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Abstract: Cystic fibrosis (CF) is a life-shortening multisystem hereditary disease caused by 

abnormal chloride transport. CF lung disease is driven by innate immune dysfunction that 

perpetuates inflammation. The airways provide a window into CF pathogenesis, as immune cells 

display exaggerated inflammatory responses and impaired phagocytic function, contributing to 

tissue injury. In order to define the transcriptional profile of this airway immune dysfunction, we 

performed the first single-cell transcriptome characterization of CF sputum. We show that the 

airway immune cell repertoire shifted from alveolar macrophages in HC to a predominance of 

recruited monocytes and neutrophils in CF. Recruited lung mononuclear phagocytes were 

abundant in CF, separated into three archetypes: activated monocytes, monocyte-derived 

macrophages, and heat-shock activated monocytes. Neutrophils were most prevalent in CF, with 

a dominant immature proinflammatory archetype. While CF monocytes exhibited 

proinflammatory features, both monocytes and neutrophils showed transcriptional evidence of 

abnormal phagocytic and cell-survival programs. Our findings offer an opportunity to understand 

subject-specific immune dysfunction and its contribution to divergent clinical courses in CF. As 

we progress towards personalized applications of therapeutic and genomic developments, we 

hope this inflammation profiling approach will enable further discoveries that change the natural 

history of CF lung disease.  
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Introduction 

Cystic Fibrosis (CF) is a life-shortening, multi-organ autosomal recessive disease that affects 

approximately 75,000 patients worldwide. In the United States, CF is the most common fatal 

genetic disease, affecting over 33,000 patients (1, 2). Clinical manifestations of CF are caused by 

a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that causes 

abnormal chloride and bicarbonate transport on epithelial surfaces of the respiratory and 

gastrointestinal tracts (3). The disruption of epithelial and innate immune functions are key 

contributors to the development of CF lung disease (CFLD), the primary cause of morbidity and 

mortality in CF (4-6). Immune dysfunction in CF extends beyond CFTR expression to include 

numerous disease-modifying genes that contribute to its clinical phenotype and progression (7, 

8).  

Chronic airway inflammation is crucial in the development of CFLD, where recruited 

inflammatory cells cause tissue damage and contribute to airway remodeling (9, 10). These 

inflammatory cell populations are heterogenous, with CF-specific polymorphonuclear neutrophil 

(PMN) and macrophage (MΦ) subclasses being increasingly recognized (10, 11). Previous 

studies of inflammatory cells in CF have profiled immune cells from blood and lung biopsies 

using bulk RNA sequencing to characterize gene expression profiles associated with disease 

progression and clinical outcomes (12). Flow-cytometry-based studies have also contributed 

greatly to our understanding of functional defects in subsets of CF inflammatory cells (10, 13). 

Yet, a single-cell transcriptome characterization of CF airway cells has not been reported. 

Sputum is an ideal sample to understand host-pathogen and cell-cell interactions within 

the airway. In CF, respiratory secretions provide non-invasive access to the primary 

compartment at the center of CFLD pathogenesis. Sputum cells reflect the complex airway 
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interactions between inflammatory cells, pathogens, and the CF airway microenvironment. These 

interactions can only be partially investigated in ex vivo human models, sorted cell populations, 

or in biopsies of terminally diseased tissues.  

Airway neutrophilic inflammation in CF has been well characterized in sputum (14, 15). 

CF PMN have a proinflammatory profile, yet some studies reveal functionally different subsets 

of PMNs, including populations with abnormal immune function and defective bacterial killing 

(10, 11). Airway MΦ and other mononuclear phagocytes are also present in human CF airway 

secretions (16, 17). As a group, airway monocytes (Mo) in CF have impaired phagocytic 

function and enhanced cytokine production, however their role in CF pathogenesis is not fully 

understood (18-20). Mo appear to play an important role in driving exaggerated airway 

inflammation in animal models of CF (4, 9, 16, 19), however a more granular approach to 

characterize mononuclear phagocyte populations according to states of maturity and activation 

has not been accomplished in sputum.  

Single-cell transcriptome profiling is a powerful tool to study innate immune defects and 

define key cell subpopulations that contribute to CFLD pathogenesis. The prior identification of 

discrete inflammatory cell subpopulations in CF suggested to us that these cells do not exist in 

separate clusters in the airways, but rather as a continuum of immune maturation and function. 

To define the spectrum of maturation and immune activation of inflammatory cells CF sputum, 

we applied single-cell RNA sequencing (scRNAseq) followed by Potential of Heat diffusion for 

Affinity-based Transition Embedding (PHATE) and Pseudotime analysis, novel approaches to 

visualize high-dimensional data. In the continuum of sputum inflammatory cells, those with most 

extreme gene expression features defined functional and maturity trajectories, here called 
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transcriptional archetypes (21). These archetypes constitute a dynamic, more inclusive way to 

understand gene expression differences between airway cells.  

This work is the first to fully characterize the spectrum of maturation and immune 

activation states of inflammatory cell populations in CF airways at an unprecedented genomic 

level of resolution enabled by scRNAseq. Our study underscores the advantages of high-

throughput approaches to characterize cell populations in a diseased tissue or compartment, or in 

identifying differential functional activation patterns. The development of transcriptional 

inflammatory cell archetypes could identify novel cell types and gene expression differences 

responsible for divergent clinical courses in subjects with similar CF-causing mutations but 

different airway inflammatory profiles, opening the door for highly-targeted therapeutic 

interventions.  

Results  

Disease-Specific Cell Distributions of CF Airway Inflammatory and Epithelial Cells 

The primary objective of this study was to characterize sputum cell subpopulations in CF using 

unbiased transcriptome analysis of single cells obtained CF and healthy control (HC) subjects. 

Our recruitment period extended from December 2018 through December 2019. Nine subjects 

with a confirmed CF diagnosis from the Yale Adult CF Program provided sputum samples. We 

also recruited five HC to undergo sputum induction according to previous protocols (22).  

