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Abstract 

Epidemiological studies show high comorbidity between different mental health problems, indicating 

that individuals with a diagnosis of one disorder are more likely to develop other mental health 

problems. Genetic studies reveal substantial sharing of genetic risk factors across mental health traits. 

However, mental health is genetically correlated with socio-economic status (SES) and it is therefore 

important to investigate and disentangle the genetic relationship between mental health and SES. We 

used summary statistics from large genome-wide association studies (average N~160,000) to estimate 

the genetic overlap across nine psychiatric disorders and seven substance use traits and explored the 

genetic influence of three different indicators of SES. Using Genomic SEM, we show significant changes 

in patterns of genetic correlations after partialling out SES-associated genetic variation. Our approach 

allows the separation of disease-specific genetic variation and genetic variation shared with SES, 

thereby improving our understanding of the genetic architecture of mental health.   
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Introduction 

Substance abuse and psychiatric disorders pose major burdens on patients’ personal lives and that of 

their families, as well as on society as a whole. Previous studies reported robust evidence of high 

comorbidity between different mental health disorders, indicating that individuals with a diagnosis of 

one disorder are more likely to develop other mental health problems. Genetic studies may provide 

useful information on the contribution of shared genetic risk factors to the observed comorbidities, 

and thus potentially gives insights into shared underlying biology and pathology1,2. However, possible 

confounders such as socio-economic status (SES) may be correlated with genetic variation3 and should 

therefore be appropriately accounted for. Here, we assess the level of genetic overlap across 16 

mental health traits, and explore the influence of SES-associated genetic variation on the pattern of 

shared heritability. 

Twin and family studies have shown that genetic risk factors contribute substantially to the 

risk of developing a mental health disorder, with heritability estimates ranging between ~40-80%4-6. 

Twin studies have further revealed significant genetic correlations across disorders, implying that 

partly overlapping genetic influences underlie vulnerability to different mental health traits (e.g.7-10). 

To better understand the biological basis of mental health disorders and their comorbidity, it is 

important to identify the specific genes that underlie these disorders. Genome-Wide Association 

Studies (GWAS) have become the standard approach to detect common genetic risk factors associated 

with psychiatric and substance use disorders and have been successfully applied to identify genetic 

loci for a wide variety of traits, including schizophrenia11, depression12,13, and lifetime cannabis use14. 

Historically, the primary aim of GWAS has been to identify genetic variants (single nucleotide 

polymorphisms; SNPs) that are statistically associated with complex traits such as human behaviour 

and disease risk15. More recent methodological innovations have enabled researchers to use genome-

wide SNP effect sizes from GWAS to estimate the total proportion of phenotypic variation explained 

by all measured common genetic loci (SNP-based h2) and to assess the amount of genetic overlap 

across disorders16,17. The Brainstorm Consortium used GWAS data to estimate genetic correlations (rg) 

across ten psychiatric disorders, revealing considerable sharing of common genetic risk1. Genetic 

correlations were especially profound between schizophrenia and bipolar disorder (rg=.68), between 

major depression (MD) and anxiety disorder (rg=.79), and between obsessive-compulsive disorder 

(OCD) and anorexia nervosa (rg=.52). Vink et al. have extended this analysis to substance use 

phenotypes and showed large genetic overlap across psychiatric disorders and substance use 

phenotypes18. More recently, a study by the Psychiatric Genomics Consortium2 using GWAS summary 

statistics from eight psychiatric disorders, showed that the psychiatric disorders genetically cluster in 

three correlated factors: the first consisted primarily of disorders characterized by compulsive 
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behaviours (anorexia nervosa, OCD, and Tourette Syndrome), the second by mood and psychotic 

disorders (major depression, bipolar disorder and schizophrenia), and the third by three early-onset 

neurodevelopmental disorders (autism spectrum disorder, ADHD, and Tourette Syndrome) as well as 

major depression. Unfortunately, substance use phenotypes were not included in this study. 

However, a limitation of GWAS studies is that these are generally conducted within 

heterogeneous populations. Therefore, confounding factors, such as differences in environments, 

may bias genotype-phenotype associations and may therefore have an impact on estimates of SNP-

based h2 and genetic correlations. For example, recent studies have shown that genetic associations 

may be inflated by population phenomena, such as population stratification3,19, gene-environment 

correlation19,20, and assortative mating20. Abdellaoui et al. showed significant geographic clustering of 

complex traits, even after controlling for ancestry3. They hypothesized that recent migration driven by 

educational attainment is one of the main contributing factors for this clustering of complex traits. 

