
P17	Positive	38.29	76	34.59	204.8	120.4	Positive	Viral pneumonia, Fever cough	
P18	Suspect	38.29	74.6	0	66	86	Positive	Viral pneumonia, Fever cough	
P19	Suspect	38.38	72	33.18	214.8	104	Positive	Viral pneumonia, Fever cough	
P20	Negative	39.41	32	0	54	98	Positive	Viral pneumonia, Fever cough	
P21	Suspect	39.88	28.6	34.04	186	92.4	Positive	Viral pneumonia, Fever cough	
P22	Negative	39.95	27	45	57	89	Positive	Viral pneumonia, Fever cough	
P23	Suspect	39.97	24.2	36.68	23.6	90.4	Positive	Viral pneumonia, Fever cough	
P24	Suspect	40.22	8.8	38.98	12.4	16.7	Positive	Viral pneumonia, Fever cough	
P25	Negative	40.66	6.4	45	4.2	8.4	Positive	Viral pneumonia, Fever cough	
P26	Suspect	41.2	7.2	32.84	18.4	14.8	Positive	Viral pneumonia, Fever cough	
P27	Negative	41.39	4.6	39.8	5.8	10.8	Positive	Viral pneumonia, Fever cough	
P28	Suspect	41.91	3.4	37.46	13.4	6.4	Positive	Viral pneumonia, Fever cough	
P29	Negative	42.45	3.4	43.63	3.2	5.4	Positive	Viral pneumonia, Fever cough	
P30	Negative	43.28	4.8	0	2.4	5.8	Positive	Viral pneumonia, Fever cough	
P31	Negative	43.28	5.4	0	0	4.9	Positive	Viral pneumonia, Fever cough	
P32	Suspect	43.51	3.8	0	2.2	2.4	Positive	Viral pneumonia, Fever cough	
P33	Negative	43.98	2.6	0	4.8	42.4	Positive	Viral pneumonia, Fever cough	
P34	Suspect	43.99	2.6	37.09	3.2	5.8	Positive	Viral pneumonia, Fever cough	
P35	Suspect	37.16	94	36.07	0	20	Positive	Viral pneumonia, Fever cough	
P36	Suspect	37.21	70	34.51	11.4	38	Positive	Viral pneumonia, Fever cough	

Table 1. Results of SARS-CoV-2 by RT-qPCR and dPCR on 103 febrile suspected

patients

P37	Suspect	37.29	58	34.04	3.2	32	Positive	Viral pneumonia, Fever cough
P38	Suspect	37.47	48	36.42	50	44	Positive	Viral pneumonia, Fever cough
P39	Suspect	37.94	52	35.74	6.4	30	Positive	Viral pneumonia, Fever cough
P40	Suspect	38.29	32	35.44	6.4	24	Positive	Viral pneumonia, Fever cough
P41	Suspect	38.305	32	36.884	0	13.4	Positive	Viral pneumonia, Fever cough
P42	Suspect	38.83	40	38.63	0	20	Positive	Viral pneumonia, Fever cough
P43	Suspect	38.95	34	40	3.8	0	Positive	Viral pneumonia, Fever cough
P44	Suspect	39.01	26	38.56	0	11.8	Positive	Viral pneumonia, Fever cough
P45	Suspect	39.11	34	37.13	0	24	Positive	Viral pneumonia, Fever cough
P46	Suspect	39.81	20	37.01	3.6	0	Positive	Viral pneumonia, Fever cough
P47	Suspect	39.9	12.4	36.56	0	20	Positive	Viral pneumonia, Fever cough
P48	Suspect	39.94	16	36.82	2	12	Positive	Viral pneumonia, Fever cough
P49	Suspect	40	0	38.68	0	0	Negative	Viral pneumonia, Fever cough
P50	Negative	40	0	39.68	0	0	Negative	Viral pneumonia, Fever cough
P51	Suspect	40	10	37.88	0	12	Positive	Viral pneumonia, Fever cough
P52	Suspect	40	8.6	38.748	0	1.8	Positive	Viral pneumonia, Fever cough
P53	Suspect	40.42	3.4	39.12	0	0	Positive	Viral pneumonia, Fever cough
P54	Negative	40.47	0	40	3	1.6	Positive	Viral pneumonia, Fever cough
P55	Negative	40.65	3	40	2.2	0	Positive	Viral pneumonia, Fever cough
P56	Suspect	40.65	1.8	38.41	0	0	Suspect	Viral pneumonia, Fever cough
P57	Negative	40.97	1.8	40	0	0	Suspect	Viral pneumonia, Fever cough
P58	Suspect	41.02	0	38.89	0	6	Positive	Viral pneumonia, Fever cough
P59	Negative	41.2	0	40	1.8	0	Suspect	Viral pneumonia, Fever cough
P60	Negative	42.5	12	40	0	0	Positive	Viral pneumonia, Fever cough
P61	Suspect	NA	1.2	38.08	0	0	Suspect	Viral pneumonia, Fever cough
P62	Negative	ND*	0	39.84	2.4	1.4	Positive	Viral pneumonia, Fever cough
P63	Negative	ND	0	40.14	1.8	2.6	Positive	Viral pneumonia, Fever cough
P64	Negative	ND	0	39.71	0	0	Negative	Viral pneumonia, Fever cough
P65	Negative	ND	2.1	39.43	2.2	3.4	Positive	Viral pneumonia, Fever cough
P66	Suspect	ND	0	37.96	1.6	2.2	Positive	Viral pneumonia, Fever cough
P67	Negative	ND	0	39.86	0	0	Negative	Viral pneumonia, Fever cough
P68	Suspect	ND	1.4	38.1	0	2.4	Positive	Viral pneumonia, Fever cough
P69	Suspect	ND	0	39	0	2	Positive	Viral pneumonia, Fever cough
P70	Suspect	ND	0	36.89	2	0	Positive	Viral pneumonia, Fever cough
P71	Negative	ND	0	39.29	2.2	1.4	Positive	Viral pneumonia, Fever cough
P72	Suspect	ND	0	32.23	2.6	0	Positive	Viral pneumonia, Fever cough
P73	Suspect	ND	0	35.76	2.4	4.6	Positive	Viral pneumonia, Fever cough
P74	Negative	ND	0	40.24	2.8	3	Positive	Viral pneumonia, Fever cough
P75	Suspect	ND	0	39.44	1	2.8	Positive	Viral pneumonia, Fever cough
P76	Suspect	ND	0	38.27	0	0	Negative	Viral pneumonia, Fever cough
P77	Suspect	ND	0	37.36	2.8	2.4	Positive	Viral pneumonia, Fever cough
P78	Negative	ND	0	42.09	0	0	Negative	Viral pneumonia, Fever cough
P79	Negative	ND	0	40.98	1.8	1.8	Suspect	Viral pneumonia, Fever cough

