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ABSTRACT 
 
Host adaptive immune responses may protect against infection or disease when a pathogen is repeatedly 
encountered. The hazard ratio of infection or disease, given previous infection, is typically sought to 
estimate the strength of protective immunity. However, variation in individual exposure or susceptibility to 
infection may introduce frailty bias, whereby a tendency for infections to recur among individuals with 
greater risk confounds the causal association between previous infection and susceptibility. We introduce 
a self-matched “case-only” inference method to control for unmeasured individual heterogeneity, making 
use of negative-control endpoints not attributable to the pathogen of interest. To control for confounding, 
this method compares event times for endpoints due to the pathogen of interest and negative-control 
endpoints during counterfactual risk periods, defined according to individuals’ infection history. We derive 
a standard Mantel-Haenszel (matched) odds ratio conveying the effect of prior infection on time to 
recurrence. We compare performance of this approach to several proportional hazards modeling 
frameworks, and estimate statistical power of the proposed strategy under various conditions. In an 
example application, we use the proposed method to re-estimate naturally-acquired protection against 
rotavirus gastroenteritis using data from previously-published cohort studies. This self-matched negative-
control design may present a flexible alternative to existing approaches for analyzing naturally-acquired 
immunity, as well as other exposures affecting the distribution of recurrent event times. 
 
KEYWORDS 
 
Natural immunity; frailty; negative control; hazard; self-matched; Mantel-Haenszel 
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INTRODUCTION 
 
Host adaptive immune responses often protect against infection or disease when a pathogen is 
repeatedly encountered. Vaccines aim to exploit this mechanism of protection by exposing hosts to an 
attenuated infection, or to immunizing subunits of a pathogen. As such, evidence of protective naturally-
acquired immunity provides strong rationale for vaccine development.1 Quantitative estimates of the 
strength of naturally-acquired protection also inform the interpretation of epidemiologic data, for instance 
providing a baseline against which vaccine performance can be evaluated.2 These estimates are further 
sought to parameterize mathematical models of pathogen transmission.3 
 
Naturally-acquired immunity is often estimated via the hazard ratio of infection or disease, comparing 
counterfactual periods representing person-time at risk in the presence and absence of prior infection.4–10 
Thus, inference centers on the distribution of recurrent event times. Unmeasured heterogeneity in 
individuals’ hazard rates of infection or disease presents a challenge in such analyses, originally termed a 
problem of “varying liabilities” by Greenwood and Yule11 and subsequently addressed as “accident-
proneness”12 or “frailty”.13 The tendency for events to recur among certain individuals must be accounted 
for in statistical analyses.14 For instance, in studies of naturally-acquired immunity, recurrence of infection 
or disease among individuals with the greatest susceptibility or exposure to a pathogen, irrespective of 
previous infection, may bias estimates of naturally-acquired protection.15 
 
This consideration may have relevance to several diseases against which immune responses are thought 
to generate imperfect protection. Tuberculosis presents a notable example, where despite evidence of 
protective cell-mediated and humoral immunity,16 several epidemiologic studies have reported higher 
rates of new-onset infection or disease among persons previously treated successfully for active 
tuberculosis, as compared to those without history of tuberculosis.17–20 Similar conflict about the 
consequences of prior infection has arisen in epidemiologic studies of gonorrhea.21,22 In recent analyses 
of a multi-site pediatric cohort study addressing enteric disease, previous infection predicted higher rates 
of recurrent infection or disease associated with several pathogens, including Shigella spp., 
Campylobacter spp., and various diarrheagenic Escherichia coli strains.23 Evidence supporting the 
feasibility of protective vaccines against many of these pathogens suggests a need to revisit the impacts 
of naturally-acquired immunity.24–26 Similar causal inference challenges arise in the relationship between 
chronic inflammation and repeated infection in conditions such as cystic fibrosis,27,28 otitis media,29,30 and 
environmental enteric dysfunction.31  
 
Formalizing unmeasured heterogeneity as a problem of confounding suggests potential strategies to 
identify naturally-acquired protection. Terming Y1 and Y2 as primary and recurrent infection or disease 
outcomes, respectively, and U as the constellation of unmeasured individual factors influencing exposure 
or susceptibility to a pathogen of interest, a directed acyclic graph (Figure 1) reveals that Y1¬U®Y2 may 
introduce bias into estimation of the causal relationship of interest, Y1®Y2. Conditioning on unmeasured 
individual factors by comparing observations during counterfactual risk periods from the same individual 
(Y1¬U®Y2) permits unbiased inference of the effect of Y1. This intuition provides the basis for numerous 
self-matched designs (e.g. case-crossover, case-time control, and self-controlled case series), which 
have garnered increasing interest in epidemiology in recent years.32 
 

 
Figure 1: Directed acyclic graph addressing unmeasured confounding. We illustrate a causal framework wherein the effect of 
previous infection on time to subsequent infection (Y1®Y2) is of interest for analysis. One or more unmeasured confounding factors 
(U) creates a backdoor path (A) which can be blocked by conditioning on U (B).  
 
 

U
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U

Y1 Y2
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In this paper, we present an adaptation of these methods harnessing data from “negative control” events 
to permit causal inference in the presence of heterogeneous individual frailty. We derive a matched 
(Mantel-Haenszel) odds ratio (ORMH)33,34 estimator for the hazard ratio of infection or disease, given 
previous infection. We conduct simulations to compare this approach against alternative methods based 
on proportional hazards models common in the analysis of longitudinal data, and to assess statistical 
power under varying conditions. Last, we use the proposed method to reassess protective effects of 
rotavirus infection in data from previously-published birth-cohort studies.4,5  
 
APPROACH 
 
Self-matched negative control design 
 
Consider an outcome such as acquisition of a pathogen of interest, or onset of disease due to this 
pathogen (Table 1). The proposed design only includes individuals who experience recurrent episodes of 
this outcome of interest (case-only). Define Yi and Xi as variables indicating outcome and exposure status 
for individual i at each observation, with 𝑌! = 1 indicating infection or disease with the pathogen of interest 
and 𝑌! = 0 indicating a negative-control outcome. Consideration of negative-control observations is of 
interest for studies involving event-based data capture (e.g. episodes of acute illness), and provides a 
basis for a competing risks estimation framework as we detail below. Last, let 𝑋! = 1 indicate an individual 
has previously experienced infection with the pathogen of interest, and with 𝑋! = 0 indicating the 
individual has no history of infection with the pathogen of interest. 
 