Study subjects were closely age-matched, with a higher inclusion of female subjects in 

the CF group (67% CF, n=6, 40% HC, n=2). The CF cohort was comprised primarily of F508del 

homozygous subjects (78%, n=7) with only two F508del heterozygotes harboring either one 

deletion or one frameshift mutation in one CFTR allele and an F508del in the other. The CF 

cohort's degree of lung function impairment, as determined by Forced Expiratory Volume in the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2020. ; https://doi.org/10.1101/2020.03.06.20032292doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.06.20032292
http://creativecommons.org/licenses/by-nc-nd/4.0/


first second (FEV1), ranged from mild to severe (FEV1 19-84% of predicted), with a mean FEV1 

of 57%. All CF subjects had pancreatic exocrine insufficiency and 44% (n=4) carried a diagnosis 

of CF-related diabetes. Pseudomonas aeruginosa was isolated in the sputum of 56% of CF 

subjects (n=5). The majority of CF subjects were receiving CFTR-modulator therapy (89%, n=8) 

with a combination of either Ivacaftor/Tezacaftor (67%, n=6) or Ivacaftor/Lumacaftor (22%, 

n=2). For further demographic and clinical details see Table 1. 

We developed a standardized scRNAseq workflow for sputum sample analysis (Fig. 1A) 

and profiled a total of 20,095 sputum cells (12,494 CF, 7,601 HC). We identified nine distinct 

sputum cell populations based on known genetic markers (Fig. 1C, Data file S1): mononuclear 

phagocytes (recruited lung Mo, Mo-derived MΦ (MoMΦ), and alveolar MΦ (alvMΦ)); classical 

and plasmacytoid dendritic cells (cDC, pDC); PMN; lymphocytes (B, T, and NK cells); and 

airway epithelial cells from buccal and tracheobronchial mucosa (Fig. 1B-D).  

The Inflammatory Cell Repertoire of CF Sputum Displays a Shift from alvMΦ to Airway 

Monocytes and PMN 

The dominant cell populations in CF and HC samples were strikingly different. PMNs 

contributed 64% of all CF cells, with minimal numbers of alvMΦ (0·4%). In contrast HC 

samples were composed of 80·2% alvMΦ with almost no detectable PMN (<2%, both p <0·002). 

Further, CF subjects also exhibited increased numbers of airway Mo (19% CF, 1% HC, p=0·001) 

and B cells (4% CF, 1% HC, p = ns), and lower numbers of MoMΦ (1% CF, 6% HC, p=0·007) 

(Fig. 1B-D). Disease-associated PMN, MΦ, and Mo cellular distributions were confirmed on 

mass cytometry data from a previously published study by our group, comparing surface markers 

of inflammatory sputum cells in CF and HC (Fig. S1) (22). Furthermore, correlation of cell type 

gene classifiers in this study and analogous cell types in the largest scRNAseq dataset of the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2020. ; https://doi.org/10.1101/2020.03.06.20032292doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.06.20032292
http://creativecommons.org/licenses/by-nc-nd/4.0/


distal lung (n=28) revealed a greater correlation between HC cell types from each dataset than 

within other cell types from the same dataset, confirming our cell annotations (Fig. S2) (23). Our 

findings indicate that immune cell populations in CF sputum are distinguishable from HC 

through scRNAseq, and that our cell annotations and shifts in major cell distributions in CF are 

consistent with other mass cytometry (CyTOF) and scRNAseq studies. 

Recruited CF Lung Mononuclear Phagocytes Display Distinct Maturation and Immune 

Activation Archetypes 

AlvMΦ were rare in CF sputum; however, we identified a distinct subpopulation of Recruited 

Lung mononuclear Phagocytes (RLPs, Fig. 1B) that included recruited lung Mo and MoMΦ. 

These RLPs were defined by high expression of mononuclear phagocyte-associated genes (LYZ, 

CTSB, CTSH, CTSL, CTSS, CTSZ, HLA-DRA, HLA-DRB1, LGALS1, FTL, CD74). RLPs were 

relatively abundant in CF (20% of CF cells) and were rarely identified in HC sputum (7% of HC 

cells, p=0·06). RLPs were a heterogeneous group, with pronounced and notably different 

plasticity in CF. This suggested that RLPs would differ not only in abundance, but also in 

transcriptional profiles between HC and CF.   

To characterize the spectrum of immune activation and maturation of Mo and MoMΦ 

contained within CF and HC RLPs, we performed a Pseudotime analysis using PHATE. 

Pseudotime (trajectory inference) is a computational technique that allows the distribution of 

single-cell expression profiles along the continuum of a biologic process marked by gene 

expression changes (in this case cell maturation, immune activation, and heat-shock response 

gene expression). Pseudotime analysis demonstrated three distinct gene expression trajectories, 

and in turn, the most extreme phenotypes of these trajectories defined three RLP transcriptional 

archetypes in sputum (Fig. 2A)(21). Two of these archetypes were CF-predominant archetypes: 
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activated proinflammatory Mo and heat-shock activated Mo (HS-Mo). The third RLP archetype, 

mature resting MoMΦ, was more prevalent in HC.  

Next, we examined the sequence of gene expression changes leading to the mature 

resting MoMΦ and activated proinflammatory Mo archetypes, correlating gene expression 

changes with Pseudotime distance values. The trajectory towards activated proinflammatory Mo 

was characterized by a gradual and steady increase of proinflammatory chemokine and cytokine 

gene expression. This trajectory was characterized by increasing expression of IL1B, CXCL2, 

CCL3, CCL4, CCL20, VEGFA and EREG, Calprotectin (S100A8, S100A9), anti-apoptotic 

proteins MCL1 and BCL2L1, the inflammasome subunit NLRP3, inducible cyclooxygenase 2 

(PTGS2), and transcription factor NFKB1 (Fig. 2B, Data file S2). In the activated Mo archetype, 

imputed regulating factors of common activator/repressor genes (i.e. regulons), suggested 

increased expression of NFKB1 and proinflammatory transcription factors NFKB2, ETS, and 

IRF1. Proinflammatory cytokines TNF and IL1A were expressed only towards the extreme end 

of the trajectory, in the most activated Mo.  In contrast to CF RLPs, we did not observe similar 

immune activation archetypes in MoMΦ, or in alvMΦ from HC. Remarkably, although 

proinflammatory CF Mo exhibited increased overall cytokine expression, they also showed 

impaired expression of key phagocytic and cytolytic components of the immune response 

(complement C1Q), markers of maturation towards a MΦ phenotype (APOC1, APOE), and 

phagocytic function (MARCO) compared to other RLP archetypes (Fig. 2B, D).  