P80	Suspect	ND	0	39.39	ND	1.4	Suspect	Viral pneumonia, Fever cough		
P81	Negative	ND	0	40.88	ND	1.4	Suspect	Viral pneumonia, Fever cough		
P82	Positive	39.15	7.2	38.27	ND	4.4	Positive	Viral pneumonia, Fever cough		
P83	Negative	ND	0	ND	0	5.2	Positive	Viral pneumonia, Fever cough		
P84	positive	25.44	3440	26.32	4700	880	Positive	Viral pneumonia, Fever cough		
P85	positive	29.41	36	28.23	242	3.8	Positive	Viral pneumonia, Fever cough		
P86	positive	29.45	16	29.11	328	12	Positive	Viral pneumonia, Fever cough		
P87	positive	37.62	0	31.72	12	12	Positive	Viral pneumonia, Fever cough		
P88	positive	36.45	5.2	34.28	0	24	Positive	Viral pneumonia, Fever cough		
P89	positive	Negative	12	positive	-	80	Positive	Viral pneumonia, Fever cough		
P90	positive	positive	3940	positive	-	31500	Positive	Viral pneumonia, Fever cough		
P91	positive	positive	4540	positive	-	29600	Positive	Viral pneumonia, Fever cough		
P92	positive	Negative	4	positive	-	34	Positive	Viral pneumonia, Fever cough		
P93	positive	Negative	0	positive	-	6	Positive	Viral pneumonia, Fever cough		
P94	positive	Negative	12	positive	-	42	Positive	Viral pneumonia, Fever cough		
P95	positive	positive	142	positive	-	3.4	Positive	Viral pneumonia, Fever cough		
P96	positive	positive	22	positive	-	98	Positive	Viral pneumonia, Fever cough		
P97	positive	Negative	2	positive	-	22	Positive	Viral pneumonia, Fever cough		
P98	positive	Negative	4.4	positive	-	13.6	Positive	Viral pneumonia, Fever cough		
P99	positive	Negative	1.8	positive	-	14.2	Positive	Viral pneumonia, Fever cough		
P100	positive	Negative	0	positive	-	4.8	Positive	Viral pneumonia, Fever cough		
P101	positive	Negative	2	positive	-	8.2	Positive	Viral pneumonia, Fever cough		
P102	positive	Negative	5.8	positive	-	8.2	Positive	Viral pneumonia, Fever cough		
P103	positive	Negative	3.4	positive	-	12.6	Positive	Viral pneumonia, Fever cough		

ND*, Ct Not detectable.