One of the consequences of this geographic clustering is that alleles that are associated with 

educational attainment are correlated with environmental influences on health outcomes. This could 

cause an inflation of genetic correlation estimates between traits. To explore the potential influence 

of confounding factors at the family-level, Selzam et al. compared between-family and within-family 

genetic effects when using genome-wide polygenic scores to predict height, body mass index (BMI), 

intelligence, educational attainment, and ADHD symptoms19. They found that estimates of genetic 

effects were significantly reduced within families compared to between families, suggesting that 

unaccounted confounding factors inflate the between-family results. Interestingly, after controlling 

for family SES, the inflation largely disappeared in the between-family design, suggesting that SES is a 

major source of bias. Similar effects likely cause polygenic scores for educational attainment to be 

twice as predictive in non-adopted children as in adopted children21. These results highlight that 

genotype-phenotype associations based on samples of unrelated individuals may be confounded by 

external variables, especially by those that reflect complex social phenomena such as educational 

level20 and SES.  

Low SES has been associated with increased levels of substance use and increased 

susceptibility for psychiatric disorders22,23. SES is often considered an environmental variable, but 

previous studies have shown that SES indicators have a substantial heritable component24 and that 

SES is an important factor to consider in relation to brain structure and function25. Twin studies have 

shown that 52% of the phenotypic variability in educational attainment is explained by genetic factors 

and large-scale GWAS have recently demonstrated that common genetic variants explain 11%, 21%, 

and 15% of the phenotypic variance of household income, social deprivation (i.e., Townsend index), 

and educational attainment, respectively24,26. Moreover, substantial genetic correlations between 
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SES, substance use traits, and various psychiatric disorders have been found, with directions of effects 

in line with findings of traditional phenotypic epidemiology23,24. Estimates of the Brainstorm 

Consortium showed that ADHD, anxiety disorders, MDD, and Tourette syndrome show negative 

genetic correlations with intelligence and years of education whereas anorexia nervosa, autism 

spectrum disorders, and obsessive compulsive disorders show positive correlations1. The largest 

GWAS of smoking behaviour to date reported genetic correlations between smoking phenotypes and 

educational attainment of up to |0.55|27. Marees et al. recently presented findings suggesting that 

the genetic relation between alcohol consumption measures and mental health traits is mediated by 

SES28. In this study, we found that a high frequency of alcohol consumption (genetically associated 

with high SES) showed a different pattern of genetic correlations with mental health traits than high 

quantity of alcohol consumption (genetically associated with low SES). For example, alcohol frequency 

showed a negative genetic correlation with depression while alcohol quantity was positively 

correlated with depression. We hypothesized that these differences were due to the fact that the two 

alcohol measures were correlated with SES in opposite directions but did not formally evaluate this 

premise. Current findings suggest a strong genetic relation between mental health and SES which 

complicates the biological interpretation of estimates of shared genetic overlap.  

In this study, we will test whether and to what extent SES-associated genetic variance 

influences genetic correlations across a range of mental health phenotypes, including nine psychiatric 

disorders and seven substance use phenotypes. While conventional genetic correlation analyses, such 

as cross-trait  linkage disequilibrium score regression analysis (LDSC; as was used by the Brainstorm 

Consortium) only estimate conventional bivariate genetic correlations, we will apply a recently 

developed multivariate method called genomic structural equation modelling (genomic SEM29), which 

enables estimation of the joint genetic architecture of multiple complex traits. Genomic SEM formally 

models the genetic covariance structure of complex traits using GWAS summary statistics and allows 

the comparison of alternative multivariate genetic architectures. Using Genomic SEM, we can identify 

and partial out SES-associated genetic variation and separate this from the genetic variation that is 

not shared with SES. Separating these two sources of genetic variation will be relevant from a clinical 

perspective as the genetic risk that is “unique” for a mental health disorder will provide insight into 

disease-specific mechanisms while the genetic risk “shared” with SES will provide information on the 

contribution of general risk factors in a population.  

We will use Genomic SEM to investigate the impact of genetic SES variance on the SNP-based 

heritability of 16 indicators of mental health and on the pattern of genetic correlations across these 

traits. The specific aims of this study are to i) estimate genetic correlations between three different 

indicators of SES and a composite SES factor with mental health traits; ii) determine to what extent 
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genetic variation associated with SES contributes to estimates of SNP-based heritability of the mental 

health traits; and iii) elucidate what proportion of the genetic correlations between the various mental 

health traits is due to genetic overlap with SES. 

