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Abstract. Complete resection of the tumor is important for survival in glioma patients. Even if the
gross total resection was achieved, left-over micro-scale tissue in the excision cavity risks recurrence. High
Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) technique can distinguish
healthy and malign tissue efficiently using peak intensities of biomarker metabolites. The method is fast,
sensitive and can work with small and unprocessed samples, which makes it a good fit for real-time
analysis during surgery. However, only a targeted analysis for the existence of known tumor biomarkers
can be made and this requires a technician with chemistry background, and a pathologist with knowledge
on tumor metabolism to be present during surgery. Here, we show that we can accurately perform this
analysis in real-time and can analyze the full spectrum in an untargeted fashion using machine learning.
We work on a new and large HRMAS NMR dataset of glioma and control samples (n = 568), which are also
labeled with a quantitative pathology analysis. Our results show that a random forest based approach can
distinguish samples with tumor cells and controls accurately and effectively with a mean AUC of 85.6%
and AUPR of 93.4%. We also show that we can further distinguish benign and malignant samples with
a mean AUC of 87.1% and AUPR of 96.1%. We analyze the feature (peak) importance for classification
to interpret the results of the classifier. We validate that known malignancy biomarkers such as creatine
and 2-hydroxyglutarate play an important role in distinguish tumor and normal cells and suggest new
biomarker regions. The code is released at http://github.com/ciceklab/HRMAS NC.
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1 Introduction

Gliomas constitute 60% of all primary brain tumors [26]. The maximum resection of the tumor remains
the key point in the management of gliomas with a direct influence on the survival of patients [23].
The progress made over the last two decades in surgical techniques including microsurgery by the
operating microscope, preoperative functional imaging (e.g., functional MRI, MRI tractography),
intraoperative electrical stimulation in awakened craniotomy and intraoperative imaging (surgery
guided by real-time imaging using neuronavigation or intraoperative MRI) have largely contributed
to significantly increase resected tumor volume while improving morbidity and mortality [33].
Providing feedback on left-over malign tissue during surgery can help surgeons delineate more
precisely the limits of a tumor infiltration, especially after a macroscopically complete excision. Several
innovative techniques based on optical spectrometry [5,6,11,14,15,17,20,24,25,29,34,36,41] or mass
spectrometry [2—4,7,8,13,28,31,32] are now proposed to help surgeons to evaluate the margins of
resection and possibly to amplify the surgical procedure. Metabolic profiling of a biopsy sample by
High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) spectroscopy
is a recent novel technique for efficiently distinguishing malign and healthy tissues in excision cavity
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during surgery. This technique is particularly well-suited for this task due to its ability to analyze small
samples of unprocessed tissue specimens. It has a nondestructive nature and allows other analytical
techniques on the same specimen which is important when small amounts of tissue are available [9)].
Moreover, the preparation of biopsy samples is fast as it does not require lengthy chemical extraction
procedures. Battini et al. showed that HRMAS NMR spectroscopy using intact tissue provides solid
information in the characterization of pancreatic adenocarcinoma and also on the long-term survival.
The information can be obtained in twenty minutes during surgery [1]. A recently released metabolic
database on HRMAS NMR signatures of seventy six biomarker metabolites has taken the next step
in widening the usage of the technique [30].

One challenge to overcome for this technique to be used in the surgery room is its dependence on
human experts with background on chemistry and cancer biology. The raw NMR signal is evaluated
by the NMR technician who can report on the existence of certain biomarker metabolites usually
with no insight on the tumor metabolism. Evaluation of the raw signal comes with several obstacles.
First, the identification of biomarker metabolites might not be possible due to superimposed signature
signals of certain metabolites (e.g., creatine and lysine [16]). Second, certain peaks might shift due to
experimental conditions (e.g., due to temperature) and then an informed guess on whether that peak
belongs to the targeted metabolite must be made. Third, the intra-tumor heterogeneity might result
in a convoluted signal and might make it hard for the technician to detect malignant tissue due to
unusual relative peak intensities. Moreover, an expert pathologist needs to be present at the time of the
surgery to relate the findings of the technicians to the tumor metabolism. Maybe the most restricting
factor of this analysis pipeline is the targeted analysis of the raw NMR signal. This means the human
expert is limited by the knowledge of certain biomarker metabolites and their corresponding peaks.
However, the spectrum contains many uncharacterized regions which might harbor peaks that are
capable of distinguishing tumor cells and yet are unknown.