		ORF1ab gene		N gene		E gene				
Patient Reported		qPCR	dPCR	qPCR dPCR		dPCR	Result by dPCR	clinical status		
number	imber result Ct		copies/reaction	Ct	copies/reaction	copies/reaction				
P1	Suspect	0	2.2	37.37	0	7	Positive	Isolated observation, Asymptomatic		
P2	Positive	38.1	16	36.76	0	3.2	Positive	Isolated observation, Asymptomatic		
P3	Suspect	0	2.2	37.93	0	0	Positive	Isolated observation, Asymptomatic		
P4	Suspect	37.26	9.6	0	5.3	3	Positive	Isolated observation, Asymptomatic		
Р5	Positive	42.63	3.6	38.39 0		8.6	Positive	Isolated observation, lower fever, cough		
P6	Positive	39.9	1.8	38.41 0		5	Positive	Isolated observation, lower fever, cough		
P7	Suspect	0	1.4	36.7	1.4	1.6	Suspect	Isolated observation, Asymptomatic		
P8	Suspect	0	1.6	36.84	0	3	Positive	Isolated observation, Asymptomatic		
P9	Suspect	0	0	36.58	0	7	Positive	Isolated observation, Asymptomatic		
P10	Suspect	38.21	1.8	0	2.7	0	Positive	Isolated observation, Asymptomatic		
P11	Suspect	35.31	2.2	0	0	1.4	Positive	Isolated observation, Asymptomatic		
P12	Suspect	36.45	3.4	0	0	0	Positive	Isolated observation, Asymptomatic		
P13	positive	35.72	16.6	34.41	9.8	15.6	Positive	Isolated observation, Asymptomatic		
P14	Suspect	0	98	36.75	0	14	Positive	Isolated observation, Asymptomatic		
P15	Suspect	36.88	20	0	0	3	Positive	Isolated observation, Asymptomatic		
P16	positive	37.53	26	36.11	3.2	16	Positive	Isolated observation, Asymptomatic		
P17	positive	25.38	1682	22.8	4700	5640	Positive	Isolated observation, Asymptomatic		
P18	Suspect	0	22	35.47	0	3	Suspect	Isolated observation, Asymptomatic		
P19	Suspect	39.74	5	0	0	12	Positive	Isolated observation, Asymptomatic		
P20	Suspect	0	28	39.21	1.6	94	Positive	Isolated observation, Asymptomatic		

Table 2. Comparison of RT-qPCR and dPCR on SARS-CoV-2 RNA measurement of close contacts

P21	Negative	>40	8	0	0	8	Positive	Isolated observation, Asymptomatic
P22	positive	31.78	214	30.56	72	104	Positive	Isolated observation, Asymptomatic
P23	Suspect	0	900	35.37	0	32	Positive	Isolated observation, Asymptomatic
P24	Suspect	35.32	26	0	0	28	Positive	Isolated observation, Asymptomatic
P25	positive	33.12	28	33.65	38	14.2	Positive	Isolated observation, Asymptomatic
P26	positive	24.5	5280	26.8	3980	2650	Positive	Isolated observation, Asymptomatic
P27	positive	33.31	64	32.41	74	50	Positive	Isolated observation, Asymptomatic

		ORF1ab gene		N gene		E gene						
Patient Reported	Reported	qPCR	dPCR	qPCR	dPCR	dPCR	Result by	Clinical status	Number	Date of	Date of	Age
number	result	Ct	copies/react	Ct	copies/react	copies/react	UPCR		ortest	first test	unis test	
		Ci	ion	Ci	ion	ion						
P1	positive	33.92	66	31.2	56	82	Positive	Supposed convalescent,	2	2020.2.26	2020.3.4	65
P2	positive	38.51	4.8	34.96	1.6	3.8	Positive	Supposed convalescent	2	2020.2.26	2020.3.4	54
P3	positive	37.09	8	35.32	3.6	7.6	Positive	Supposed convalescent	5	2020.2.24	2020.3.4	58
P4	suspect	39.09	10.6	0	1.2	1.6	Positive	Supposed convalescent, Slight cough	2	2020.2.29	2020.3.4	51
P5	Negative	0	5.2	40.07	0	7.6	Positive	Supposed convalescent, Slight cough	2	2020.2.29	2020.3.4	43
P6	positive	34.89	26	33.84	22.2	36	Positive	Supposed convalescent	4	2020.2.21	2020.3.4	78
P7	suspect	0	0	37.32	0	6.6	Positive	Supposed convalescent	2	2020.2.23	2020.2.26	45
P8	suspect	0	2	37.15	0	4.3	Positive	Supposed convalescent	3	2020.2.22	2020.2.26	28
P9	positive	39.21	3.8	36.24	6	18	Positive	Supposed convalescent	1	-	2020.2.26	35
P10	positive	34.46	46	32.44	32	38	Positive	Supposed convalescent	2	2020.2.22	2020.2.26	55
P11	positive	32.87	26	32.24	66	62	Positive	Supposed convalescent	4	2020.2.17	2020.2.26	62
P12	positive	37.23	5	32.83	7	9.2	Positive	Supposed convalescent	1	-	2020.2.26	58
P13	positive	31.43	40	29.8	62	82	Positive	Supposed convalescent	2	2020.2.24	2020.2.26	57
P14	positive	33.62	22	31.43	64	52	Positive	Supposed convalescent	1	-	2020.2.26	32
P15	positive	30.31	158	31.27	166	98	Positive	Supposed convalescent	2	2020.2.11	2020.2.26	49
P16	positive	33.1	52	33.65	58	38	Positive	Supposed convalescent	2	2020.2.14	2020.2.26	74

Table 3. Comparison of SARS-CoV-2 RNA measurement on convalescent patients by RT-qPCR and dPCR