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17

Abstract Analysis of genetic sequence data from the pandemic SARS Coronavirus 2 can provide18

insights into epidemic origins, worldwide dispersal, and epidemiological history. With few19

exceptions, genomic epidemiological analysis has focused on geographically distributed data sets20

with few isolates in any given location. Here we report an analysis of 20 whole SARS-CoV 2 genomes21

from a single relatively small and geographically constrained outbreak in Weifang, People’s Republic22

of China. Using Bayesian model-based phylodynamic methods, we estimate the reproduction23

number for the outbreak to be 1.99(95% CI:1.48-3.14). We further estimate the number of24

infections through time and compare these estimates to confirmed diagnoses by the Weifang25

Centers for Disease Control. We find that these estimates are consistent with reported cases and26

there is unlikely to be a large undiagnosed burden of infection over the period we studied.27

28

Introduction29

We report a genomic epidemiological analysis of one of the first geographically concentrated30

community transmission samples of SARS-CoV 2 genetic sequences collected outside of the initial31
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outbreak in Wuhan, China. These data comprise 20 whole genome sequences from confirmed32

COVID19 infections in Weifang, Shandong Province, People’s Republic of China. The data were33

collected over the course of several weeks up to February 10, 2020 and overlap with a period34

of intensifying public health and social distancing measures. Phylodynamic analysis allows us to35

evaluate epidemiological trends after seeding events which took place in mid to late January, 2020.36

The objective of our analysis is to evaluate epidemiological trends based on national surveillance37

and response efforts by Weifang Centers for Disease Control (CDC). This analysis provides an38

estimate of the initial rate of spread and reproduction number in Weifang City. In contrast to the39

early spread of COVID19 in Hubei Province of China, most community transmissions within Weifang40

took place after public health interventions and social distancing measures were put in place. We41

therefore hypothesize that genetic data should reflect a lower growth rate and reproduction number42

than was observed in Wuhan. A secondary aim is to estimate the total numbers infected and to43

evaluate the possibility that there is a large unmeasured burden of infection due to imperfect case44

ascertainment and a large proportion of infections with mild or asymptomatic illness.45

To analyze the Weifang sequences, we have adapted model-based phylodynamic methods46

which were previously used to estimate growth rates and reproduction numbers using sequence47

data from Wuhan and exported international cases(Volz et al., 2020). This analysis has several48

constraints and requirements:49

50

Importation of lineages from Wuhan. The outbreak in Weifang was seeded by multiple lineages51

imported at various times from the rest of China. We use a phylodynamic model that accounts for52

location of sampling. Migration is modeled as a bi-directional process with rates proportional to53

epidemic size in Weifang. The larger international reservoir of COVID19 cases serves as a source of54

new infections and is assumed to be growing exponentially over this period of time.55

Nonlinear epidemiological dynamics in Weifang. The maximum number of daily confirmed COVID1956

cases occurred on February 5, but it is unknown when the maximum prevalence of infection oc-57

curred. We use a susceptible-exposed-infectious-recovered (SEIR) model(Keeling and Rohani, 2011)58

for epidemic dynamics in Weifang. The model accounts for a realistic distribution of generation59

times and can potentially capture a nonlinear decrease in cases following epidemic peak.60

Variance in transmission rates(Lloyd-Smith et al., 2005).To estimate total numbers infected, the61

phylodynamic model must account for epidemiological variables which are known to significantly62

influence genetic diversity. Foremost among these is the variance in offspring distribution (number63

of transmissions per primary case). We draw on previous evidence based on the previous SARS64

epidemic which indicates that the offspring distribution is highly over-dispersed. High variance of65

transmission rates will reduce genetic diversity of a sample and failure to account for this factor66

will lead to highly biased estimates of epidemic size(Li et al., 2017). Recent analyses of sequence67

data drawn primarily from Wuhan has found that high over-dispersion was required for estimated68

cases to be consistent with the epidemiological record(Volz et al., 2020). Models assuming low69

variance in transmission rates between people would generate estimates of cases that are lower70

than the known number of confirmed cases. Separately, Grantz et al.(Grantz et al., ????) have71
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found that high over-dispersion is required to reconcile estimated reproduction numbers with72

the observed frequency of international outbreaks. In this study, we elaborate the SEIR model to73

include a compartment(J ) with higher transmission rates. The variance of the implied offspring74

distribution is calibrated to give similar overdispersion from the SARS epidemic.75