The mature resting MoMΦ archetype was enriched in HC, and none of the CF MΦ 

reached the distal end of this archetype (Fig. 2C). Key regulons involved in Mo to MΦ 

maturation were active, and increasingly expressed towards the distal end of the archetype 

trajectory, including canonical SPI1 (PU.1), as well as MITF and USF2. Maturation of MoMΦ 
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was accompanied by a gradual transcriptional increase of scavenger and pattern-recognition 

receptors MSR1 and MRC1, surface markers CD9 and CD81, apolipoproteins APOC1 and 

APOE, and FABP5.  

MoMΦ were overall rare in sputum, but more evenly distributed between CF and HC 

subjects, these were distinguished by expression of PLA2G7, an enzyme that inactivates platelet-

activating factor, monocyte chemokine CCL2, LGMN a cysteine-protease involved in MHC-II 

presentation and differentiation towards DC and activated-leukocyte cell adhesion molecule 

ALCAM. The majority of sputum cells in HC were alvMΦ. These alvMΦ were indistinguishable 

from those found in the distal lungs of HC volunteers in a large-scale scRNAseq study of lung 

cells in idiopathic pulmonary fibrosis and control lungs (Fig. S2)(23). These highly abundant HC 

alvMΦ expressed the expected levels of phagocytosis-associated genes, underscoring the 

transcriptional readiness of healthy immune cells to participate in phagocytic functions and 

coordinate inflammatory cell recruitment, without the basal proinflammatory activity noted in 

the CF-predominant Mo. Taken together, these findings show that CF RLPs have high 

proinflammatory gene expression but limited phagocytosis-associated transcriptional responses, 

consistent with excessive inflammation and impaired host defense responses known to occur on 

CF airways. 

An Immature Proinflammatory Archetype Prevails Among CF Airway PMN 

 CF Sputum contained 64% PMN, in contrast with HC where PMN constituted 2% of sputum 

cells (Fig. 1D). PHATE of the PMN spectrum of gene expression (PMN manifold) enabled us to 

identify three PMN archetypes based on canonical markers of PMN immaturity (CXCR4, 

IGF2R) and maturity (FCGR3B, ALPL, and CXCR2), as well as a heat-shock response archetype 

(Fig. 3A, B, Fig. S5). To analyze gradual changes within the PMN manifold, we applied 
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trajectory inference and correlated the resulting pseudotime distances with gene expression and 

regulon activity. When tracing PMN maturation, we observed that expression of calprotectin 

(S100A8, S100A9), S100A11, CSF3R and antiapoptotic factor BL2A1 are gained relatively early, 

in contrast to classical maturation markers FCGR3B, ALPL, CXCR2 and CD14 which ramp up in 

expression relatively late (Fig. 3B, Data file S2) (24). In immature PMN, we observed a gradual 

increase of transcription factors TFEC, MITF, STAT3, and maturation-associated transcription 

factors CEBPB, and NFIL3. The CF-predominant immature PMN archetype was further defined 

by increased expression of PMN-activating chemokine MIP (CCL3, CCL4) and downstream 

transcription factor and adapter molecules IRAK3 and TRAF3. These findings suggest that CF 

airway PMNs have an overall proinflammatory phenotype, with a large subpopulation of PMNs 

exhibiting a functional and maturity transcriptional shift, consistent with an immature PMN gene 

expression profile. 

CF PMN Archetypes Have Decreased Phagocytic Marker and Tyrosine Kinase Expression 

We compared the gene expression profiles of CF and HC PMN to understand transcriptomic 

differences associated with their immune function (Data file S3). We categorized the top gene 

expression differences between CF and HC accordingly into: 1) Cell adhesion and maturation 

markers, 2) MHC class I molecules and phagocytosis; 3) Transcription factors and adapter 

molecules, 4) Cell survival and apoptotic signaling; 5) Tyrosine Kinase expression; and 6) 

Hypoxic response (Fig. 3C). In CF PMN, cell adhesion and maturation markers were overall 

lower than in HC (CSF2RB, CSF3R, CXCR2, ICAM3, PECAM1), except for ITGAX. The 

decreased expression of these markers in CF reflects a higher prevalence of the immature PMN 

archetype described above. In addition to decreased CXCR- and CSF-receptor expression, CF 

PMN also expressed lower CXCR1, ILR1, and IL1B that could condition further defects in 
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phagocytosis and inflammatory cell recruitment. We identified striking differences in antigen 

presentation, pathogen recognition, and phagocytosis-associated genes between CF and HC 

PMN. CF PMN showed decreased expression of numerous members of the MHC-I molecules 

(HLA-A/B/C/E), immunoglobin receptors (FCGR3B, FCGR2A, FCGRT), decreased pathogen 

recognition receptors CD14, TLR2, and NLRP1, and decreased expression of lysozyme (LYZ). 

Interestingly, two genes involved in the assembly of lipid rafts and primary neutrophil granule 

release were increased (SYK, CD63) suggesting that although PMN may suffer from defective 

phagocytic activity, the transcriptional infrastructure needed to express tissue proteases and 

inflammatory mediators into the airways is preserved. CF PMN demonstrated increased 

transcriptomic activation characterized by expression of transcription factors and 

proinflammatory adapter molecules (increased PI3, IRAK2/3, TRAF3, TANK), yet this activation 

did not translate into increased expression of inflammatory cytokines. Interestingly, the 

downstream response to cytokine activation appeared to be blunted, as shown by decreased 

overall tyrosine kinase gene expression (ITPK1, MAP3K5, MAP2K4, CAMK1D, PIK3CD, 

HIPK3). Finally, we observed the induction of genes involved in the hypoxic response (HIF1A, 

VEGFA, FGF13, PTGS2) and diverging proapoptotic signals with lower expression of CASP4, 

RPS6KA5, CREB5, and BCL2A, and increased expression of HES4, KRAS, and CREM in CF. 

These observations underscore the presence of a hypoxic airway environment in CF and a 

dysfunctional cell death program that enhances the survival of functionally ineffective PMN. 

Taken together, these findings indicate that CF PMN do not carry out an effective transcriptional 

response to inflammatory stimuli and lack essential components for pathogen recognition and 

removal. 
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Discussion  

This is the first single-cell transcriptome characterization of immune cells in CF sputum. 