In this study, we propose using machine learning approaches to address the above-mentioned
problems and to automate distinguishing healthy tissue from benign/malignant tumor tissue obtained
from the excision cavity during tumor surgery. The algorithm is fast and can work within the time
frame of surgery. It directly outputs whether a sample includes tumor cells. Thus, it does not require
a technician to analyze the signal. It performs an untargeted analysis of the signal and is able to
extract information from uncharacterized regions in the spectrum. The system figure representing the
proposed pipeline is shown in Figure 1.

Here, we utilize a new dataset (n=568) of glioma and control samples analyzed using HRMAS
NMR. All samples are also analyzed by a clinical pathologist and labeled whether it is normal, benign
or malignant. To the best of our knowledge, this is the largest of its kind with pathological labels. We
benchmark various machine learning architectures and show that it is possible to distinguish tumor
and control samples with a mean AUC of 85.2% and AUPR of 93.4%. We show that we can also
distinguish benign and malignant tumor samples with a mean AUC of 87.1% and AUPR of 96.1%.
The best performing method is a random forest based approach. This method for the first time
performs an untargeted analysis of the spectrum. Moreover, the model is interpretable and informs
the user about the ranges in the spectrum that were most informative for the classification, using
SHAP values of the features which quantify their importance [22]. We validate that the model focuses
on known cancer biomarker metabolites such as creatine and 2-hydroxylglutarate while distinguishing
benign and malignant glioma samples. We also observe that branched chain amino acids have been
important in the classification. We find evidence in literature that indeed altered branch chain amino-
acid concentrations are related to glioma metabolism, yet, their statuses as biomarkers are not well-
established. We also find some uncharacterized regions in the spectrum that are informative, which
brings up further research questions on establishing an understanding on the compounds in those
regions and their relation to tumor metabolism.
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Fig. 1: The figure shows the pipeline proposed for machine learning assisted tumor margin assessment
during brain tumor surgery. After the tumor removal, the surgeon resects samples from the excision
cavity. Samples are analyzed via HRMAS NMR technique. Produced spectra are processed via a
random forest classifier to label each region in the cavity (malignant/benign tumor vs healthy tissue).
The feedback is sent to the surgeon for resecting more tissue for regions labeled positive for tumor
tissue.

2 Materials and Methods

2.1 Dataset

In this subsection, we provide details on the glioma HRMAS NMR dataset and corresponding quan-
titative pathological analysis to obtain the labels.

2.1.1 Patient’s Cohort and Tissue Sample Collection The metabolomics-based statistical
model was constructed from spectra of 400 primary brain tumor samples from 382 patients and 87 non-
tumor brain tissue samples from epilepsy surgery of 73 patients. The histopathological classification
of primary brain tumors is: Pilocytic astrocytoma (n=3), astrocytoma grade II (n=6), astrocytoma
grade III (n=>5), glioblastoma (n=189), oligodendroglioma grade II (n=40), oligodendroglioma grade
II-11T (n=17), oligodendroglioma grade III (n=90), oligoastrocytoma grade II (n=3), oligoastrocytoma
grade II-III (n=1), oligoastrocytoma grade III (n=9), ganglioglioma grade II (5), ganglioglioma grade
III (4), dysembryoplastic neuroepithelial tumors (DNET, n=26). The study on tumor margins was
then performed on 271 operative samples obtained from the excisional banks of 89 patients.

Tissue specimens were collected with minimum ischemic delays after resection (average time
2min 4+ 1 min), either by a pneumatic system connected between the operating theater of neurosurgery
and the NMR room (Hautepierre Hospital - University Hospitals of Strasbourg), or by samples stored
in two Tumor Bio-bank, Strasbourg and Colmar (Ethics Committee no. 2003-100, 09.12.2003 and no.
2013-37, 12.11.2013). A written informed consent was obtained from all patients included.

All tissue samples used in this study had a viable tumor/necrosis ratio and were quantitatively
and qualitatively adequate to perform satisfactory NMR HRMAS analysis. In order to wait for this
goal, after NMR HRMAS analysis, the inserts were cut, and for half the content of each sample, the
percentage of tumor cells in the total sample of cells with regard to the total surface were calculated
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based on frozen hematoxylin & eosin-stained sections. See Supplementary Table 1 for details on
collected samples.

2.1.2 HRMAS NMR Data Acquisition Each brain biopsy sample was prepared at —20°C by
introducing a 15- to 18-mg biopsy into a disposable 30uL KelF insert. To provide a lock frequency
for the NMR spectrometer, 10uL of D2O was also added to the insert.