 

Methods 

GWAS summary statistics 

The current study used existing summary statistics for psychiatric disorders included in the recent 

Brainstorm Consortium report1, expanded with the GWAS for substance use traits and SES indicator 

variables. Detailed information about the GWAS summary statistics, sample sizes, and availability are 

provided in Supplementary Table 1. For psychiatric disorders we used the case-control GWAS 

summary statistics for attention deficit/hyperactivity disorder (ADHD)30, anxiety/depression (AnxD)31, 

major depression (MD)13, bipolar disorder (BIP)32, schizophrenia (SCZ)33, autism spectrum disorder 

(ASD)34, obsessive-compulsive disorder (OCD)35, anorexia nervosa (AN)36, and Tourette’s syndrome 

(TS)37. In contrast to the Brainstorm Consortium report we excluded post-traumatic stress disorder, 

since this GWAS lacked power for our analyses. 

 For substance use traits, we used GWAS results from cannabis lifetime use (Cannabis)14, 

alcohol consumption frequency (AlcFreq)28, alcohol consumption quantity in subjects who drink at 

least once or twice a week (AlcQuan)28, ever initiated smoking (SmkInit)27, age of smoking initiation in 

ever-smoked subjects only (SmkAge)27, cigarettes per day (CigDay)27, and successful smoking cessation 

in lifetime smokers only (SmkCes)27. Note that SmkCes was coded such that 1 indicates a person has 

not quit smoking, whereas 0 indicates that he or she quit smoking. 

For SES indicator variables we selected the GWAS for educational attainment (EA)38, 

household income (HI)24, and Townsend index (TI)24. All summary statistics are available for download, 

freely or by request/application. 

 

Estimates of genetic variance and genetic correlations  

The proportion of trait variance explained by common SNPs (SNP-based heritability) for all SES, 

psychiatric and substance use traits was estimated using univariate LDSC16. We compared genetic 

variance estimates of the 16 mental health traits from a model excluding SES (i.e. SNP-based 

heritability) with those obtained in a model in which genetic SES variance was partialled out. SES was 

defined as a latent SES factor composed of educational attainment, household income, or Townsend 

index, but we also explored the influence of these SES indicator traits in isolation.  

Genetic correlations between pairs of traits were estimated using bivariate LDSC17. LDSC is 

robust against confounding due to population stratification, and against full or partial sample overlap 
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and cryptic relatedness across GWAS samples. LDSCs in the current study were performed using 

1,215,002 SNPs present in the HapMap 3 reference panel, with exclusion of the major 

histocompatibility complex (MHC) region on chromosome 6. In assessing whether a genetic 

correlation was significant, we used a Benjamini-Hochberg FDR correction to account for multiple 

testing: the 120 genetic correlations between all 16 mental health traits before partialling out genetic 

SES variance, and then for the 120 genetic correlations between all 16 mental health traits after 

partialling out the genetic SES variance, (i.e., applying the FDR outcome in five different sets of 120 p-

values). 

 

Genetic modelling  

To estimate SNP-based heritabilities and genetic correlations with the effects of the latent SES factor 

partialled out, we used Genomic SEM29 R package v0.0.2 

(https://github.com/MichelNivard/GenomicSEM/wiki). The SEM models are shown in Figure 1. Each 

Genomic SEM model includes five traits: the two mental health traits and the latent SES factor which 

is represented by three SES indicator traits. We fit models for all possible combinations of the 16 

mental health traits. Genomic SEM produces genetic covariance matrices using a multivariable 

extension of LDSC for all of the input variables in a model - in the current model a 5x5 matrix - with 

SNP-based heritability on the diagonal and genetic correlations off-diagonal. This multivariable genetic 

covariance matrix is entered into the structural equation modelling R-package lavaan 0.6-3 (Rosseel, 

2012; doi: 10.18637/jss.v048.i02). The SES residual model fitted a single latent common factor that 

represents the overlapping genetic variance between the three SES indicator traits, which has the 

advantage of excluding variable-specific variance (e.g., variance present in educational attainment but 

not present in the other SES indicator traits). The latent SES factor variance is then used to regress out 

variance from the observed genetic variance of the two mental health traits of interest. In other words, 

the model removes the effect of genetic SES variance on both SNP-based heritability of each of the 

two target traits and their genetic covariance. The three SES indicator traits were also tested 

separately for their effect on the pairwise genetic correlations in a simplified 3x3 model that did not 

construct a latent SES factor, but directly regressed the effect of a SES indicator traits from the two 

mental health traits in the model. 

 

Significance of SES-induced change in genetic correlations 

To assess the significance of the effect of removing SES-associated genetic variance on the genetic 

overlap of pairs of traits, we used a Monte Carlo random sampling technique based on the model 

estimates and their variability. In Genomic SEM, variability of the estimates is obtained by jack-knifing 
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each chromosome (leave-one-chromosome-out) and re-estimating all free parameters in the model. 