Table 1: Parameters and definitions. 

Parameter Definition 
𝜆!"	  Rate at which individual i experiences a pre-specified clinical endpoint due to the pathogen of interest  

(“outcome of interest”), in the absence of naturally-acquired immunity 
𝜆$"	  Rate at which individual i experiences a negative-control outcome 
𝜃 Hazard ratio for the outcome of interest, owing to naturally-acquired protection 

𝛽!"	 (1)/𝛽!"	 (0) Hazard ratio for the outcome of interest during the period after primary infection, relative to the period before 
primary infection, for individual i, due to all (confounding) factors other than naturally-acquired protection 

𝛽$"	 (1)/𝛽$"	 (0) Hazard ratio for the negative control outcome during the period after primary infection, relative to the period 
before primary infection, for individual i 

 
 
Define Ai-Di as random variables indicating event times for observations of 𝑌! = 1 and 𝑌! = 0, conditioned 
on Xi, according to the contingency structure presented in Table 2. Ai and Bi are the time to first 
occurrence of the outcome of interest and the negative control outcome, respectively, for an individual 
with no history of infection (𝑋! = 0). Ci and Di are the time to the first occurrence of the outcome of interest 
and the negative control outcome, respectively, following infection with the pathogen of interest (such that 
𝑋! = 1; Figure 2). Here we note that Bi and Di are censored if 𝐴! < 𝐵! and 𝐶! < 𝐷!, respectively. 
 
Table 2: Contingency table for event time distributions, given prior infection. 

Exposure status Outcome status 
 Outcome of interest Negative control outcome 

  𝑌" = 1 𝑌" = 0 
Previously uninfected 𝑋" = 0 𝐴"~Exp(𝜆!"	 ) 𝐵"~Exp(𝜆$"	 ) 
Previously infected 𝑋" = 1 𝐶"~Exp(𝜃𝜆!"	 ) 𝐷"~Exp(𝜆$"	 ) 
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Figure 2: Schematic presentation of potential outcomes. We illustrate potential outcomes in terms of the sequence of events Ai-
Di for a given individual. In cases 1 and 2, we observe 𝐴" < 𝐵" (truncating observation of a negative-control event while 𝑋" = 0). In 
cases 3 and 4, we observe 𝐵" < 𝐴", with the negative-control outcome preceding infection with the pathogen of interest. We illustrate 
the corresponding potential outcomes for Ci and Di, when 𝑋" = 1, in the right-hand side of the figure. 
 
 
Event time distributions 
 
Define the hazard rate at which an individual i experiences the outcome of interest as 𝜆"!	 , and define 𝜃 as 
the hazard ratio of incidence of this outcome given previous infection (Table 1). Assuming events occur 
independently any time during the follow up, conditioning 𝜆"!	  and 𝜃, event times are exponentially 
distributed. Thus, the cumulative probability of experiencing the outcome by time t, for a previously-
uninfected individual, is 1 − exp	(−𝜆"!	 𝑡), while the cumulative probability of experiencing the outcome by 
time t, had the same individual counterfactually been previously infected, is 1 − exp	(−𝜃𝜆"!	 𝑡).  
 
Consider that data are collected from each individual for endpoints besides the primary outcome of 
interest. Among these, suppose a negative control outcome occurs at a rate 𝜆$!	  for individual i. This rate 
should be unaffected by individuals’ prior exposure to the pathogen of interest, according to the definition 
of a negative control in this context.35 Under the same assumptions, the probability of experiencing the 
negative control outcome by time t, for individual i, is 1 − exp	(−𝜆$!	 𝑡). 
 
Estimating the effect of naturally-acquired immunity 
 
For an individual with no history of previous infection, consider the outcome of interest and the negative-
control outcome to be competing risks. The events Ei-Hi may be defined to indicate the relative ordering 
of event times Ai-Di according to the contingency structure presented in Table 3. Specifically, take 𝐸! =
𝐴! ≤ 𝐵! and 𝐺! = 𝐶! ≤ 𝐷! to indicate the outcome of interest precedes the negative-control outcome during 
the periods with 𝑋! = 0 and 𝑋! = 1, respectively. Define 𝐹! = 𝐵! < 𝐴! and	𝐻! = 𝐷! < 𝐶! as complements, 
where the negative-control outcome precedes infection or disease with the pathogen of interest while 𝑋! =
0 and 𝑋! = 1, respectively. 
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Table 3: Contingency table for competing risks, given prior infection. 
Exposure status Outcome status 
  Outcome of interest precedes negative 

control outcome 
Negative control outcome precedes outcome 

of interest  
  𝑡|𝑌" = 1 < 𝑡|𝑌" = 0 𝑡|𝑌" = 0 < 𝑡|𝑌" = 1 
Previously uninfected 𝑋" = 0 𝐸" = 𝐴" ≤ 𝐵" 𝐹" = 𝐵" < 𝐴" 
Previously infected 𝑋" = 1 𝐺" = 𝐶" ≤ 𝐷" 𝐻" = 𝐷" < 𝐶" 

 
 
 
Under the scenario of exponentially-distributed event times (formulated in Appendices A and B), we 
have 
 

 Pr(𝐸!) = Pr(𝐴! ≤ 𝐵!) =
𝜆"!	

𝜆"!	 + 𝜆$!	
 

 

(1) 

 Pr(𝐹!) = Pr(𝐵! < 𝐴!) =
𝜆$!	

𝜆"!	 + 𝜆$!	
 

 

(2) 

 
Pr(𝐺!) = Pr(𝐶! ≤ 𝐷!) =

𝜃𝜆"!	

𝜃𝜆"!	 + 𝜆$!	
 

 

(3) 

 Pr(𝐻!) = Pr(𝐷! < 𝐶!) =
𝜆$!	

𝜃𝜆"!	 + 𝜆$!	
. (4) 

 
Consider the Mantel-Haenszel odds ratio33,34 constructed from the competing risks of 𝑌! = 1 and 𝑌! = 0, 
given 𝑋!, matching observations from each individual i: 
 
 

𝑂𝑅%& =
∑ I(𝐹!)I(𝐺!)!