We identified CF-specific differences in cell subpopulations including alvMΦ, RLPs, and PMN. 

Furthermore, these cells had markedly different transcriptional profiles when compared to their 

HC counterparts. Previous CF studies have used transcriptomic analysis to determine the 

likelihood of adverse outcomes in CFLD, however they have not focused on establishing 

differences between healthy and CF airway inflammatory cells, or characterizing their immune 

activation profiles (12). The most remarkable finding from this study is the discovery of novel 

archetypes of RLPs, enabled by an unprecedented depth of gene expression profiling. These 

inflammatory cell subpopulations exhibit a wide spectrum of maturity and immune activation in 

CF. Airway MΦ and other mononuclear cells have been described in human CF airway 

secretions (16, 17) and their role in driving exaggerated airway inflammation in CF has been 

well characterized in animal models (4, 9, 16, 19). However, a broader genomics approach to 

define sputum RLPs, their potential functional impairments, and pathogenic role has not been 

reported.  

We identified three archetypes of CF RLP. These archetypes include activated Mo, 

mature MoMΦ, and HS-Mo. Airway Mo in CF have impaired ion transport and phagocytic 

function, however their role in CFLD remains undefined (20, 25). Others have described 

dramatic changes in Mo cell adhesion and chemotaxis that perpetuate inflammation in CF lungs, 

along with enhanced chemokine production that sustains PMN recruitment and injury (26). In 

agreement with these studies, we observe that Mo are rather abundant in CF sputum, but are 

deficient in Mo maturation gene expression markers (MITF, SPI1). Furthermore, CF Mo were 

not only abundant, but also highly active from the immune perspective, expressing high levels of 
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inflammation-related genes (CXCL8, IL1B, CCL3, and Calprotectin). These observations 

underscore a defect in CF Mo maturation that preserves a highly proinflammatory phenotype and 

contributes to airway damage and aberrant inflammatory cell recruitment (18, 27). In contrast to 

CF airway Mo, more mature CF phagocytes (MoMΦ, alvMΦ), showed low levels of immune 

activation markers observed in CF Mo, and of key phagocytic and cytolytic components of the 

immune response (complement C1Q, MARCO). This underscores that in CF, RLPs that reach 

maturity exhibit transcriptomic evidence of impaired or limited phagocytic function, accounting 

for the known impaired phagocytic abilities of these cells in CF.  

PMN were the most abundant immune cells in the sputum of patients with CF. This is 

consistent with reports in the CF literature, similar to the predominance of alvMΦ in HC sputum 

(14, 15). However, scRNAseq enabled Pseudotime and regulon analyses that led to the discovery 

of new archetypes of CF PMN based on inflammatory and maturity gene expression markers. 

One, characterized by high maturity and a proinflammatory transcriptional state, and another 

with lower proinflammatory activity and delayed expression of maturity markers. Overall, the 

increased expression of proinflammatory genes in mature PMN highlights a highly activated and 

proinflammatory state, clearly distinguishable from the transcriptional profile of HC PMN. The 

immature airway PMN archetype shares features of a previously described subpopulation of 

transmigrated PMN with increased granule release, immunoregulatory and metabolic activity, 

and defective bacterial killing in in vitro studies, referred to as GRIM neutrophils (10, 11, 28). 

We identified cells with similar characteristics, but as part of a spectrum of granulocyte 

maturation that encompasses vigorously activated PMN on one extreme and PMN with 

decreased expression of maturity markers & evidence of recent migration into the airways on the 

other extreme. Adding to the complexity of these PMN subpopulations, counterproductive pro- 
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and anti-apoptotic signals were present across the CF PMN when compared to HC (increased 

UVRAG, PLPP3, ATG7, decreased CASP4, RPS6KA5, CREB5, BCL2A). Taken together, these 

findings underscore an aberrant proinflammatory state in CF PMN, exacerbated by disruption of 

immunomodulatory and anti-inflammatory mechanisms like apoptosis and transcription factor 

suppression. 

This work includes two technical advances. First, this is the only reported scRNAseq 

study of CF sputum, a notoriously complex biological sample with high variability in cell 

viability and in cellularity between subjects. Second, our sputum processing protocol avoids the 

use of reducing agents to solubilize sputum and instead minimizes immune cell activation and 

injury by using mechanical disruption and filtering. Importantly, ours is the first report of a 

sputum cryopreservation protocol allowing the retrieval of live cells for scRNAseq analysis. The 

ability to use cryopreserved cells overcomes a major limitation of previous single-cell studies 

that required fresh samples (22, 29), this is particularly important for the recovery of PMN, 

known for their short life-span ex-vivo and susceptibility to immune activation (30). Our study 

has several limitations: 1) Large differences in predominant cell types between CF and HC 

subjects make it difficult to generalize gene expression changes between disease and control 

groups. Although we present these comparisons, our focus is on understanding CF-specific cell 

distributions and their spectrum of maturity and activation markers; 2) Since HC express 

minimal sputum if any at all, we used a standardized approach for sputum induction in these 

subjects, while CF cells were obtained from spontaneously expectorated sputum. As single cell 

suspensions are standardized for number of cells before any analysis, these sampling differences 

likely have a minor impact on our observations; finally, 3) Our study has a small sample size; 

however, we sought to match subjects according to age and sex, and HC were compared to a 
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relatively homogeneous CF cohort in terms of CFTR mutation background, CF comorbidities, 

and ongoing therapy. Although a small number of patients were recruited for this study, we 

believe they are representative of patients with CF based on the F508del allele frequency in our 

cohort and the identification of nine distinct cell types representative of airway cells in CF. 

Despite these limitations, our findings are robust and representative of the CF airway 

compartment.  

CF research has rapidly progressed towards clinical, molecular, and functional 

characterization based on individualized high-throughput diagnosis and functional profiling. Our 

application of scRNAseq enabled the discovery of transcriptional archetypes in CF-specific cell 

subpopulations that may underlie subject-specific differences in disease progression and 

response to therapy. As we progress towards increasingly early applications of therapeutic and 

genomic technologies in CF, we hope that this approach to individualized profiling of airway 

inflammation may serve as a foundation for further discoveries that transform the natural history 

of CFLD. 