Each jack-knife iteration results in a full symmetric (5x5) matrix with 15 free parameters representing 

the SNP-based heritabilities and genetic correlations of the two traits of interest and the three SES 

indicator traits. Based on these jack-knifed estimates, Genomic SEM provides a standard error (SE) for 

the 15 parameter estimates plus a term for the covariation between the estimates, resulting in a 

(15x15) matrix that captures not only parameter error but also error covariation, which tends to be 

substantial. Disregarding such correlated error would lead to substantially increased type-II errors. 

Using the matrix of estimates and the matrix of errors and error-covariances, we created 1000 samples 

using the mvrnorm function (MASS package in R39) from multivariate normal distributions of the 

estimates which followed the error-covariance structure. Each sampled matrix was used to recalculate 

SNP-based heritability and genetic correlation in the model with and without the SES factor. 

Significance was established by noting the change in estimates of genetic correlation, comparing 

estimates before and after SES factor inclusion across the 1000 models computed from the sampled 

data. We counted the number of times an estimate changed in the opposite direction as in the 

observed models (for example, if an rG was lower after including SES in the full, unsampled model, we 

counted the number of occasions in the 1000 sampled models that the inclusion caused an increase 

in rG). P-values were defined as this count divided by the 1000 samples, multiplied by two for two-

sided testing. 

The process was repeated for each of the SES indicator traits separately.  Benjamini-Hochberg 

FDR was used to correct for multiple testing for the 120 genetic correlations between all 16 mental 

health traits after partialling out the SES-factor (i.e., applying the FDR outcome in five different sets of 

120 p-values). 
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Figure 1. Genomic SEM path model fitted on the genetic covariation matrices estimates the genetic correlation (solid 

bidirectional arrow) between two traits of interest 1 and 2 (T1, T2). (A) path model of the simple bivariate genetic correlation 

using LDSC. (B) The model including a latent SES factor which represents the shared genetic variation of SES indicator traits 

Townsend Index (TI), Educational Attainment (EA), and Household Income (HI) (solid directional arrows). The latent SES 

factors’ genetic variance is regressed out from the variance of T1 and T2 (dashed arrows) affecting the estimates for 

heritability and genetic correlation.  

 

Graph analysis of genetic correlation matrices 

To establish the effect of SES on genetic clustering across substance use and psychiatric phenotypes, 

we used graph analysis on the squared genetic correlation matrices before and after removing the 

SES-associated genetic variance. R package iGraph (v1.2.4.1)40 was used to visualise the connectivity 

strength based on the proportion of variance explained (i.e. squared genetic correlation). Clusters 

were predefined as substance use traits (AlcFreq, AlcQuan, Cannabis, CigDay, SmkCes, SmkInit, 

AgeSmk) and psychiatric traits (ADHD, AN, AnxD, ASD, BIP, MD, OCD, SCZ, TS). The effect of removing 

SES genetic variance was established for eigenvector centrality measure for each vertex. The effect on 

clustering was established by comparing intra- and inter-cluster connection strength (r-squared) for 

the predefined clusters (psychiatric and substance use). Finally, we assessed whether genetic 

clustering was increased using the fast greedy algorithm of Newman and Girvan41 without predefined 

clusters.  
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Results 

We found substantial genetic correlations between the three SES indicator variables: educational 

attainment-household income rg=0.86, SE=0.04; educational attainment-Townsend Index rg=0.49, 

SE=0.03; household income – Townsend Index rg=0.77, SE=0.05. The SNP-based heritability estimates 

for the latent SES factor, educational attainment, household income, and Townsend Index were 0.06 

(SE=0.005), 0.09 (SE=0.002), 0.06 (SE=0.003), and 0.03 (SE=0.002), respectively. Also see 

Supplementary Tables 5 and 6.  

 

Genetic correlations of SES with the mental health traits  

Figure 2 and Supplementary Table 1 show the genetic correlations between the latent SES factor with 

the 9 psychiatric disorders and 7 substance use traits. All 16 traits showed significant genetic 

correlations with the latent SES factor, with negative correlations (N=9) being slightly more common 

than positive correlations (N=7). Substantial negative genetic correlations (rg< - 0.4) of the latent SES 

factor were found with ADHD, anxiety disorder, major depression, smoking initiation, cigarettes 

smoked per day, and smoking cessation, whereas substantial positive genetic associations (rg> 0.4) 

were found with frequency of alcohol consumption and age at smoking initiation (i.e. genetic variants 

underlying younger age of smoking were associated with genetic variants for lower SES).  