∑ I(𝐸!)! I(𝐻!)
, 

(5) 

 
such that 
 

 
E(𝑂𝑅%&) =

∑ Pr(𝐹!) Pr	(𝐺!)!

∑ Pr(𝐸!) Pr	(𝐻!)!
. 

(6) 

 
 
Using the above derivations of Pr(𝐸!) through Pr(𝐻!),  
 
 

E(𝑂𝑅%&) =
∑ D 𝜆$!	

𝜆"!	 + 𝜆$!	
× 𝜃𝜆"!	
𝜃𝜆"!	 + 𝜆$!	

F!

∑ D 𝜆"!	
𝜆"!	 + 𝜆$!	

× 𝜆$!	
𝜃𝜆"!	 + 𝜆$!	

F!

= 𝜃
∑ D 𝜆$!	

𝜆"!	 + 𝜆$!	
× 𝜆"!	
𝜃𝜆"!	 + 𝜆$!	

F!

∑ D 𝜆"!	
𝜆"!	 + 𝜆$!	

× 𝜆$!	
𝜃𝜆"!	 + 𝜆$!	

F!

= 𝜃. 

 

(7) 

 
Thus, the ratio of the matched odds for the outcome of interest to precede a negative-control outcome, 
given an individual’s history of prior infection, provides an unbiased estimate of the effect of previous 
infection on time to recurrence of the outcome of interest. 
 
Further Considerations 
 
At a design level, self-matched inference reduces or eliminates the potential for bias due to time-invariant 
factors that individually influence risk.36 However, complications arise when individuals’ risk of 
experiencing these endpoints differs substantially during the periods before and after individuals 
experience their first infection with the pathogen of interest. 
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To consider the implications of such time-varying confounding, define 𝛽"!	 (0) and 𝛽"!	 (1) as multipliers on 
the rate of infection with the pathogen of interest when 𝑋! = 0 and 𝑋! = 1, respectively, due to all factors 
other than infection-derived immunity against the pathogen of interest (Table 2). Similarly, define 
𝛽$!	 (0)and 𝛽$!	 (1) as multipliers on the rate of the negative-control condition when 𝑋! = 0 and 𝑋! = 1, 
respectively, due to factors other than prior exposure to the pathogen of interest (Table 4). 
Here,	𝜃𝛽"!	 (1)/𝛽"!	 (0) and 𝛽$!	 (1)/𝛽$!	 (0) are hazard ratios describing the relative incidence rate of the 
outcome of interest and the negative-control outcome, respectively, in the periods before and after 
infection with the pathogen of interest. 
 
Table 4: Contingency table for event time distributions, given prior infection, under the scenario of time-variant 
confounding. 

Exposure status Outcome status 
 Outcome of interest Negative control outcome 

  𝑌" = 1 𝑌" = 0 
Previously uninfected 𝑋" = 0 𝐴"~Exp(𝛽!"	 (0)𝜆!"	 ) 𝐵"~Exp(𝛽$"	 (0)𝜆$"	 ) 
Previously infected 𝑋" = 1 𝐶"~Exp(𝛽!"	 (1)𝜃𝜆!"	 ) 𝐷"~Exp(𝛽$"	 (1)𝜆$"	 ) 

 
 
Here the matched odds ratio is 
 
 

E(𝑂𝑅%&) =
∑ D 𝛽$!	 (0)𝜆$!	

𝛽"!	 (0)𝜆"!	 + 𝛽$!	 (0)𝜆$!	
× 𝜃𝛽"!	 (1)𝜆"!	
𝜃𝛽"!	 (1)𝜆"!	 + 𝛽"!	 (1)𝜆$!	

F!

∑ D 𝛽"!	 (0)𝜆"!	
𝛽"!	 (0)𝜆"!	 + 𝛽$!	 (0)𝜆$!	

× 𝛽$!	 (1)𝜆$!	
𝜃𝛽"!	 (1)𝜆"!	 + 𝛽"!	 (1)𝜆$!	

F!

, 

 

(8) 

which reduces to 𝜃 only when 𝛽"!	 (1)/𝛽"!	 (0) = 𝛽$!	 (1)/𝛽$!	 (0) for all individuals. As we address in the 
Discussion, this circumstance motivates the selection of negative-control outcomes which resemble the 
outcome of interest in their association with time-varying confounders such as individuals’ age, health 
status, and sociodemographic exposures.  
 
We may also consider a scenario where infection with the pathogen of interest alters individuals’ risk of 
the negative control endpoint, in addition their risk of reinfection or recurrent disease due to the pathogen 
of interest. Such a circumstance may arise if infection with the pathogen of interest causes individuals to 
modify risk behaviors that affect multiple outcomes, or confers broad (e.g. multi-pathogen) immunity.37,38 
 
Defining 𝜌 as the outcome-agnostic effect of infection with the pathogen of interest on future outcomes 
yields the contingency structure of Table 5. 
 
Table 5: Two-by-two table for event time distributions, given prior infection, in the presence of pathogen-agnostic effects 
of previous infection. 

Exposure status Outcome status 
  Outcome of interest Negative control outcome 
  𝑌" = 1 𝑌" = 0 
Previously uninfected 𝑋" = 0 𝐴"~Exp(𝜆!"	 ) 𝐵"~Exp(𝜆$"	 ) 
Previously infected 𝑋" = 1 𝐶"~Exp(𝜌𝜃𝜆!"	 ) 𝐷"~Exp(𝜌𝜆$"	 ) 

 
 
Here, 
 
 Pr(𝐺!) =

𝜌𝜃𝜆"!	

𝜌(𝜃𝜆"!	 + 𝜆$!	 )
=

𝜃𝜆"!	

𝜃𝜆"!	 + 𝜆$!	
 

 

(9) 

 Pr(𝐻!) =
𝜌𝜆$!	

𝜌(𝜃𝜆"!	 + 𝜆$!	 )
=

𝜆$!	

𝜃𝜆"!	 + 𝜆$!	
 