Results76

Despite an initial rapid increase in confirmed cases in Weifang in late January and early February, the77

number of confirmed cases by Weifang CDC show that outbreak peaked quite early and maximum78

number of cases ocurred on February 5. Phylodynamic analysis supports the interpretation that79

control efforts reduced epidemic growth rates and contributed to eventual control. Figure 1A80

shows the estimated time scaled phylogeny (maximum clade credibility) including 20 lineages81

sampled from distinct patients inWeifang and 33 genomes sampled fromWuhan and internationally.82

Figure 1B illustrates the phylodynamic model which was co-estimated with the phylogeny which83

provides estimates of epidemiological parameters summarized in Table 1.84

The estimated number of infections is shown Figure 1C. The time series of confirmed cases85

should lag the estimated number of infected because of delays from infection to appearance of86

symptoms and delays from symptoms to diagnosis. We also expect that an unknown proportion of87

infections will be missed by the surveillance system due very mild, subclinical, or asymptomatic88

infection. Our estimates do not support the hypothesis that there was a very large hidden burden89

of infection in Weifang over the period that the sequence data were sampled. Indeed, our central90

estimate for the number infected on 10th February is 53, which is only slightly in excess of the 4491

cumulative confirmed cases at the end of February.92

Table 1. Summary of primary epidemiological and evolutionary parameters, including Bayesian prior distributions and

estimated posteriors. Posterior uncertainty is summerized using a 95% highest posterior density interval.

Parameter Prior Posterior mean 95% HPD

Initial infected Exponential(mean=1) 2.3 0.18-6.9

Initial susceptible Log-normal(mean log=6, sd log=1) 787 102-3235

Migration rate1 Exponential(mean=10) 1.67 0.96-2.0

Reproduction number Log-normal(mean log=1.03, sd log =0.5) 1.99 1.48-3.14

Molecular clock rate2 Uniform(0.0007,0.003) 0.0028 0.0024-0.003

Transition/transversion Log-normal(mean log=1,sd log=1.25) 7.0 4.4-11.1

Gamma shape Exponential(mean=1) 0.05 0.003-0.12

1 Units: Migrations per lineage per year.

2 Units: Substitutions per site per year.

While we do not have sufficient data to detect a large decrease in epidemic growth rates as the93

epidemic progressed, we do find that the growth rates are somewhat lower than estimated in other94

settings and during the early epidemic in Wuhan. We estimate R0 = 1.99 (95% HPD:1.48-3.14) and95

the growth rate in cases was approximately 6% per day. The relatively low value of R0 corresponds96

to growth during a period when Weifang was implementing a variety of public health interventions97
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Figure 1. Phylodynamic estimates and epidemiological model. A. A time scaled phylogeny co-estimated with epidemiological parameters. The

colour of tips corresponds to location sampling. Red tips were sampled from Weifang, China. The credible interval of TMRCA is shown as a blue bar

for all nodes with more than 50% posterior support. B. A diagram representing the structure of the epidemiological SEIR model which was fitted in

tandem with the time scaled phylogeny. Colours correspond to the state of individuals sampled and represented in the tree (A). Note that infected

and infectious individuals may occupy a low transmission state (I) or a high transmission rate state (J) to account for high dispersion of the

reproduction number. C. Cumulative estimated infections through time produced by fitting the SEIR model and the cumulative confirmed cases

(points) reported by Weifan CDC. The shaded region shows the 95% HPD and the line shows the posterior median. D. A root to tip regression

showing approximately linear increase in diversity with time of sampling.

Figure 1–Figure supplement 1. Maximum likelihood time tree.

Figure 1–Figure supplement 2. Tree posterior density plot.