Materials and Methods 

Subject Cohort 

A total of nine subjects with a confirmed diagnosis of CF from the Yale Adult CF Program 

provided sputum samples for this study, five during exacerbation and five during periods of 

stability. These subjects were recruited during a) Scheduled routine visits (n=5) and b) 

Unscheduled “sick” visits, in which they reported new respiratory symptoms and were diagnosed 

with a CF exacerbation (n=4). A CF exacerbation was defined by the emergence of four of 

twelve signs or respiratory symptoms, prompting a change in therapy and initiation of 

antimicrobial treatment (modified from Fuchs' criteria (31)). These criteria included: change in 
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sputum; change in hemoptysis; increased cough; increased dyspnea; malaise, fatigue or lethargy; 

fever; hyporexia or weight loss; sinus congestion; change in sinus discharge; change in chest 

physical exam; or FEV1 decrease >10% from a previous value (31). Individuals without new 

symptoms and those that did not meet AE criteria were characterized as "CF Stable". Our 

recruitment period extended through 2019. We also recruited five healthy volunteers (Healthy 

Controls, HC) to undergo sputum induction according to previous protocols (32). Since we did 

not identify significant differences in the gene expression profiles of stable and exacerbation 

subjects, all CF subjects were grouped as "CF" as compared to healthy control samples for 

analysis as a group. The study protocol was approved by the Yale University Institutional 

Review Board and informed consent was obtained from each subject. 

Sputum Collection and Processing 

CF subjects expectorated sputum spontaneously for our studies. Induced sputum samples were 

obtained from HC as previously described (32, 33).  Briefly, subjects inhaled nebulized 3% 

hypertonic saline for five minutes on three cycles. To reduce squamous cell contamination, 

subjects were asked to rinse their mouth with water and clear their throat. Expectorated sputum 

samples were collected into specimen cups and placed on ice. Sputum plug material from HC 

and CF subjects were selected and weighed prior to washing with 9x their volume of PBS. 

Samples were incubated in Dulbecco's Phosphate-Buffered Saline (DPBS) with agitation for 15 

minutes and filtered through 40-micron strainers. Samples were centrifugated at 300 g for five 

minutes and supernatants were stored at -80C. The pellets were suspended in RPMI/10%FBS 

medium with 10% DMSO. Aliquots of 1 ml was saved into cryogenic vials and placed in 

Nalgene Cryo 1 C Freezing Container (Sigma, St. Louis, MO) overnight at -80C. Samples 

were stored in liquid nitrogen the next day. Frozen samples were thawed in a water bath at 37°C, 
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resuspended with 20ml DMEM + 10% heat-inactivated FBS (Life Technologies, USA), then 

centrifuged at 300g, 5min, 4°C. Supernatant was discarded, cells were resuspended in 2ml 

DMEM + 10% FCS, passed through a 70µm cell strainer (Fisher Scientific, USA). Non-viable 

cells and mucus were removed from the cell suspensions using a OptiPrep (Iodixanol) density 

gradient centrifugation according to the manufacturer’s protocol (OptiPrep Application Sheet 

C13 – Strategy 2). In brief, 1·86ml of the cell suspensions were mixed with 40% OptiPrep in 

DMEM + 10% FCS by repeated gentle inversion, overlaid with a density barrier (density: 

1·09g/ml, 780µl OptiPrep in 2.22ml DMEM + 10% FCS), then overlaid with 500µl DMEM + 

10% FCS. After centrifugation at 800g, 20min, 4°C, viable cells were collected from the top 

interface and diluted with 2ml DMEM + 10% FCS, centrifuged at 400g, 5min, 4°C, then 

resuspended in 1ml PBS + 0.04% BSA (New England Biolabs, USA) and passed through a final 

40µm cell strainer (Fisher Scientific, USA). For cell concentrations, cells were stained with 

Trypan blue and counted on a Countess Automated Cell Counter (Thermo Fisher, USA).  

Single Cell Barcoding, Library Preparation, and Sequencing  

Single cells were barcoded using the 10x Chromium Single Cell platform, and cDNA libraries 

were prepared according to the manufacturer’s protocol (Single Cell 3’ Reagent Kits v3, 10x 

Genomics, USA). In brief, cell suspensions, reverse transcription master mix and partitioning oil 

were loaded on a single cell “B” chip, then run on the Chromium Controller. mRNA was reverse 

transcribed within the droplets at 53°C for 45min. cDNA was amplified for a 12 cycles total on a 

BioRad C1000 Touch thermocycler. cDNA was size-selected using SpriSelect beads (Beckman 

Coulter, USA) with a ratio of SpriSelect reagent volume to sample volume of 0.6. For qualitative 

control purposes, cDNA was analyzed on an Agilent Bioanalyzer High Sensitivity DNA chip. 

cDNA was fragmented using the proprietary fragmentation enzyme blend for 5min at 32°C, 
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followed by end repair and A-tailing at 65°C for 30min. cDNA were double-sided size selected 

using SpriSelect beads. Sequencing adaptors were ligated to the cDNA at 20°C for 15min. 

cDNA was amplified using a sample-specific index oligo as primer, followed by another round 

of double-sided size selection using SpriSelect beads. For qualitative control purposes, final 

libraries were analyzed on an Agilent Bioanalyzer High Sensitivity DNA chip. cDNA libraries 

were sequenced on a HiSeq 4000 Illumina platform aiming for 150 million reads per library. Full 

de-identified sequencing data for all subjects is available in the gene expression omnibus (GEO) 

under accession number GSE145360.  

Data Processing and Computational Analyses  

Basecalls were converted to reads with the implementation mkfastq in the software Cell Ranger 

(v3.0.2). Read2 files were subject to two passes of contaminant trimming with cutadapt (v2.7): 

first for the template switch oligo sequence 

(AAGCAGTGGTATCAACGCAGAGTACATGGG) anchored on the 5' end; secondly for 

poly(A) sequences on the 3' end. Following trimming, read pairs were removed if the read 2 was 

trimmed below 20bp. Subsequent read processing was conducted with the STAR (v2.7.3a) (34) 

and it’s single cell sequencing implementation STARsolo. Reads were aligned with to the human 

genome reference GRCh38 release 31 (GRCh38.p12) from GENECODE (35). Collapsed unique 

molecular identifiers (UMIs) with reads that span both exonic and intronic sequences were 

retained as both separate and combined gene expression assays. Cell barcodes representative of 

quality cells were delineated from barcodes of apoptotic cells or background RNA based on the 

following three thresholds: at least 10% of transcripts arising from intron spanning, i.e. unspliced 

reads indicative of nascent mRNA; more than 750 transcripts profiled; less than 15% of their 
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transcriptome was of mitochondrial origin. Technical summaries related to sequencing and data 

processing can be found in Data file S4.  