 

(10) 

so the parameterization of E(𝑂𝑅%&) =
∑ ()(+!)()	(-!)!
∑ ()(.!)()	(&!)!

= 𝜃 is unchanged. This circumstance is analogous to 
the more general case where 𝛽"!	 (1)/𝛽"!	 (0) = 𝛽$!	 (1)/𝛽$!	 (0)=	𝜌.  
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COMPARISON TO COHORT DESIGN USING PROPORTIONAL HAZARDS ANALYSIS  
 
Simulation study 
 
We conducted a simulation study across various underlying distributions of 𝜆"!	  and 𝜆$!	  to test for bias of 
point estimates under the proposed approach and under alternative methods often used in the analysis of 
cohort study data (without consideration of negative controls). As comparisons, we considered several 
proportional hazards models which could be applied to time-to-event data for recurrent observations of 
the outcome of interest. We considered four approaches to control for differences in hazard rates among 
individuals with differing exposure or susceptibility to the outcome of interest:  
 

1. “Naïve” proportional hazards model without inclusion of additional terms to account for 
differences in event times among individuals. We define the hazard ratio estimated via fitting this 
model as 𝜃J/0123. 
 

2. Proportional hazards model accounting for variation in individual frailty via “random effects”. 
Fitting this model estimates the hazard ratio 𝜃J45 for the effect of previous infection, as well as 𝜎L6 
representing the estimated variance in (log) individual-specific event rates, assumed to represent 
independent draws from a Normal distribution with mean 0.39,40 
 

3. Proportional hazards model including Gamma-distributed frailty terms.13 Fitting this model 
estimates the hazard ratio 𝜃J7)0189: for the effect of previous infection, along with the parameters of 
the underlying Gamma distribution describing individual-specific frailties.  

 
4. Proportional hazards model with “fixed effects” for individual subjects. Fitting this model estimates 

a hazard ratio 𝜃J75 for the effect of previous infection and estimates subject-specific rates of 
infection (via individual-specific intercepts) which have no pre-specified distributional assumption. 

 
We defined 𝜃J;< = 𝑂𝑅%& for the proposed analysis strategy of a self-matched, negative control design 
and considered various distributions for 𝜆"!	 : 
 

1. Truncated Normal distribution (with a pre-specified lower bound at 𝑎 = 0); 
 

2. Truncated Cauchy distribution (with a pre-specified lower bound at 𝑎 = 0); 
 

3. Uniform distribution; 
 

4. Gamma distribution; 
 

5. Mixtures of Gamma distributions. 
 
We considered multiple parameterizations of each of these distributions (Table 6), holding the mean rate 
(or location parameter of the Cauchy distribution) constant at one infection per year across all simulations 
to determine effects of inter-individual heterogeneity on estimates of 𝜃. We illustrate the distributions in 
Figure 3. Considering cohorts of 500 individuals, we drew 𝜆"!	  values at random and sampled 
exponentially-distributed event times of first and second infections for each individual, truncating 
observations at five years. We repeated simulations 500 times for each 𝜃 ∈ {0.01, 0.02,…0.99}, drawing 
𝜆"!	  values independently for each simulation. We used the simulated datasets to estimate 𝜃J/0123, 𝜃J45, 𝜃J75, 
and 𝜃J7)0189:, taking the average of estimates obtained across all 500 iterations to obtain a single point 
estimate for each parameterization. 
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Table 6: Event rate distributions applied to simulation study. 
Distribution Parameters Parameterizations1 

  I II III IV V 
Truncated Normal Mean 𝜇 𝜇 = 	1 𝜇 = 	1 𝜇 = 	1 𝜇 = 	1 𝜇 = 	1 
 Variance 𝜎% 𝜎 = 1 4⁄  𝜎 = 1 2⁄  𝜎 = 1 𝜎 = 2 𝜎 = 4 
 Lower bound 𝑎 𝑎 = 0 𝑎 = 0 𝑎 = 0 𝑎 = 0 𝑎 = 0 
 Upper bound 𝑏 𝑏 = ∞ 𝑏 = ∞ 𝑏 = ∞ 𝑏 = ∞ 𝑏 = ∞ 
Truncated Cauchy Location 𝑥& 𝑥& = 1 𝑥& = 1 𝑥& = 1 𝑥& = 1 𝑥& = 1 
 Scale 𝛾 𝛾 = 1 8⁄  𝛾 = 1 4⁄  𝛾 = 1 𝛾 = 4 𝛾 = 8 
 Lower bound 𝑎 𝑎 = 0 𝑎 = 0 𝑎 = 0 𝑎 = 0 𝑎 = 0 
 Upper bound 𝑏 𝑏 = ∞ 𝑏 = ∞ 𝑏 = ∞ 𝑏 = ∞ 𝑏 = ∞ 
Uniform Lower bound 𝑎 𝑎 = 7 8⁄  𝑎 = 3 4⁄  𝑎 = 1 2⁄  𝑎 = 1 4⁄  𝑎 = 0 
 Upper bound 𝑏 𝑏 = 9/8 𝑏 = 5/4 𝑏 = 3/2 𝑏 = 7/4 𝑏 = 2 
Gamma Shape 𝑘 𝑘 = 8 𝑘 = 4 𝑘 = 1 𝑘 = 1 4⁄  𝑘 = 1 8⁄  
 Scale 𝜃 𝑘 = 1 8⁄  𝑘 = 1 4⁄  𝑘 = 1 𝑘 = 4 𝑘 = 8 
Gamma mixture (i) Shapes 𝑘', 𝑘%  𝑘' = 1 8⁄  𝑘' = 1 8⁄  𝑘' = 1 8⁄  𝑘' = 1 8⁄  𝑘' = 1 8⁄  
  𝑘% = 3 8⁄  𝑘% = 15 8⁄  𝑘% = 15 16⁄  𝑘% = 3/32 𝑘% = 3 320⁄  
 Scale 𝜃', 𝜃% 𝜃' = 1 𝜃' = 1 𝜃' = 1 𝜃' = 1 𝜃' = 1 
  𝜃% = 1/5 𝜃% = 1 𝜃% = 2 𝜃% = 20 𝜃% = 200 
 Weight2 𝜔 𝜔 = 0.5 𝜔 = 0.5 𝜔 = 0.5 𝜔 = 0.5 𝜔 = 0.5 
Gamma mixture (ii) Shapes 𝑘', 𝑘%  𝑘' = 1 2⁄  𝑘' = 1 2⁄  𝑘' = 1 2⁄  𝑘' = 1 2⁄  𝑘' = 1 2⁄  
  𝑘% = 3 10⁄  𝑘% = 3 2⁄  𝑘% = 3 𝑘% = 3 10⁄  𝑘% = 3 10⁄  
 Scale 𝜃', 𝜃% 𝜃' = 1 𝜃' = 1 𝜃' = 1 𝜃' = 1 𝜃' = 1 
  𝜃% = 1/5 𝜃% = 1 𝜃% = 2 𝜃% = 20 𝜃% = 200 
 Weight2 𝜔 𝜔 = 0.5 𝜔 = 0.5 𝜔 = 0.5 𝜔 = 0.5 𝜔 = 0.5 