Figure 1–Figure supplement 3. Tree posterior density plot.
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and contact tracing to limit epidemic spread. These interventions included public health messaging,98

establishing phone hotlines, encouraging home isolation for recent vitors from Wuhan (January99

23-26), optimizing triage of suspected cases in hospitals (January 24), travel restrictions(January 26),100

extending school closures, and establishing ‘fever clinics’ for consulatation and diagnosis(January101

27)(Mao, 2020).102

As well as providing novel epidemiological estimates, our results point to the significance of103

realistic modeling for fidelity of phylogenetic inference. The use of a model-based structured coa-104

lescent prior had large influence over estimated molecular clock rates and inferred TMRCAs. Figure105

Supplement 1 shows that maximum likelihood inference of time-scaled phylogenies produces a106

distribution of TMRCAs which are substantially different than the Bayesian model-based analysis.107

Choice of population genetic prior will have a large influence on phylogenetic inference based on108

sparse or poorly informative genetic sequence data. Among the 20 Weifang sequences included in109

this analysis, there is mean pairwise difference of only three single nucleotide polymorphisms and110

only approximately twice as much diversity observed among the remainder of the sequences we111

studied. There is correspondingly low confidence in tree topology (Figure Supplement 2), and only112

three clades had greater than 50% posterior support including one clade which had a monophyletic113

compoisition of 13 Weifang lineages. The earliest Weifang sequence was sampled on January 25114

from a patient who showed first symptoms on January 16. These dates cover a similar range as the115

posterior TMRCA of all Weifang sequences (Figure Supplement 3).116

Discussion117

Our analysis of 20 SARS-CoV 2 genomes from Weifang, China has confirmed independent observa-118

tions regarding the rate of spread and burden of infection in the city. Surveillance of COVID19 is119

rendered difficult by high proportions of illness with mild severity and an unknown proportion of120

asymptomatic infection(Guan et al., 2020). The extent of under-reporting and case ascertainment121

rates has been widely debated. Analysis of genetic sequence data provides an alternative source of122

information about epidemic size which can be more robust to imperfect case ascertainment. We do123

not find evidence for a large hidden burden of infection within Weifang. The relatively low estimate124

of R0 is consistent with a slower rate of spread outside of Wuhan and effective control strategies125

implemented in late January.126

While the value of pathogen genomic analyses is widely recognized for estimating dates of127

emergence(Verity Hill, 2020; Gire et al., 2014) and identifying animal reservoirs(Zhou et al., 2020;128

Dudas et al., 2018), analysis of pathogen sequences also has potential to inform epidemic surveil-129

lance and intervention efforts. With few exceptions (Stadler, 2020; Bedford, 2020), this potential130

is currently not being realized for the international response to COVID19. It is worth noting that131

the analysis described in this report was accomplished in approximately 48 hours and drew on132

previously developed models and packages for BEAST2(Bouckaert et al., 2019; Volz and Siveroni,133

2018). It is therefore feasible for phylodynamic analysis to provide a rapid supplement to epidemio-134

logical surveillance, however this requires rapid sequencing and timely sharing of data as well as135

randomized concentrated sampling of the epidemic within localities such as individual cities.136
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Methods and Materials137

Epidemiological investigation, sampling, and genetic sequencing. As of 10 February 2020, 136138

suspected cases, and 214 close contacts were diagnosed by Weifang Center for Disease Control and139

Prevention. 28 cases were detected positive with SARS-CoV-2. Viral RNA was extracted usingMaxwell140

16 Viral Total Nucleic Acid Purification Kit (Promega AS1150) by magnetic bead method and RNeasy141

Mini Kit (QIAGEN 74104) by column method. RT-qPCR was carried out using 2019 novel coronavirus142

nucleic acid detection kit (BioGerm, Shanghai, China) to confirm the presence of SARS-CoV-2 viral143

RNA with cycle threshold (Ct) values range from 17 to 37, targeting the high conservative region144

(ORF1ab/N gene) in SARS-CoV-2 genome. Metagenomic sequencing: The concentration of RNA145

samples was measurement by Qubit RNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA).146

DNase was used to remove host DNA. The remaining RNA was used to construct the single-stranded147

circular DNA library with MGIEasy RNA Library preparation reagent set (MGI, Shenzhen, China).148

Purified RNA was then fragmented. Using these short fragments as templates, random hexamers149

were used to synthesize the first-strand cDNA, followed by the second strand synthesis. Using150

the short double-strand DNA, a DNA library was constructed through end repair, adaptor ligation,151

and PCR amplification. PCR products were transformed into a single strand circular DNA library152

through DNA-denaturation and circularization. DNA nanoballs (DNBs) were generated with the153

single-stranded circular DNA library by rolling circle replication (RCR). The DNBs were loaded into154

the flow cell and pair-end 100bp sequencing on the DNBSEQ-T7 platform 8 (MGI, Shenzhen, China).155