Genetic correlations were also estimated with each of the individual SES indicator traits (i.e., 

household income, Townsend index, and educational attainment); results were very similar to those 

for the latent SES factor (Supplementary Table 2 and Supplementary Figure 1). 

 

 

 

Figure 2: Genetic correlations between the latent SES factor and 9 psychiatric disorders and 7 substance use traits as 

computed with LDSC (error bars show ± 2×SE).  
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Attenuation of SNP-based heritability of mental health trait through SES 

Figure 3 and Supplementary Table 3 show the SNP-based heritability estimates of the 16 mental health 

traits as well as the residual genetic variance after partialling out genetic effects that are shared with 

the latent SES factor. A reduction in genetic variance was most apparent for ADHD with attenuation 

of 43% after removing genetic SES variance. Genetic variance was also reduced for anxiety disorder, 

major depression, anorexia nervosa, frequency of alcohol consumption, smoking initiation, age at 

smoking initiation, and smoking cessation. The smallest reductions were observed for e.g. bipolar 

disorder, schizophrenia, and quantity of alcohol use. 

Results were roughly similar when examining the effect of individual SES indicator traits on the SNP-

based mental health trait heritabilities, although the attenuation of the heritability estimates was 

generally smaller (Supplementary Table 3 and Supplementary Figure 2). 

 

  

Figure 3: Genetic variance explained by SNPs before (SNP-based heritability) and after removing genetic effects overlapping 

with the latent SES factor (error bars show ± 2×SE). 

  

Proportion of the genetic correlations between the mental health traits before and after removing SES-

associated genetic variance 

Figure 4 and Supplementary Figure 3 show genetic correlations between the mental health traits 

before and after removing genetic variance in common with the latent SES factor. The direction of 

change in genetic correlation is dependent on the direction of the genetic correlation between SES 

and the two traits: if both traits were genetically correlated with SES in the same direction (i.e. both 

positive or both negative), the genetic correlation between the traits decreased when partialling out 

the latent SES factor, whereas if the two traits showed genetic correlations with SES in opposite 

directions, the genetic correlation between the two traits increased. Exact estimates of the genetic 
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correlations before and after partialling out the effects of SES can be found in Figure 4, and 

Supplementary Table 4.  

Notably, genetic correlations were most strongly altered for ADHD, consistent with the strong 

reduction in SNP-based heritability of ADHD in Figure 3. Genetic correlations with (a subset of) other 

traits also changed considerably for anxiety disorder, major depression, frequency of alcohol 

consumption, age at smoking initiation, and smoking cessation. Changes in the pattern of genetic 

correlations were negligible, on the other hand,  for bipolar disorder, schizophrenia, autism spectrum 

disorder, obsessive-compulsive disorder, and Tourette syndrome (although high statistical power that 

comes with some of the summary statistics resulted in statistically significant changes even when the 

changes in point estimates were minimal).  

When examining the results of the effects of the individual SES indicator traits on the genetic 

correlations (Supplementary Figures 4-10, and Supplementary Table 4), the changes in genetic 

correlations between trait pairs are very similar for the different SES indicator traits. However, many 

more changes are significant after partialling out educational attainment than when removing the 

effects of household income, Townsend Index, or the latent SES factor. 

 

Effect of SES on genetic clustering 

Figure 5 shows the genetic correlation clusters based on graph analyses of genetic variance explained 

before and after removing SES-associated genetic variation. The graphs indicated evidence for 

stronger clustering of the psychiatric disorders after SES genetic variance removal, that is, 

comparatively to substance use traits. This was caused by strongly decreased edge weights (in terms 

of variance explained) between substance use traits (–0.062), a marginal decrease in edge weights 

between psychiatric traits (–0.010), and decreased edge weights across substance use and psychiatric 

traits (–0.023). These changes resulted in a clearer separation of the substance use and psychiatric 

cluster and stronger cohesion within the psychiatric cluster post-SES-removal (Figure 5 right). Using 

the Newman and Girvan (2004) clustering algorithm41, we observed and increased modularity Q (from 

0.251 to 0.321). This algorithm separated one substance use cluster and two psychiatric clusters but 

note that ADHD is a notable exception and clustered to substance use traits, even after removing 

genetic SES variance. The two psychiatric clusters changed from (autism spectrum disorders, anxiety, 

major depression) and (anorexia nervosa, OCD, Tourette’s syndrome, schizophrenia, bipolar disorder) 

to (autism spectrum disorders, anxiety, major depression, anorexia nervosa, OCD, Tourette’s 

syndrome) and (schizophrenia, bipolar disorder). 
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Figure 4: The genetic correlations before (lower diagonal, in black font) and after (upper diagonal, in green font) partialling 

out latent genetic SES factor variance. Coloured squares indicate significant genetic correlations (FDR corrected).  