1. Parameterizations are listed in order of increasing variance from I to V. 
2. The weight parameter of the Gamma mixture distribution indicates the proportion of individuals whose rates are 

parameterized according to 𝑘', 𝜃'; the proportion with rates parameterized according to 𝑘%, 𝜃% is 1 − 𝜔. 
 
To compute 𝜃J;<, we drew rates (𝜆$!	 ) and event times for negative control observations from each 
subject, assuming event times were exponentially-distributed with respect to the underlying rates. To 
standardize comparisons of 𝜃J;< under differing distributions of 𝜆"!	 , we defined 𝜆$!	 = 1 for all 𝑖 under each 
simulation. 
 
To investigate how the different modeling frameworks performed in capturing the distribution of individual-
specific hazard rates, we saved estimates of individual-specific fixed effects, random effects, and frailties 
alongside estimates of 𝜃J. We fitted a single density kernel to the distribution of individual-specific 
estimates across 10 simulated cohorts for each true value of 𝜃 and underlying distribution of 𝜆"!. 
 
Results 
 
We plot distributions and estimates under each approach in Figure 3. The naïve hazards ratio tended to 
overestimate 𝜃, leading to under-estimation of the degree of protection (1 − 𝜃). Bias was minimized as 𝜃 
approached zero, consistent with a scenario of strong protective immunity. Values of 𝜃J/0123 often 
exceeded 1 in scenarios where 𝜃 < 1; in practice, such an estimate would lead to inference that prior 
infection increases susceptibility to infection or disease due to the pathogen of interest, when in fact prior 
infection is protective. For all distributions considered, bias in 𝜃J/0123 was greatest under parameterizations 
yielding the highest between-individual variance in 𝜆"!	 . 
 
Alternative methods performed variably under the differing conditions (Figure 3). Lower degrees of bias 
were evident in 𝜃J%& as compared to estimates generated under the other methods assessed. Gamma 
frailty models and random effects models tended to yield less-biased estimates of 𝜃 than 𝜃J/0123. However, 
the same direction of bias (resulting in under-estimation of the reduction in susceptibility, or 𝜃J > 𝜃) was 
evident with all three of these approaches. Bias was worst when 𝜆"!	  values were drawn from Gamma or 
Gamma mixture distributions, and tended to increase under distributions with greater variance in 𝜆"!	 , or 
greater irregularity in the case of Gamma mixture distributions. In contrast, fixed-effects models 
estimating multipliers on hazard rates for each individual tended to under-estimate 𝜃 under most 
distributions of 𝜆"!	 , although both 𝜃J75 > 𝜃 and 𝜃J75 < 𝜃 were apparent in simulations using the truncated 
Cauchy distribution for 𝜆"!	 . For the truncated Normal distribution, bias in 𝜃J75 decreased with greater 
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variance in 𝜆"!	 , whereas for the Uniform, Gamma, and Gamma mixture distributions, bias increased with 
greater variance in 𝜆"!	 . 
 
Biased estimation of 𝜃 occurred in connection with a failure to accurately recover the underlying 
individual-specific frailty distributions. For each modeling approach, the extent of this misspecification in 
individual frailties varied over values of 𝜃 and distributions of 𝜆"!	  (Supplemental Digital Content, 
Figures S1-S3).  
 

 
Figure 3: Simulated distributions and hazard ratio estimates under “naïve” inference approaches and under the proposed 
approach of self-matched inference with negative controls. Panels are organized to present, in each row, the assumed 
distribution (column 1), the estimate 𝜃R()*+, based on a Cox proportional hazards model without any correction for inter-individual 
heterogeneity (column 2), proportional hazards models employing various frailty frameworks (columns 3-5), and the estimate 𝜃R-. 
based on the proposed approach (column 6). One-to-one lines plotted in grey in columns 2-6 indicate where estimates would 
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recover the true value, i.e. 𝜃R = 𝜃. Horizontal grey lines plotted at 𝜃R = 1 indicate where estimates exceed 1, indicating directionally-
misspecified estimates of the causal effect of interest. Values are plotted on a red-to-blue color ramp corresponding to the 
parameterizations I-V, respectively, in order of least (I; red) to greatest (V; blue) variance as detailed in Table 4. A) Truncated 
Normal distribution; B) Truncated Cauchy distribution; C) Uniform distribution; D) Gamma distribution; E) Mixture of Gamma 
distributions (i) with means at 0.125 and 1.875; and F) Mixture of Gamma distributions (ii) with means at 0.5 and 1.5. 
 
 
SAMPLE SIZE CONSIDERATIONS 
 
Simulation study 
 
To inform applications of the proposed method, we next assessed statistical power under differing 
conditions. A test statistic (𝜉%&) has previously been identified for 𝑂𝑅%& under the null hypothesis of no 
difference in risk given exposure.41 For the contingency structure (Table 3) formulated from the terms Ei-
Hi (by which we define 𝑂𝑅%&), this statistic can be written generally as 
 
 

𝜉%& =
(∑ (𝐸! −

(𝐸! + 𝐹!)(𝐸! + 𝐺!)
2 ))	6$

!

∑ (𝐸! + 𝐹!)(𝐸! + 𝐺!)(𝐹! +𝐻!)(𝐺! +𝐻=)
4

$
!