All HRMAS NMR spectra were acquired on a Bruker (Karlsruhe, Germany) Avance 11T 500 spec-
trometer operating at a proton frequency of 500.13 MHz and equipped with a 4-mm triple-resonance
gradient HRMAS probe (1H, 13C and 31P). The temperature was maintained at 4°C throughout the
acquisition time in order to reduce the effects of tissue degradation during the spectrum acquisition.
A one-dimensional (1D) proton spectrum using a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence
was acquired with a 285us inter-pulse delay and a 10-min acquisition time for each tissue sample.
The number of loops was set at 328, giving the CPMG pulse train a total length of 93 ms.

2.1.3 HRMAS NMR Data Preprocessing The free induction decay (FID) signal for each
sample had a length of 16,384. The signal is left-shifted by 70 points to remove the Bruker digital
filter in the prefix. Obtained raw FID spectrum is then transformed to frequency domain and is phased
corrected. The suffix of the signal which contained almost no variance is cropped to obtain the final
signal used for analysis, which is of length 8,172. The magnitude of the signal is used for the presented
analysis.

2.2 Problem Formulation

In this study, our main task is distinguishing tumor tissue from the normal tissue. The problem is
modelled as a binary classification task. For a given HRMAS NMR signal 7 in the sample set .S, the
feature vector x; is a d-dimensional vector: x; = [le, x?, e ,xfl] which represents the signal intensity
at each ppm. The label for that sample is y; and y; = 1 if sample contains tumor tissue and y; = 0,
otherwise. Then, the model we learn is a function f such that f(x;) = ¢;,Vi € S. The second and
optional task is to distinguish benign and malignant tumor samples. In this task, a sample j has label
zj = 1, if the sample has malignant tumor cells, and z; = 0, if sample contains benign tumor cells.
This task is also a binary classification task and we learn a function g such that g(x;) = 2;. We would
like to note that we also considered a multi-class classification task which unites the above mentioned
binary classification tasks. However, as we discuss in Section 4, we obtained better performance with
two separate tasks. Given the first task is of utmost importance and the second is optional, we opted
for this approach.

2.3 Learning Algorithms

In this section, we describe the methods employed for the problems formulated in Section 2.2. We
benchmark various machine learning algorithms to find the one suitable for the tasks at hand given
the size and nature of the 1H HRMAS NMR signal. For all methods, the only input is x; for both
tasks (d = 8,172). See Section 3.1 for parameter details of each approach.

First, we run partial least squares discriminant analysis (PLS-DA) as a baseline which is a common
method used in metabolomics analysis [40]. As the second algorithm, we used a Random Forest
(RF) classifier, which trains many weak classifier trees on sample subsets which are created using
bootstrapping [18] and results are aggregating via majority voting. The third algorithm is a support
vector machine classifier (SVM). We employed linear and radial basis function (RBF) kernels with a
soft margin.
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As a baseline neural network architecture, we employ a fully connected multi-layer perceptron.
Our MLP [27] model takes x; and applies a number of fully-connected (FC) layers which makes use of
rectified linear unit (ReLU) activation. We use full batch gradient descent for training. At the output
layer, we use softmax to assign probabilities to each class (e.g., benign) and focal loss as our loss
function to address the class imbalance in our dataset (i.e., smaller number of benign samples) [19].

Convolutional neural networks (CNN) are well-established architectures for learning complex pat-
terns on 2D image data. CNNs have also proven useful for processing 1D data. Some examples are
drug chemical structure representation (e.g., SMILES [10,37]), natural language (i.e., sentences [38])
and EEG signals [35]. Thus, we conjectured that a CNN is a good candidate for the classification
tasks mentioned above. As our final model, we use a 1D CNN-based architecture to process x;. The
architecture consists of 2 layers of convolutional operations. First, C; kernels of size kx1 are passed
over the signal with stride s and dilation rate d (no padding). The same set of operations are applied
on the output of the first convolutional layer with Cy kernels. The output is passed through a set of
fully connected layers to produce class probabilities using softmax at the output layer. Again, we use
full-batch gradient descent as our optimizer and focal loss as our loss function.