Data Normalization and Cell Population Identification 

UMIs from each cell barcode - irrespective of intron or exon coverage - were retained for all 

downstream analysis and analyzed using the R package Seurat (version 3.1.1) (36). Raw UMI 

counts were normalized with a scale factor of 10,000 UMIs per cell and subsequently natural log 

transformed with a pseudocount of 1. More than double the cell barcodes were detected in two 

subjects compared to all other subjects, so cells were randomly downsampled to a maximum of 

2,250 cells per subject to avoid predominance of those two subjects. 3000 highly variable genes 

were identified using the method “vst”, then data was scaled and the total number of UMI and 

the percentage of UMI arising from mitochondrial genes were regressed out. The scaled values 

were then subject to principle component analysis (PCA) for linear dimension reduction.  A 

shared nearest neighbor network was created based on Euclidean distances between cells in 

multidimensional PC space (the first 12 PC were used) and a fixed number of neighbors per cell, 

which was used to generate a 2-dimensional Uniform Manifold Approximation and Projection 

UMAP for visualization. For cell type identification, scaled data was clustered using the Leiden 

algorithm. In addition to general filtering based on quality control variables, a curated multiplet 

removal based on prior literature knowledge was performed: Cell barcodes were identified as 

mulitplets if their expression level was higher than 1 in the following marker genes (outside the 

appropriate cluster): MS4A1 (B cells), CD2 (T cells), VCAN (monocytes), FCGR3B (neutrophil 

granulocytes), KRT19 (epithelial), and FABP4 (alveolar macrophages). Cell barcodes flagged as 

multiplets were not included in downstream analyses. 

Generation of Cell Type Markers and Differential Expression Between Disease Conditions 
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In order to evaluated cell-type markers we used Seurat’s FindAllMarkers (to calculate log fold 

changes, percentages of expression within and outside a group, and p-values of Wilcoxon-Rank 

Sum test comparing a group to all cells outside that specific group including adjustment for 

multiple testing) and additionally calculated binary classifier system based on diagnostic odd’s 

ratios as described in our earlier work (23) (Data file S2). For each cell type in the data, we 

identified the genes whose expression was log fold change >= 0·25 greater than the other cells in 

the data. We then calculated the diagnostics odds ratio (DOR) for each of these genes, where we 

binarize the expression values by treating any detection of a gene (normalized expression value > 

0) as a positive value, and zero expression detection as negative. We included a pseudocount of 

0.5 to avoid undefined values, as: 

DOR = ((TruePositives + 0.5) / (FalsePositives + 0.5)) / ((FalseNegatives + 0.5) / (TrueNegatives 

+ 0.5))  

where True Positives represents the number of cells within the group detected expressing the 

gene (value > 0), FalsePositives represents the number of cells outside of the group detected 

expressing the gene, FalseNegatives represents the number of cells within the group with no 

detected expression, and TrueNegatives represents the number of cells outside of the group with 

no detected expression of the gene. For differential expression testing between disease 

conditions, Seurat’s implementation of a Wilcoxon-Rank Sum in FindMarkers was used, only 

testing genes whose expression was log fold change >= 0·25 greater between both disease 

conditions. 

Scoring of regulon activity and pathways 

A regulon is defined as a group of target genes regulated by a common transcription factor. To 

score the activity of each regulon in each cell, we utilized the package pySCENIC (37) with 
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default settings and the following database: cisTarget databases (hg38__refseq-

r80__500bp_up_and_100bp_down_tss.mc9nr.feather, hg38__refseq-

r80__10kb_up_and_down_tss.mc9nr.feather) and the transcription factor motif annotation 

database (motifs-v9-nr.hgnc-m0.001-o0.0.tbl) which were both downloaded from 

resources.aertslab.org/cistarget/, and the list of human transcription factors (hs_hgnc_tfs.txt) 

which was downloaded from github.com/aertslab/pySCENIC/tree/master/resources.  

In order to calculate pathway activity scores, Gene Ontology (GO; geneontology.org) pathways 

related to monocyte/macrophage functions were downloaded, then scored using Seurat’s 

AddModuleScore using default settings. 

Pseudotime Analysis of PMN and monocytes/macrophages 

We observed already in UMAP space that many features in the data were represented by a 

continuum of increasing phenotypic deviation, e.g. increase of maturation markers in neutrophil 

granulocyte, maturation from monocytes to macrophages, and gradual increase of classical 

markers of inflammation in monocytes. Consequently, we sought to implement pseudotime 

analysis of these continua to assess features rather than relying on traditional group-wise 

comparisons. Cell barcodes were subsetted to either only neutrophil granulocytes or 

monocytes/macrophages. Due to major differences in number of cells profiled per subject, PMN 

were randomly downsampled to a maximum of 200 cell barcodes per subject, and in the Mo/MΦ 

subgroup to a maximum of 250 cell barcodes per subject. As for the full dataset, data of the 

subgroups was normalized, variable features were extracted (200 for PMN, 500 for Mo/MΦ), 

scaled, then subject to PC analysis. PHATE (Potential of Heat-diffusion for Affinity-based 

Trajectory Embedding)(38) embedding was performed which is specifically suitable to continua 

(50 nearest neighbors, 5 PCs, t=50 in Mo/MΦ and t=100 in PMN). Cell barcodes were clustered 
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using the cluster_phate function (k=8) for PMN and the Leiden clustering for Mo/MΦ. 

Trajectories were identified using Slingshot (39) on the PHATE embeddings with default 

settings, and a central starting cluster for the Mo/MΦ. Pseudotime analysis was used to 

distinguish gene expression trajectories, and in turn, the most extreme phenotypes of these 

trajectories defined transcriptional archetypes in sputum (21, 40, 41). Pearson’s correlation 

coefficients and their p values, including Bonferroni adjustment for multiple testing, were 

calculated between the resulting pseudotime distances of these trajectories and gene expression 

and the regulon activity scores (Data file S2). Gene expression and regulon activity scores 

correlating with pseudotime values were visualized by heatmaps. 