, 

 

(11) 

which can then be simplified according to 𝐸! + 𝐹! = 1, 𝐺! +𝐻! = 1, and 𝐹! +𝐻! = 2 − 𝐸! − 𝐺!. Thus,  
 
 

𝜉%& =
(∑ (𝐸! − 𝐺!))	6$

!

∑ (𝐸! + 𝐺!)(2 − 𝐸! − 𝐺!)$
!

, 

 

(12) 

which is expected to follow a 𝜒6 distribution with one degree of freedom under the null hypothesis. We 
calculated values of 𝜉%& obtained for cohorts of varying sizes under differing parameterizations of 𝜃, 𝜆"! 	, 
and 𝜆$!. For values of 𝜃 ∈ {0.1, 0.2, … , 0.9}, we sampled individual event times Ai-Di for a population of 
100,000 individuals whom we subsequently partitioned (without replacement) into 2000 hypothetical study 
cohorts each of size N=25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, and 1000. 
For these analyses, we considered 𝜆"!	 	values drawn from truncated Normal, Gamma, and Gamma 
mixture distributions, under the parameterizations of each of these distributions with greatest and least 
variance listed in Table 6. We determined statistical power via the proportion of simulated cohorts for 
which the upper bound of a 95% confidence interval around 𝑂𝑅%& would be expected to correctly exclude 
the null value, i.e. Pr	(𝜉Y%& >	𝜉%&>?.A% = 5.02	).  
 
To assess how correlation between 𝜆"!	  and 𝜆$!	  could affect the statistical power of estimates, we 
conducted simulations under two sets of assumptions. Under the first, we considered 𝜆$!	 = 1 for all i 
(equal to the expected value of 𝜆"!	  under all parameterizations), so that 𝜆$!	 ⊥ 𝜆"!	 ; under the second, we 
defined 𝜆$!	 = 𝜆"!	 , under the assumption that individuals with greater risk of the outcome of interest would 
also experience higher incidence of the negative control condition. These conditions bound power 
estimates, corresponding to assuming no correlation and perfect correlation between 𝜆$!	  and 𝜆"!	 , 
respectively. 
 
Results 
 
We present results of the power analyses in Figure 4. Analyses with as few as 50 subjects had roughly 
80% power or greater to estimate 𝜃 = 0.1 (corresponding to 90% protection) under all conditions 
explored; analyses with 500 subjects had 80% power or greater to estimate 𝜃 ≤ 0.5 (corresponding to 
50% protection or greater) under all conditions. No scenarios revealed 80% or greater power for 
estimation of 𝜃 ≥ 0.8 (corresponding to less than 20% protection), even with 1000 subjects; statistical 
power for estimation of 𝜃 = 0.9 was 10% or lower under nearly all conditions explored. 
 
For simulations with 𝜆$!	 ⊥ 𝜆"!	 , statistical power was weaker under parameterizations resulting in greater 
variance in 𝜆"!	 . In contrast, for simulations with 𝜆$!	 = 𝜆"!	 , differences in statistical power were less 
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strongly apparent with increasing variance in 𝜆"!	 . Taken together, these findings suggest statistical power 
is maximized when negative control endpoints are chosen which tend to occur more commonly among 
individuals who are at greatest risk of the outcome of interest. 
 

 
Figure 4: Statistical power for simulated analyses using the proposed approach of self-matched inference via negative 
controls. Each panel presents the statistical power for rejecting the null hypothesis with two-sided p<0.05 under varying conditions. 
Lines plotted in red to blue correspond to decreasing values of 𝜃: 0.9 (red), 0.8, 0.7, …, 0.1 (blue), corresponding to increasing 
protection from 10% to 90%. Plots are presented in groups of 4 panels, each corresponding to analyses with values drawn from the 
following distributions: A) Truncated Normal distribution; B) Gamma distribution; C) Mixture of Gamma distributions with means at 
0.125 and 1.875 (as detailed in Table 4). Panels in the top row (A.1, A.2, B.1, B.2, C.1, C.2) represent analyses in which no 
correlation is assumed between rates of the outcome of interest and negative control outcome (𝜆"$ = 1∀𝑖). Panels in the bottom row 
(A.3, A.4, B.3, B.4, C.3, C.4) represent analyses in which the correlation between rates of the outcome of interest and the negative 
control outcome are is maximized (𝜆"$ = 𝜆"!). Within each grouping, panels on the left-hand side (A.1, A.3, B.1, B.3, C.1, C.3) 
correspond to distributions with the least variance in individual rates of the outcome of interest (𝜆"!; i.e., parameterization I in Table 
4). Panels on the right-hand side within each grouping (A.2, A.4, B.2, B.4, C.2, C.4) correspond to distributions with the greatest 
variance in individual rates of the outcome of interest (𝜆"!; i.e., parameterization V in Table 6). 
 
 
APPLICATION TO ROTAVIRUS BIRTH COHORT DATA 
 
Last, we applied the proposed method to real-world data collected in two birth-cohort studies of rotavirus 
infection and disease among 200 children in Mexico City, Mexico and 373 children in Vellore, India. 
These datasets have been described extensively in primary study publications4,5 and subsequent re-
analyses.15,42 Similar designs were employed for the studies. Briefly, pregnant mothers were enrolled 
prior to childbirth, and children were followed from birth to ages 2 years (in Mexico City) and 3 years (in 
Vellore). Investigators aimed to identify all rotavirus infections through routine testing of asymptomatic 
stool specimens (collected by field workers at regular home visits) for rotavirus, and by monitoring 
children for anti-rotavirus seroconversion over serial blood draws at scheduled intervals. Active 
surveillance was undertaken for all cases of gastroenteritis among children to characterize symptoms and 
test diarrheal stool specimens for rotavirus. 
 