3 Results

3.1 Experimental Setup

We label the samples in our dataset (see Section 2.1) as aggressive, benign or control using the
following method. Per all individuals in the dataset, we have multiple types of samples that originate
from (i) the glioma tumor tissue (i.e., glioma), (ii) the healthy brain tissue (i.e., control), and (iii)
from the excision cavity (i.e., test). For samples in (i), the aggressive label and the benign label are
assigned with respect to the pathological analysis result. For samples in (ii), control label is assigned.
For samples in (iii), if the pathology report indicates that tumor cells exist (i.e., positive), then
aggressive label is assigned if the tumor of that individual is aggressive and benign label is assigned
if the tumor of that individual is benign; otherwise, control label is assigned. In the end, we obtained
179 control, 88 benign and 301 malignant samples. See Supplementary Table 1 for details on the labels
for collected samples. We generate 2 datasets for the two tasks explained in Section 2.2. The first one
unites the labels benign and malignant and sets their labels to tumor for task 1. The second one only
retains the benign and malignant samples for task 2.

Performance of the proposed models are assessed using a stratified and grouped 8-fold cross val-
idation approach on each dataset. Each dataset is shuffled before the folds are generated. Folds are
generated in a stratified manner by sampling from the dataset according to the label distribution of
the dataset. That is, each fold has a similar distribution of labels to the whole dataset. There is no
sample or patient overlap between the generated folds. That is, an individual’s all samples are always
in a single fold and the folds are exclusive. In each iteration, first, the test and validation folds are
removed. The models are trained on 6 remaining folds and the best performing parameter set is found
on the validation fold. Then, each model is trained on 7 folds (training + validation) and is tested on
the test fold. This procedure is repeated three times for each task with a random weight initialization
of the models. AUC, AUPR distributions are calculated using the performance for each test on each
test fold.

For the PLS-DA approach we used 30 components which sets the number of latent variables. For
the SVM model we performed a grid search on the soft-margin regularization parameter (i.e., C: 0.01,
0.1, 1, 10, 100) and on the kernel choice (i.e., RBF vs linear). For the RF model, we performed a
search on (i) number of estimators: 100, 300, 500, 800, and 1200; (ii) maximum tree depth: 5, 10, 15,
20, 25, and 30; and finally, (iii) minimum number of samples to split a node: 2, 5 10, 15, and 20. We
also set the minimum number of samples in a leaf node to 10 to avoid overfitting. For the 4-layered
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fully-connected (baseline) network, the input layer has 8,127 neurons, the second layer has 4,000
neurons, the third layer has 1,000 neurons and the output layer has 2 neurons, which uses softmax to
produce probabilities per class in both tasks. ReLLU activation is used for all hidden layers. Finally,
for the CNN model, we use two convolutional layers such that the number of kernels in both layers
are C1 = Cy = 4. These 1D kernels are of size 16, 32, 64, and 128. We set stride and dilation to 1.
After passing through maxpool operations of size 1x4, and ReLLU activation, concatenated activation
maps are input to fully-connected layers which are of size 8,112, 4,000 and 1,000, respectively. Similar
to the base neural network model, output layer has 2 nodes with a softmax operation to produce class
probabilities and ReLLU activation is used for all hidden layers. We trained the networks with a fixed
epoch number of 200, which was decided on the validation folds.

3.2 Performance Comparison and the Model of Choice

We compare the performances of the above-mentioned methods using AUC and AUPR metrics. Please
see Figure 2a for results. For the first task, distinguishing the tumor (glioma) and control cells, all
methods perform well and the lowest mean AUC achieved is 78.9% and the lowest mean AUPR
achieved is 87.7%. We observe that the RF model has the best mean AUC value with 85.6% which
is ~ 1% improvement over the closest performance by the CNN model. The AUC variance of the
RF model is similar to CNN and PLS-DA and smaller than other models. Similarly RF is the best
performing model with respect to the AUPR metric with an AUPR of 93.4%. The second best mean
AUPR is 92.6% and is achieved by CNN model. CNN model has the lowest AUPR variance and RF
is the second best. In conclusion, CNN also performs almost as well as RF for this task and is slightly
edged by the RF model. RF is a less complex model than CNN and more interpretable compared to
CNN. Thus, it is our method of choice for this task.