Validation of major cell types by Cytometry Time of Flight (CyTOF) 

CyTOF-derived fcs files from the study by Yao et al. (22) were processed using the bead-based 

Normalizer Release R2013a (42). Normalized files were then processed in Cytobank 

(https://premium.cytobank.org/) using gates to select singlets, remove beads and identify live 

cells. Events identified using this workflow were exported and processed further using the R 

package cytofkit version 1.12.0 (43). The Rphenograph function in cytofkit was implemented to 

cluster cells using cytofAsinh method, with the tsne dimensionality reduction method applied on 

80000 events, using k=40. Files were merged using the fixed method and the HLA-DR, CD11b, 

CD8a, CD20, CD16, MIP-1b, TNFa, CD45, CD4, IL-6, CD11c, CD14, Cytokeratin, CD80, 

CD15, CD163, IFNg, EGFR, CD66b, IL-8, CD62L and CD56 markers were used in this model. 

Resulting clusters were manually curated and merged after review of surface marker profiles. 

Correlation matrix of immune cell populations comparing sputum and lung cell populations 

To identify classifier genes, differential gene expression of immune cell types of this study and 

analogue cell types from an independent scRNAseq, a dataset of 28 healthy distal lung samples 
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(23) was established using Seurat’s FindAllMarkers with an absolute log fold change threshold 

of 1 (the lung dataset was downsampled within the FindAllMarkers function using the settings: 

max.cells.per.ident=1000, seed=7). Classifier genes were filtered such that all genes had a 

Bonferroni adjusted p-value < 1E-5. For each cell type and each dataset, the top 50 marker 

genes, ordered by fold change, were selected. We took the intersection of the genes from both 

datasets as top classifiers (n=154). The average gene expression of these 154 genes were 

calculated for each cell type per dataset. Spearman correlation matrix was calculated using base 

R’s function “cor”. The R package “corrplot” was used to visualize the Spearman correlation 

matrix. Unsupervised hierarchical complete clustering was performed to order the cell types in 

the heatmap. 
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Figures:  

Fig. 1.  
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Fig.1. ScRNAseq Reveals an Immune Cell Repertoire Shift from Alveolar MΦ to Recruited 

Monocytes and PMN in CF. (A) Schematic of the experimental design. (i) Spontaneously 

expectorated sputum from patients with cystic fibrosis (CF) and induced sputum from healthy 

controls (HC) was collected. (ii) Sputum was processed into a single-cell suspension. (iii) 

Droplet-based scRNAseq barcoding (iii) library preparation (iv) sequencing (v) and 

computational analysis. (B) Uniform Manifold Approximation and Projection (UMAP) 

visualization of 20,095 sputum cells from nine patients with CF and five controls. Each dot 

represents a single cell, and cells are labelled by (i) cell type, (ii) disease status, and (iii) subject. 

(C) Heatmap of marker genes for all cell types identified. Each column represents the average 

expression value of one subject, grouped by disease status and cell type. Gene expression values 

are unity-normalized from 0 to 1. (D) Boxplots showing percentages of all identified cell types to 

all cells profiled per subject, separated by disease state. Whiskers represent 1.5 x interquartile 

range (IQR). * p < 0.05 determined by a Wilcoxon rank sum test comparing cell percentages of 

CF patients and controls.  

 Mo: Monocyte; MoMΦ: monocyte-derived macrophage; alvMΦ: Alveolar macrophage; 

cDC: classical dendritic cell, pDC: plasmacytoid dendritic cell; B: B-lymphocyte; T & NK: T-

lymphocytes and NK-cells; PMN: polymorphonuclear neutrophil. 
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Fig. 2.  

 

Fig.2. Recruited Lung Mononuclear Phagocytes are a Distinct Cell Population with a Broad 

Spectrum of Maturity and Immune Activation in CF Airways. (A) Potential of Heat diffusion for 

Affinity-based Transition Embedding (PHATE) of monocytes and monocyte-derived 
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macrophages, colored by pseudotime, all starting from quiescent monocytes towards (i) activated 

monocytes, (ii) mature monocyte-derived macrophages, (iii) monocytes expressing a heat-shock 

response. (iv) monocytes and monocyte-derived macrophages, colored by disease state. All three 

archetypes are accompanied by three PHATE plots colored by the gene expression of typical 

genes ramping up along a specific pseudotime. For corresponding UMAP embedding colored by 

gene expressions of the same genes, see Fig. S3. For corresponding PHATE embedding colored 

by cell type and subjects, see Fig. S4. (B) Heatmap of gene expression and regulon activity in 

monocytes undergoing activation, ordered by pseudotime distances along PHATE manifolds that 

transition from quiescent monocytes towards an activated monocyte archetype. (C) Heatmap of 

gene expression and regulon activity in monocytes undergoing maturation, ordered by 

pseudotime distances along PHATE manifolds that transition from quiescent monocytes towards 

a control-enriched mature monocyte-derived macrophage archetype. In both heatmaps: 

annotation bars represent the pseudotime distance, disease status, and subject for each cell; 

expression values are centered and scaled. (D) Violin plots of pathway activity scores, grouped 

by cell type, separated by disease state. Depicted pathway scores from left to right are: 

GO:0045087 - innate immune response, GO:0006958 - complement activation, classical 

pathway, GO:0019882 - antigen processing and presentation, GO:0006911 - phagocytosis, 

engulfment. Mo: Monocyte; MoMΦ: monocyte-derived macrophage; alvMΦ: Alveolar 

macrophage; PMN: polymorphonuclear neutrophil. 
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Fig. 3.  

 

Fig.3. An Immature Proinflammatory Archetype Prevails Among CF Airway PMN. (A) 

PHATEs of PMN, colored by: (i) pseudo time from immature to mature PMNs, (ii) examples of 

canonical marker features of immaturity (CXCR4) and maturity (FCGR3B, CXCR2) in 

peripheral PMN, (iii) disease state. The cells deviating upward are PMN expressing heat-shock 

response genes, for PHATE embedding colored by gene expression of HSPA1A, HSPH1, and 

DNAJB1, see Fig. S5A). For corresponding PHATE embedding colored by disease state and 
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subjects, see Fig. S5B. (B) Heatmap of gene expression and regulon activity in PMNs, ordered 

by pseudotime distances along PHATE manifolds that transition from CF-enriched regions of 

immature and activated PMN archetype towards control-enriched mature PMN archetype. 