Initial analyses of the datasets led to differing conclusions about the strength of protection against 
rotavirus gastroenteritis (RVGE). Children in Mexico City were estimated to have experienced 77% (95% 
confidence interval: 60-88%), 83% (64-92%), and 92% (44-99%) lower rates of RVGE following one, two, 
and three previous infections, respectively, as compared to zero infections.4 In contrast, children in 
Vellore, where the rate of rotavirus acquisition was higher, were estimated to have experienced 43% (24-
56%), 71% (59-80%), and 81% (69-88%) lower rates of RVGE after one, two, and three previous 
infections, as compared to zero infections.5 Subsequent analyses of the datasets revealed substantial 
variation in rates of rotavirus infection and risk of RVGE among individual children, as well as a potential 
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for confounding due to declining risk of RVGE when infections were acquired at older ages, irrespective 
of previous infection.42 In contrast, model-based analyses accounting for the independent effects of age 
and previous infection on children’s susceptibility to RVGE estimated that children experienced 33% (23-
41%), 50% (42-57%), and 64% (55-70%) lower rates of RVGE after one, two, and three previous 
infections, respectively, as compared to zero infections.15 
 
We used the proposed self-matched negative control design to re-estimate naturally-acquired protection 
against RVGE in the cohort datasets. Here, RVGE episodes (acute, new-onset diarrhea with rotavirus 
detected in the stool) are the outcome of interest and acute, new-onset diarrhea episodes without 
rotavirus detection as the negative control. We compared the times of RVGE and rotavirus-negative 
diarrhea episodes from each child beginning from birth, and thereafter following detection of the first, 
second, and third rotavirus infection (generating confidence intervals via resampling of individual 
children). This yielded estimates of 27% (–1-48%), 50% (13-73%), and 48% (0-77%) lower rates of RVGE 
following one, two, and three previous infections, as compared to zero infections (Figure 5). 
Notwithstanding lower statistical power for the proposed method, these estimates are in agreement with 
previous findings15 suggesting lower strength of naturally-acquired protection than what was estimated in 
initial analyses of the birth cohort studies.4,5  
 

 
 
Figure 5: Estimated protection against rotavirus gastroenteritis associated with previous infection. We plot point estimates 
and 95% confidence intervals (lines) for estimates of the hazard ratio of rotavirus gastroenteritis associated with having previously 
experienced one, two, and three previous infections, versus zero previous infections, estimated via re-analysis of the Mexico City 
and Vellore rotavirus birth cohort studies.4,5 Analyses include rotavirus-negative diarrhea occurrences as a negative control 
endpoint. 
 
 
DISCUSSION 
 
We propose a novel self-matched negative control method for estimating the hazard ratio of time to 
infection or disease due to a pathogen of interest, given previous infection. Analytically and via simulation, 
we show this method recovers unbiased estimates under a range of conditions, including when individual 
incidence rates of the outcome of interest are drawn from highly irregular or skewed distributions. We find 
these irregular or skewed distributions may lead to bias under proportional hazards models with 
commonly-used frailty estimation frameworks. Desirably, the proposed approach requires no parametric 
assumptions other than event-times being exponentially distributed with respect to their underlying, 
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individual-specific rates of occurrence. Beyond infectious disease natural history studies, this approach 
may have value for assessing the effects of other exposures on recurrent event times. 
 
Our findings provide several practical insights for real-world longitudinal cohort studies. Collecting data on 
multiple endpoints affords the opportunity to leverage negative-control observations to support causal 
inference. For studies applying the proposed approach, negative-control endpoints affected by the same 
risk factors or exposures as the outcome of interest are desirable both to reduce potential risks of 
confounding due to time-varying factors, and to maximize statistical power based on the correlation 
between event rates for the outcome of interest and negative-control outcome, 𝜆"!	  and 𝜆$!	 . “Test-
negative” control conditions which resemble the outcome of interest, but are not attributable to the same 
pathogen,43,44 may provide a compelling choice, particularly if their occurrence is predicted by similar risk 
factors. For instance, shared risk factors are well-documented for rotavirus-positive and rotavirus-negative 
diarrhea.15,31 Considering respiratory illness, multiple etiologic viruses may share similar seasonal 
transmission patterns,45 routes of transmission via high-risk contact,46 and associations of disease 
progression or severity with host comorbidities.47 For sexually-transmitted infections, particular risk 
behaviors48 differing among individuals or over time could alter risk of any infection, rather than infection 
with the pathogen of interest alone.25 In the context of real-world cohort studies, test-negative control 
conditions which are clinically similar to the outcome of interest would likely result in a study visit or other 
recorded interaction with similar probability. This further supports consideration of inference methods 
making use of test-positive and test-negative occurrences of a particular clinical syndrome. 
 
In summary, self-matched inference via negative controls may provide a flexible strategy to circumvent 
bias introduced by variation in individual frailty for analyses of naturally-acquired immunity. Applications to 
other exposures affecting the distribution of recurrent event times merit consideration, given the possible 
limitations we identify in existing analysis frameworks. 
 
APPENDIX A: COMPETING RISKS 
 
For two competing, independent event times 𝜏C and 𝜏D occurring at rates 𝑟C and 𝑟D, the probability for 𝜏C to 
precede 𝜏D is 
 

 Pr`𝜏C < 𝜏Da = b Pr(𝜏D > 𝑡) Pr`𝜏C = 𝑡ad𝑡
E

F
. (13) 

 
Under the assumption of exponentially-distributed event times,   
 

 
Pr`𝜏C < 𝜏Da = b exp	(−𝑟D𝑡)

E

F
rG exp`−𝑟C𝑡a d𝑡 =

𝑟C
𝑟C + 𝑟D

. 
(14) 

 
APPENDIX B: TRUNCATION OF OBSERVATIONS 
 
The derivation above considers the indefinite integral 
 

 
Pr`𝜏C < 𝜏Da = b Pr(𝜏D > 𝑡)Pr`𝜏C = 𝑡a d𝑡

E

F
 

(15) 

 
We obtain the same results when considering bounded observations truncated at time 𝛿, more in line with 
the conduct of real-world studies: 
 

 
Pr`𝜏C < 𝜏Da = b Pr(𝜏D > 𝑡) Pr`𝜏C = 𝑡ad𝑡

H

F
=
𝑟C`1 − exp	e−𝛿(𝑟D + 𝑟C)fa

𝑟D + 𝑟C
. 

(16) 

 
Thus, 
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Pr(𝐸!) =

𝜆"!	 (1 − exp[−𝛿(𝜆"!	 + 𝜆$!	 )])
𝜆"!	 + 𝜆$!	