The second task in our pipeline is optional and is performed when the surgeon also would like to
know if the tumor is benign or malignant. Results are shown in Figure 2b. Again, all methods perform
well and the lowest mean AUC achieved is 80% and the lowest AUPR achieved is 93.4%. We observe
that the RF model has the best mean AUC value with 87.1% which is ~ 2% improvement over the
closest performance by the CNN model. We also see that the RF model has the lowest AUC variance
among all models. Similarly RF is the best performing model with respect to the AUPR metric with
an AUPR of 96.1%. All other methods have a mean AUPR of 94%, thus also in this category RF
provides a ~ 2% improvement. The AUPR variance of RF is the lowest and is on par with CNN.
Thus, RF is the model of choice for this task as well because of its robustness and high sensitivity
and specificity.

3.3 Interpreting the Model Predictions

We analyze the feature (i.e., ppm) importance of the features that lead to correct classification of
the samples in each task with the RF model. For this purpose, we make use of the SHapley Additive
exPlanation (SHAP) values for each feature [21,22]. This approach has its roots in the Shapley values
from coalitional game theory. Here, the features are players in a coalition and their values indicate a
fair weight that represent their contribution (i.e., success of the classification.)

Here, after running the RF model for both tasks, we compute the SHAP values of each feature
(i.e., ppm in the signal) for each task. Here, we map all features back to the the ppm spectrum
(x-axis) and show the corresponding SHAP values (y-axis) for each sample. Each dot on this figure
denotes a sample and the color of the sample denotes the value of the corresponding feature. That
is, if a sample is purple it means its feature value is high, and if blue, feature value is low. The
y-axis (SHAP values) indicates in which direction that feature affects the prediction. That is, for
control vs tumor classification task, a positive SHAP value indicates that feature for that sample was
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Fig. 2: The performance comparison of the benchmarked machine learning models with respect to the
AUC and AUPR metrics. Box plots represent the performance of the models obtained on the test
folds, in an 8-fold cross validation setting which is repeated 3 times.

important to label it as a tumor sample. On the other hand, a negative SHAP value indicates the
feature was important to label it as a control sample. For instance, many purple dots with high SHAP
values indicate positive correlation between the tumor and the magnitude of the peak at that ppm.
For benign vs malignant classification task, a positive SHAP value indicates malignant label and a
negative SHAP value indicates benign label.

We show our results in Figure 3. Here, we only annotate the peaks in the SHAP values (most
important in either direction) that reach an absolute SHAP value of 0.005. We use the metabolite
database provided by Ruhland et al. for annotation of peaks. We only list the names of the metabolites
which have a group that exactly match with the base of the peak region (i.e., is a subset of the peak
region). Note that there are usually many metabolite groups overlap with such regions. To limit the
number of candidate metabolites, we use such a stringent criterion. We also annotate the peaks of
two well known cancer biomarkers 2-hydroxyglutarate and creatine.

First, we find that 2-hydroxyglutarate has high feature importances in both classification tasks.
Isocitrate Dehydrogenase (IDH) is a rate limiting enzyme in the Krebs cycle and plays an important
role in the regulation of the energy metabolism. IDH mutations are known to affect tumor metabolism.
For instance, Mutations of IDH are known to produce high levels of 2-hydroxyglutarate that inhibits
glioma stem cell differentiation [12,39]. So, low levels of 2-hydroxyglutarate indicate malignancy. In
line with this information, we observe that when the corresponding peak (feature) values are low (i.e.,
blue), SHAP values are high which indicates that those samples are predicted to contain tumor and
malignant cells, respectively. Similarly, creatine is a well-known biomarker for gliomas. Low creatine
levels are observed in IDH mutants gliomas indicating low grade (benign) tumors [42,43]. In both
tasks, we observe blue peaks with high SHAP values for the ppm range that coincides with creatine
groups. This indicates that when creatine levels are low, we predict the sample to be tumor and
malignant, respectively. Thus, our model had learnt to focus on regions in the spectrum which are
used by technicians today as indicators.

For both tasks, we consistently find that peaks belong to branched chain amino-acids isoleucine
and leucine are focused by the model. These amino acids are known to have altered concentrations
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in the presence of IDH mutations, but their status as a biomarker for gliomas are not strongly
established. We also observe that various other amino acids are also focused by the model as annotated
in Figure 3. This suggests possible biomarkers due to the altered amino acid metabolism. Finally, while
distinguishing benign and malignant gliomas, we observe that 2-ketoglutarate and Isocitrate are also
important factors for successful classification. This is also meaningful as the IDH enzyme catalyzes
the reaction that converts one to other in reversible fashion. IDH mutations affect this process and
produce more 2-hydroxyglutarate from 2-ketoglutarate rather then to produce isocitrate [12]. Thus,
these are also candidate biomarkers stressed in the prediction of the algorithm.