 

 

Figure 5. SNP-based genetic correlations between the mental health traits illustrated with a graph to reveal complex genetic 

relationships. Each vertex (node) represents a mental health trait, with green nodes representing psychiatric disorders and 

reddish nodes the substance use traits (red for alcohol, orange for cannabis, and lilac for smoking related traits). Vertex size 

is based on eigenvector centrality with a minimum offset. Weighted undirected graphs were created with the absolute genetic 

correlation as connection strength (represented in line thickness). Vertex layout was based on the Fruchterman and Reingold 

algorithm42. Left; Graph before removing genetic SES variance resulted in three clusters (Clustering coefficient 

Q=0.251). Right; Graph after removing genetic SES variance showed an increased clustering index (Q=0.321), reshaped 

psychiatric genetic clusters, and kept the substance use cluster intact (including ADHD).  
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Discussion 

We have used the summary statistics from large-scale GWASs (average N ~160,000) to examine the 

extent to which genetic overlap with SES influences genetic variance in and genetic overlap across 16 

mental health phenotypes. We show that removing the variance of the latent SES factor significantly 

changes the pattern of genetic relationships between mental health traits.   

 

Genetic overlap with latent SES factor 

All 16 mental health traits showed a significant genetic correlation with a latent SES factor extending 

findings of previous studies1,14,18,27. Although most of the 16 genetic correlations between mental 

health traits and the latent SES factor were negative, in seven of the 16 genetic correlations the genetic 

propensity for lower SES was associated with an decreased genetic risk for psychiatric traits, namely 

for OCD, bipolar disorder, autism, anorexia nervosa, alcohol intake frequency, and cannabis use. Some 

of these positive genetic correlations are in line the phenotypic correlations reported by 

epidemiological studies, such as the positive phenotypic correlations of SES with autism43 and anorexia 

nervosa44; studies have been less consistent about the direction of the relationship between bipolar 

disorder and OCD with SES45. The potential mechanisms behind these findings can be diverse, for 

example, the positive genetic correlation between educational attainment and cannabis use (rG= .36) 

could potentially be related to higher rates of cannabis use in metropolitan vs. rural areas46 supporting 

the previously reported association between lifetime cannabis use and higher childhood family SES47.  

 

Genetic overlap between mental health traits 

The significant genetic correlations between mental health and SES and the general reduction of 

genetic cross-trait correlations after removing genetic SES variance suggest that part of the heritability 

of mental health as well as the genetic overlap between the different mental health traits is due to 

shared genetic variation with SES. For pairs of traits with opposite directions in their genetic 

correlation with SES, an increase in genetic correlation was observed. For example, the genetic 

correlation between ADHD (rg with SES = -0.64) and lifetime cannabis use (rg with SES = 0.25) was 0.15 

and increased to 0.31 after partialling out SES genetic variance. This shows that there are instances in 

which genetic overlap between traits is obscured by their shared genetic overlap with SES, highlighting 

the complex interdependence among these variables.  

The relevance of our approach lies in the ability to compare patterns of genetic correlation 

before and after removing SES-associated genetic variation. For example, we previously reported that 

frequency and quantity of alcohol consumption are genetically correlated with SES in opposite 

directions and hypothesized that this may explain the different patterns of genetic correlations 
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between the two alcohol measures and mental health traits28. Indeed, after removing genetic variance 

associated with SES, the genetic correlation between these two alcohol measures increased while the 

pattern of genetic correlations with other traits became much more similar. In the bivariate analyses 

that do not include the influence of SES, frequency of alcohol consumption was genetically associated 

with lower risk of ADHD, anxiety, and depression. However, after partialling out SES-associated genetic 

variation, the genetic correlations between frequency of alcohol consumption and these aspects of 

mental health were negligible. This suggests that the mental health benefits of moderate drinking may 

reflect SES confounding rather than direct causal effects of drinking behaviour. 