 

 

(17) 

 
Pr(𝐹!) =

𝜆$!	 (1 − exp[−𝛿(𝜆"!	 + 𝜆$!	 )])
𝜆"!	 + 𝜆$!	

 

 

(18) 

 
Pr(𝐺!) =

𝜃𝜆"!	 (1 − exp[−𝛿(𝜃𝜆"!	 + 𝜆$!	 )])
𝜃𝜆"!	 + 𝜆$!	

 

 

(19) 

 
Pr(𝐻!) =

𝜆$!	 (1 − exp[−𝛿(𝜃𝜆"!	 + 𝜆$!	 )])
𝜃𝜆"!	 + 𝜆$!	

, 

 

(20) 

with the additional terms cancelling out in the matched odds ratio formulation: 
 

 
E(𝑂𝑅%&) =

∑ Pr(𝐹!) Pr(𝐺!)!

∑ Pr(𝐸!) Pr(𝐻!)!
 

=
∑ D𝜆$!

	 (1 − exp[−𝛿(𝜆"!	 + 𝜆$!	 )])
𝜆"!	 + 𝜆$!

× 𝜃𝜆"!
	 (1 − exp[−𝛿(𝜃𝜆"!	 + 𝜆$!	 )])

𝜃𝜆"!	 + 𝜆$!	
F!

∑ D𝜆"!
	 (1 − exp[−𝛿(𝜆"!	 + 𝜆$!	 )])

𝜆"!	 + 𝜆$!	
× 𝜆$!

	 (1 − exp[−𝛿(𝜃𝜆"!	 + 𝜆$!	 )])
𝜃𝜆"!	 + 𝜆$!	

F!

 

= 𝜃. 
 

(21) 
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FIGURE S1: Estimated Density Kernels For Fixed Effects Model. We plot the estimated density kernels for the individual effects 
estimated by the fixed effects model for each individual in a simulated study. In each row, column 1 is a reproduction of the densities 
used to produce the individual 𝜆"#. Columns 2-4 are the estimated density kernels for 𝜃 = 0.2,	𝜃 = 0.5,	𝜃 = 0.8, respectively. Column 
5 shows the proportion of estimates which were over 1000 for each set of parameters. Values are plotted on a red-to-blue color 
ramp corresponding to the parameterizations I-V, respectively, in order of least (I; red) to greatest (V; blue) variance as detailed in 
Table 4. A) Truncated Normal distribution; B) Truncated Cauchy distribution; C) Uniform distribution; D) Gamma distribution; E) 
Mixture of Gamma distributions (i) with means at 0.125 and 1.875; and F) Mixture of Gamma distributions (ii) with means at 0.5 and 
1.5. 
  

0 1 2 3 4

0.0

0.5

1.0

1.5

D
en
si
ty

lPi

A.1)
A) Truncated Normal distribution

0 1 2 3 4

0.0

0.5

1.0

1.5

D
en
si
ty

lPi

B.1)
B) Truncated Cauchy distribution

0 1 2 3 4

0

1

2

3

4

D
en
si
ty

lPi

C.1)
C) Uniform distribution

0 1 2 3 4

0.0

0.5

1.0

1.5

D
en
si
ty

lPi

D.1)
D) Gamma distribution

0 1 2 3 4

0
1
2
3
4
5

D
en
si
ty

lPi

E.1)
E) Gamma mixture distribtuion (i)

0 1 2 3 4

0
1
2
3
4
5

D
en
si
ty

lPi

F.1)
F) Gamma mixture distribution (ii)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

A.2)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

B.2)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

C.2)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

D.2)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

E.2)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

F.2)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

A.3)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

B.3)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

C.3)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

D.3)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

E.3)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

F.3)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

A.4)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

B.4)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

C.4)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

D.4)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

E.4)

0 2 4 6 8 10

0.0

0.5

1.0

lPi

F.4)

0.2 0.5 0.8

0.0

0.1

0.2

Fr
ac
tio
n

q

A.5)

0.2 0.5 0.8

0.0

0.1

0.2

Fr
ac
tio
n

q

B.5)

0.2 0.5 0.8

0.0

0.1

0.2

Fr
ac
tio
n

q

C.5)

0.2 0.5 0.8

0.0

0.1

0.2

Fr
ac
tio
n

q

D.5)

0.2 0.5 0.8

0.0

0.1

0.2

Fr
ac
tio
n

q

E.5)

0.2 0.5 0.8

0.0

0.1

0.2

Fr
ac
tio
n

q

F.5)

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.01.20029850doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.01.20029850


 
FIGURE S2: Estimated Density Kernels For Random Effects Model. We plot the estimated density kernels for the individual 
effects estimated by the random effects model for each individual in a simulated study. In each row, column 1 is a reproduction of 
the densities used to produce the individual 𝜆"#. Columns 2-4 are the estimated density kernels for 𝜃 = 0.2,	𝜃 = 0.5,	𝜃 = 0.8, 
respectively. Values are plotted on a red-to-blue color ramp corresponding to the parameterizations I-V, respectively, in order of 
least (I; red) to greatest (V; blue) variance as detailed in Table 4. A) Truncated Normal distribution; B) Truncated Cauchy 
distribution; C) Uniform distribution; D) Gamma distribution; E) Mixture of Gamma distributions (i) with means at 0.125 and 1.875; 
and F) Mixture of Gamma distributions (ii) with means at 0.5 and 1.5. 
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FIGURE S3: Estimated Density Kernels For Gamma Frailty Model. We plot the estimated density kernels for the individual 
effects estimated by the gamma frailty model for each individual in a simulated study. In each row, column 1 is a reproduction of the 
densities used to produce the individual 𝜆"#. Columns 2-4 are the estimated density kernels for 𝜃 = 0.2,	𝜃 = 0.5,	𝜃 = 0.8, 
respectively. Values are plotted on a red-to-blue color ramp corresponding to the parameterizations I-V, respectively, in order of 
least (I; red) to greatest (V; blue) variance as detailed in Table 4. A) Truncated Normal distribution; B) Truncated Cauchy 
distribution; C) Uniform distribution; D) Gamma distribution; E) Mixture of Gamma distributions (i) with means at 0.125 and 1.875; 
and F) Mixture of Gamma distributions (ii) with means at 0.5 and 1.5. 
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