The interpretation of the results is limited by the 76 metabolites and their ppm signatures provided
n [30]. We have performed an analysis to find any SHAP value peaks that are not associated with
any metabolite. We obtained top 200 peaks out of 8,172 and found a relatively short attention peak
near 1.00 ppm which indicates malignancy when the concentration is high. This is an uncharacterized
region and might suggest a new biomarker. Furhter research and validation is needed to establish an
understanding of the compounds in those regions and their relation to tumor metabolism. Yet, this
shows the potential for the untargeted analysis we propose here, as such regions are discarded by an
human analyst.
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Fig.3: The SHAP Values (y-axis) for each ppm in the spectrum (x-axis) is shown for each sample
(dots). Dot color purple indicates a high feature value, and blue indicates a low value. A positive
SHAP value indicates that feature was important to classify that sample as (i) tumor as opposed to
control in Panel A; and as (ii) malignant as opposed to benign in Panel B. Conversely, A negative
SHAP value indicates that feature was important to classify that sample as (i) control as opposed to
tumor in Panel A; and as (ii) benign as opposed to malignant in Panel B.

4 Discussion

Using a machine learning approach in this application has advantages over a technician comment-
ing on the presence or absence of known biomarker metabolites using the raw signal. Our current
catalogue of metabolites in the 1H HRMAS NMR spectrum is limited which means we potentially
discard valuable information with this targeted analysis. On the other hand, the RF algorithm we
use generates decision tree classifiers, each of which focus on different parts of the spectrum and
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process features in combinations. Thus, the algorithm performs an untargeted analysis as there is no
metabolite identification/quantification. The analysis is also non-linear and multivariate unlike the
current approach based on one by one quantification of certain metabolites. Moreover, fluctuations
in chemical shift is common in NMR results and a binary guess is needed to conclude whether a
peak belongs to a certain metabolite. The RF model can average out such inconsistencies. As seen
in Figure 3, the focus (i.e., given importance) of the algorithm resembles a peak around certain ppm
regions, indicating a smooth adjustment of the weights associated with each ppm, according to the
composition in the training cohort.

Our results provided in Section 3.2 show that our models achieve high AUC and AUPR values
indicating that the RF is a viable method to be used in the surgery room. The average test time of
the model is negligable (i.e., 0.01 secs.) which makes it possible to use it in real-time. The training
phase is performed offline and on average takes 25.2 mins. We interpret the results of the RF model
using SHAP values provided for each ppm in the spectrum. We validate that groups of known cancer
biomarkers such as creatine and 2-hydroxyglutarate had an important role in the decision made by
the model. This is an important feature for this analysis as usually a surgeon would like to know the
reasoning behind the decision made by a program. We also indicate several ppm regions which have
been important for the classifications. These regions harbor shared groups of several metabolites and
further research is needed to validate their ties to glioma metabolism and their status as a glioma
biomarker.

We observe that formulating the problem as a multi-class classification problem and trying to
distinguish benign, malignant and control samples does not perform well. The number of benign
samples is small and it is hard to distinguish them as their signal resembles the controls. Thus,
the mean class AUCs we obtained for control and benign samples were down to 60% and 40%,
respectively. malignant samples are successfully classified (mean AUC =90%) Since, the primary goal
is to distinguish tumor and healthy tissue we opted for the presented scheme in this study.

While benchmarking several machine learning algorithms, we observe for both tasks that con-
volution operation improves the performance of the baseline neural network model slightly and has
somewhat lower variance in the performance. Despite being edged by the RF model, we think CNN
model can perform well when trained on larger datasets. Our dataset is, to the best of our knowledge,
the largest cohort with close to 600 labeled samples. However, CNN uses a deep architecture and
requires larger cohorts to learn more complex features. We would like to note that we performed
extensive testing on the CNN architecture, which varied the number of layers, number of kernels,
activation functions, pooling operations etc. We also experimented with a self-attention mechanism
to find regions of interest in the spectrum. The results presented is the best set of results obtained
for CNN model. We concluded that the model is too complex to be learnt with this sample size.

5 Conclusion

In this study, we developed a random forest based machine learning approach to distinguish glioma
samples (benign or malignant) from the control samples using the 1H HRMAS NMR signal as the
sole input. In our experiments, we show that the approach is efficient, accurate and interpretable. It
can work in real-time and thus, can be used as a means of providing feedback to the surgeons on the
left-over tumor samples during surgery.
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