Using graph analyses to present clustering of the mental health traits, we found three genetic 

clusters. Interestingly, ADHD clustered within the substance use category, rather than in one of the 

psychiatric clusters. After partialling out the SES genetic variation, ADHD remained in the substance 

use cluster. This indicates that some neurobiological causes of ADHD are shared with substance use 

traits above and beyond SES genetic variance—which includes the possibility of direct causal links. The 

results showed that genetic overlap among mental health traits partly depends on the overlap with 

genetic SES variation. This has consequences for conceptualizations of an underlying psychopathology 

factor (i.e., p-factor).2,29,48  

While the strength of genetic association within the substance use cluster decreased on 

average after partialling out SES, the average strength of genetic association within the two psychiatric 

disorder clusters did not change substantially. However, the effect of partialling out SES had strong 

effects on some genetic associations within the psychiatric clusters (either becoming stronger or 

weaker) but not on others (also see Figure 4). This resulted in a reordering of the psychiatric disorders 

clusters. For traits that were highly affected by SES, in particular MDD and ADHD, their contribution 

to a shared psychopathology factor (see e.g. 2) must be considered and interpretation may be different 

when spurious contributions, such as regional effects associated with SES3, are removed. Also, as some 

genetic associations between psychiatric disorders changed sign or increased in strength after 

partialling out SES genetic variance, our analyses show that confounding factors may obscure genetic 

overlap between traits.  

 

Mechanisms behind the effects of shared genetic SES variation 

There are different mechanisms that can explain why SES-associated genetic variation influences 

GWAS findings of mental health traits and the observed patterns of genetic correlations. First, lower 

SES is geographically clustered3, and is thus related to a wide range of detrimental environmental 

variables that may increase the risk for both physical and mental health problems as well as substance 

use. Living in disadvantaged neighbourhoods may place individuals at risk for substance use through 
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increased availability and targeted marketing for alcohol products49,50. Adverse neighbourhood 

circumstances are also associated with increased risk of developing other psychiatric disorders51,52. It 

has been shown recently that a genetic predisposition for higher educational attainment is strongly 

associated with migration to better neighbourhoods with fewer exposures to harmful environmental 

influences3.  

Second, a causal influence of SES on mental health could also exist at a neurocognitive level, 

since lower cognitive abilities are correlated with lower educational attainment, lower income53,54, 

and lower impulse control55. The literature demonstrates that lower cognitive abilities and lower 

impulse control are correlated with both increased substance use and increased risk for psychiatric 

disorders55-57. Third, these findings may also partly reflect pleiotropy in which genetic variants 

influence the risk of mental health traits as well as SES through an underlying p-factor shared among 

substance use, psychiatric disorders, and lower SES48. Our current results provide information on the 

extent to which genetic correlations across mental health traits change after controlling for SES, but 

do not allow us to separate between these alternative mechanistic explanations.  

 

Educational Attainment 

When considering the separate components used to derive the underlying SES factor, namely 

educational attainment, household income, and Townsend index, the strongest effects were observed 

for educational attainment. Nearly all genetic correlations were significantly altered after partialling 

out genetic variation associated with educational attainment (Supplementary Figure 7). This may be 

related to the strength of the signal of the educational attainment GWAS, which has a much larger 

sample size (N=766,345) than the other SES indicators (N=96,900 and N=112,005). However, it may 

also reflect the importance of educational attainment on life outcomes related to both SES and mental 

health58.  

 

Implications  

SES is an important factor to consider when interpreting the results of GWAS studies and post-GWAS 

analyses. Results of GWAS that are uncontrolled for SES-associated genetic variation may lead to 

biased estimates of trait-specific variance.  The range of phenotypes for which this applies, is likely 

more extensive than those covered in the present study, e.g., traits such as BMI, longevity, and 

cardiovascular diseases, may be influenced in a similar way. Depending on the specific purpose of a 

genetic study, researchers can consider to partial out SES-associated genetic variance thereby 

reducing SNP-based heritabilities for traits that are genetically linked to SES, but the remaining genetic 

variance will be more trait-specific, and possibly more relevant from a clinical perspective.   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 27, 2020. ; https://doi.org/10.1101/2020.02.26.20028092doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.26.20028092
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

Removing SES related genetic variance in genetic studies will also influence results of 

secondary analyses that use the GWAS summary statistics, such as Polygenic Risk Score (PRS) 

analyses15. Partialling out SES may reduce the predictive power of PRS analyses as it removes part of 

the genetic variance, but the remaining genetic variance will more specifically reflect the phenotype 

of interest, which may increase their potential clinical utility.  

Our results also suggest a possible violation of an important assumption of Mendelian 

Randomization (MR) analyses, which states that the genetic variants included in the instrumental 

variable should be independent of factors (measured and unmeasured) that confound the exposure-

outcome relationship20,59. SES is likely to be a confounder of MR analyses through its genetic 

associations with the genetic instruments for mental health phenotypes, which may affect results of 

MR studies aimed at establishing causal relationships across mental health traits, and other complex 

traits (e.g., BMI, longevity, and cardiovascular diseases). 