Annotation bars represent the pseudotime distance, disease status, and subject for each cell; 

expression values are centered and scaled. (C) Violin plots of differentially expressed genes 

comparing CF and control PMN populations (for p-values see Data file S3), grouped by disease 

state, and sorted thematically. 

Table 1.  

Number of Patients (n) HC (5) CF (9) 

Age   

Age (Mean) 35·4 30·6 

Age (STD) 5·9 6·5 

Age (Range) 26-42 24-43 

Sex   

Female (n) 2 6 

Female (%) 40 67 

Male (n) 3 3 

Male (%) 60 33 

Mutation Background   

F508del/F508del (n) NA 7 

F508del/F508del (%) NA 77·8 

F508del/other (n) NA 2 

F508del/other (%) NA 22·2 

No F508del mutations (n) NA 0 

No F508del mutations (%) NA 0 

FEV1 (L)   

FEV1 (Mean) NA 1·9 

FEV1 (STD) NA 0·7 

FEV1 (Range) NA 0·68 - 2·85 

FEV1 (%)    

FEV1 (Mean) NA 57 

FEV1 (STD) NA 21·5 

FEV1 (Range) NA 19 - 84 

BMI (Kg/m
2
)   

BMI (Mean) NA 22·2 
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BMI (STD) NA 2·1 

BMI (Range) NA 19·11 - 25·73 

CF Comorbidities   

PI (n) NA 9 

PI (%) NA 100 

CFRD (n) NA 4 

CFRD (%) NA 44·4 

Liver disease (n) NA 1 

Liver disease (%) NA 11·1 

Microbiology   

PA Colonization (n) NA 5 

PA Colonization (%) NA 55·6 

CFTR Modulators   

Ivacaftor/Tezacaftor (n) NA 6 

Ivacaftor/Tezacaftor (%) NA 66·7 

Ivacaftor/Lumacaftor (n) NA 2 

Ivacaftor/Lumacaftor (%) NA 22·2 

No modulator (n) NA 1 

No modulator (%) NA 11·1 

 

Table 1. Demographic characteristics of study subjects from the Yale Adult Cystic Fibrosis 

Program and healthy controls. HC: Healthy controls; CF: CF subjects; FEV1 Forced expiratory 

volume in the first second; BMI: Body Mass Index; PI: Pancreatic Exocrine Insufficiency; 

CFRD: CF-related Diabetes; PA: Pseudomonas aeruginosa; CFTR: Cystic Fibrosis 

Transmembrane conductance Regulator.  
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Supplementary Materials: 

Fig. S1.  

 

Fig. S1. Validation of the shift of major immune cell types in sputum of CF compared to HC. 

(A) RPhenograph clustering of Sputum CyTOF in patients with cystic fibrosis (CF) and healthy 

controls (HC) demonstrates differences in the populations of immune cells. The sputum of 

patients with CF is characterized by high percentages of neutrophils, while sputum from HC is 
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characterized by high percentages of macrophages. (B) RPhenograph clustering of Sputum 

CyTOF according to Healthy Control (HC) and Cystic Fibrosis (CF) status. (C) Boxplots 

showing percentages of Mo/MΦ, PMN, and other to all cells profiled per subject, separated by 

disease state. Whiskers represent 1.5 x interquartile range (IQR). * p < 0.05 determined by a 

Wilcoxon rank sum test comparing cell percentages of CF patients and controls. 

Fig. S2.  

 
Fig. S2. Concordance of cell type annotations. Correlation matrix of immune cell populations of 

this study and analogous cell types from an independent scRNA sequencing dataset of distal lung 

samples, subsetting to the 28 healthy controls. Matrix fields are colored by Spearman’s rho, cell 

types are ordered by unsupervised hierarchical clustering. Annotation bars are highlighting the 

two different datasets (dark grey: this dataset, light grey: lung samples from healthy controls 

only from Adams, et al. (23)).  
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Fig. S3.  

 

Fig. S3. Expression of selected marker genes of Mo/MoMΦ trajectories on UMAPs. (A) UMAP, 

zoomed in on Mo and MoMΦ, colored by expression of inflammatory genes IL1B, NLRP3, 

PTGS2. (B) UMAP, zoomed in on Mo and MoMΦ, colored by expression of mature macrophage 

genes MSR1, APOC1, CD9. (C) UMAP, zoomed in on of Mo and MoMΦ, colored by 

expression of heat shock genes HSPA1A, HSPH1, DNAJB1. (D) UMAP, zoomed in on of Mo 

and MoMΦ, colored by (i) cell type, (ii) disease state, (iii) subjects. CF: Cystic Fibrosis, HC: 

Healthy Control, Mo: Monocyte; MoMΦ: monocyte-derived macrophage. 
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Fig. S4.  

 

Fig. S4. Additional annotations of Mo/MoMΦ on PHATE embedding. (A) UMAP of Mo and 

MoMΦ colored by (i) Cell type, (ii) Disease state, (iii) Subjects.  

CF: Cystic Fibrosis, HC: Healthy Control, Mo: Monocyte; MoMΦ: monocyte-derived 

macrophage 

 

Fig. S5.  

 

Fig. S5. Additional annotations of PMN on PHATE embedding. (A) PHATE of PMN colored by 

expression of heat shock genes HSPA1A, HSPH1 and DNAJB1. (B) PHATE of PMN colored by 

disease state (HC: Healthy Control, CF: Cystic Fibrosis) and subjects. 
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Data file S1. Results of Wilcoxon rank-sum test and log transformed diagnostics odds ratio of 

genes for cell types, subsetting to genes with log transformed fold change > 0.25 for each cell 

population compared to all other cell populations.  

Data file S2. Results of Pearson correlation between gene expression and pseudotime distance 

values within each trajectory. 

Data file S3. Results of Wilcoxon rank-sum test on gene expression within each cell type 

comparing CF to HC.  

Data file S4. Technical summary of all sequenced and processed libraries of this dataset. TSO: 

template switch oligo. 
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