20 genomes were assembled with length from 26,840 to 29,882 nucleotides. The median age of156

patients was 36 (range:6-75). Two of twenty patients suffered severe or critical illness. Weifang157

sequences were combined with a diverse selection of sequences from China outside of Weifang and158

other countries provided by GISAIDElbe and Buckland-Merrett (2017). The new Weifang sequences159

are deposited in GISAID (XXXX-XXXX).160

Mathematical model. The phylodynamic model is designed to account for nonlinear epidemic

dynamics in Weifang, a realistic course of infection (incubation and infectious periods), migration of

lineages in and out of Weifang, and variance in transmission rates which can influence epidemic

size estimates. The model of epidemic dynamics within Weifang is based on a susceptible-exposed-

infectious-recovered (SEIR) model. We elaborate the model with with an additional compartment

J which has a higher transmission rate (�-fold higher) than the I compartment. Upon leaving the

incubation period individuals progress to the J compartment with probability pℎ, or otherwise to I .

The model is implemented as a system of ordinary differential equations:

Ṡ(t) = −� (�I(t) + ��J (t))
S(t)

S(t) + I(t) + J (t) + R(t)
(1)

Ė(t) = � (�I(t) + ��J (t))
S(t)

S(t) + I(t) + J (t) + R(t)
− 
0E(t) (2)

İ(t) = 
0(1 − pℎ)E(t) − 
1I(t) (3)

J̇ (t) = 
0pℎE(t) − 
1J (t) (4)

Ṙ(t) = 
1(E(t) + J (t)) (5)

We also model an exponentially growing reservoir Y (t) for imported lineages in to Weifang. The
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equation governing this population is

Ẏ (t) = (� − �)Y (t). (6)

Migration is modeled as a bidirectional process which only depends on the size of variables in161

the Weifang compartment and thus migration does not influence epidemic dynamics; it will only162

influence the inferred probability that a lineage resides within Weifang. For a compartment X (E,I,163

or J), � is the per lineage rate of migration out of Weifang and the total rate of migration in and out164

of Weifang is �X.165

During phylodynamic model fitting � and � are estimated. Additionally, we estimate initial sizes166

of Y , E, and S. Other parameters are fixed based on prior information. We fix 1∕
0 = 4.1days and167

1∕
1 = 3.8 days. We set pℎ = 0.20 and � = 74 which yields a dispersion of the reproduction number168

that matches a negative binomial distribution with k = 0.22 if R0 = 2, similar to values estimated for169

the 2003 SARS epidemic (Lloyd-Smith et al., 2005).170

Phylogenetic analysis. We aligned the 20 Weifang sequences using MAFFT(Katoh and Standley,171

2013) with a previous aligment of 35 SARS-CoV 2 sequences from outside of Weifang(Volz et al.,172

2020). Maximum likelihood analysis was carried using IQTree(Minh et al., 2019) with a HKY+G4173

substitution model and a time-scaled tree was estimated using treedater 0.5.0(Volz and Frost, 2017).174

Two outliers according to the molecular clock model were identified and removed using ‘treedater’175

which was also used to compute the root to tip regression.176

Bayesian phylogenetic analysis was carried out using BEAST 2.6.1(Bouckaert et al., 2019) using a177

HKY+G4 substitutionmodel and a strict molecular clock. The phylodynamicmodel was implemented178

using the PhyDyn package(Volz and Siveroni, 2018) using the QL likelihood approximation and the179

RK ODE solver. The model was fitted by running 8 MCMC chains in parallel and combining chains180

after removing 50% burn-in.181

The ggtree package was used for all phylogeny visualizations(Yu et al., 2017).182

Code to replicate this analysis and and BEAST XML files can be found at https://github.com/183

emvolz/weifang-sarscov2.184
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Figure 1–Figure supplement 1. A time scaled phylogeny estimated using IQTree and treedater

and using the same data as used for the Bayesian analysis.
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Figure 1–Figure supplement 2. A tree density plot based on the posterior distribution of trees

computed in BEAST2.
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Figure 1–Figure supplement 3. The estimated posterior TMRCA among all Weifang lineages.
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