Our findings have possible implications for the discussion regarding the diagnostic boundaries 

across mental health disorders. It has previously been suggested that the observation of strong genetic 

correlations across psychiatric disorders suggests horizontal pleiotropy1, which would be indicative of 

a mismatch between current clinical boundaries and the underlying pathogenic processes. We show 

that the genetic comorbidity between mental health traits is more complex and that the genetic 

clustering of traits changes when partialling out genetic variance shared with SES.  

 

Limitations 

Our findings need to be interpreted in the context of some limitations. First, SES is a multifactorial 

concept and there is no consensus in the field on how to best measure SES25. However, we used GWAS 

summary statistics to generate a latent SES factor composed of three indicators of SES, using both 

self-reported (educational attainment) and more objective measures (Townsend Index). We have 

further performed additional analyses to explore the influence of each of these individual indicators 

and found effects to be largely consistent. This provides an indication that our selection of SES 

indicators is not critical for the observed changes in genetic correlations and SNP-based heritability. 

Second, as is the case for most genetic studies on mental health, the summary statistics in this 

study are based on samples with an overrepresentation of participants from Western, Educated, 

Industrialized, Rich, and Democratic (WEIRD) populations. This reduces the generalizability of our 

findings and future studies should be focused on exploring the relations between SES and mental 

health in other populations.  

Finally, while Genomic SEM is much more flexible in including the effects of confounding 

factors in the Structural Equation Model, the nature of our data does not allow us to draw conclusions 
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on the nature of the causal relationships between mental health phenotypes. While SES may confound 

the relations across mental health phenotypes, it is also possible that some of these phenotypes have 

a direct causal influence on SES (e.g., ADHD, MDD, and alcohol use may lead to lower SES due to either 

lower educational attainment or lower income). This will make SES a collider rather than a confounder. 

Correcting for SES as a collider will bias estimates of correlation between two traits, which could 

explain some of the shifts we reported. Whether SES is a collider, confounder, or shows bidirectional 

causality with the psychiatric traits may be investigated using genetic causal modelling. 

 

Conclusion 

Our findings reveal that SNP-based heritabilities of 16 mental health traits, and the genetic 

correlations between them, are influenced by genetic overlap with SES traits. Our findings suggest 

that the genetic overlap between substance use traits and psychiatric disorders1,14,27,60 is in part due 

to their shared genetic overlap with SES. These findings provide important insights into the complexity 

of these associations and highlight the need to consider the role of SES in future studies investigating 

the genetic basis of mental health traits.  
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Supplementary Figures 

 

 

Supplementary Figure 1: Genetic correlations between SES indicators and 9 psychiatric disorders and 7 substance use traits 
as computed with LDSC (error bars show ± 2×SE). 
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Supplementary Figure 2: Genetic variance explained by SNPs before (SNP-based heritability) and after removing genetic 
effects overlapping with the SES indicators (error bars show ± 2×SE). 
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Supplementary Figure 3: Genetic correlations before and after partialling out the SES factor. Significant genetic correlations 
are indicated with red circles and significant changes in genetic correlations after partialling out SES are indicated in red 
letters. 
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Supplementary Figure 4: Genetic correlations before and after partialling out educational attainment (EA). Significant 
genetic correlations are indicated with red circles and significant changes in genetic correlations after partialling out EA are 
indicated in red letters. 
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Supplementary Figure 5: Genetic correlations before and after partialling out household income (HI). Significant genetic 
correlations are indicated with red circles and significant changes in genetic correlations after partialling out HI are 
indicated in red letters. 
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Supplementary Figure 6: Genetic correlations before and after partialling out Townsend index (TI). Significant genetic 
correlations are indicated with red circles and significant changes in genetic correlations after partialling out TI are 
indicated in red letters. 
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Supplementary Figure 7: Genetic correlations before (x-axis) and after (y-axis) partialling out SES. Each dot represents one 
of the mental health or substance use traits. Significant changes in genetic correlations after partialling out SES are 
indicated as red dots. The four correlations on top of the Figures are the Pearson correlations between the genetic 
correlations before and after partialling out the SES factors. 
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Supplementary Figure 8: The genetic correlations before (lower diagonal in black type) and after (upper diagonal in green 
type) partialling out genetic variance of educational attainments. Coloured squares indicate significant genetic correlations 
(FDR corrected, see methods). 
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Supplementary Figure 9: The genetic correlations before (lower diagonal in black type) and after (upper diagonal in green 
type) partialling out genetic variance of household income. Coloured squares indicate significant genetic correlations (FDR 
corrected, see methods). 
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Supplementary Figure 10: The genetic correlations before (lower diagonal in black type) and after (upper diagonal in green 
type) partialling out genetic variance of the Townsend index. Coloured squares indicate significant genetic correlations (FDR 
corrected, see methods). 
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