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Highlights 

• Metabolic signature is detectable in prodromal AD 

• Multiple sugar metabolism pathways are dysregulated in prodromal AD. 

• S-adenosylmethionine is under- and S-adenosylhomocysteine is overexpressed in AD 
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Abstract  

Introduction: Altered metabolism may occur early in Alzheimer’s disease (AD). We used 

untargeted high-resolution metabolomics in the cerebrospinal fluid (CSF) in mild cognitive 

impairment (MCI) to identify these alterations. 

Methods: CSF from 92 normal controls and 93 MCI underwent untargeted metabolomics using 

high-resolution mass spectrometry with liquid chromatography. Partial least squares 

discriminant analysis was used followed by metabolite annotation and pathway enrichment 

analysis (PES). Significant features were correlated with disease phenotypes using spearman 

correlation.  

Results: We identified 294 features differentially expressed between the 2 groups and 94 were 

annotated. PES showed that pathways related to sugar regulation (N-Glycan, p=0.0007; sialic 

acid, p=0.0014; Aminosugars, p=0.0042; galactose, p=0.0054) homocysteine regulation 

(p=0.0081) were differentially activated and significant features within these pathways 

correlated with disease phenotypes.   

Conclusion: We identified a metabolic signature characterized by impairments in sugar and 

homocysteine regulation in prodromal AD. Targeting these changes may offer new therapeutic 

approaches to AD 

 

Key Words: Metabolism, CSF, Alzheimer’s disease, Mild cognitive impairment 

 

Research in Context: 
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1. Systematic review: The authors searched PUBMED and Google Scholar for previous reports 

of metabolomics and Alzheimer’s disease. Search Terms included: mild cognitive impairment, 

Alzheimer’s disease “AND” metabolism, metabolomics. This search identified multiple small 

studies that have conducted untargeted metabolomics in AD. This search resulted in the 

following findings: Prior studies have either included small samples, used targeted approaches, 

or focused on plasma profiling. In this study, we conducted a case-control untargeted high 

resolution metabolomic study on the CSF of a larger sample of normal cognition and mild 

cognitive impairment. 

2. Interpretation: We discovered that pathways in sugar metabolism, homocysteine and tyrosine 

were dysregulated in AD. Further, features that were significantly different between MCI and 

normal cognition had different patterns of association with  cognitive, neuroimaging and Amyloid 

and tau biomarkers.  

3. Future direction: These pathways offer new potential targets for AD  
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1. Introduction: 

Alzheimer’s disease (AD) is characterized by a complex set of molecular pathways that begin 

decades before symptoms start.[1, 2] Changes in proteins, lipids and many other molecular 

networks have been described.[3, 4] The overlapping and interaction of these networks can 

obscure the root pathogenic mechanisms when not fully accounted for in molecular or analytical 

methods. The level of complexity in these networks is becoming more evident as the cumulative 

knowledge of AD pathogenesis has increased in the last decade. Disentangling these 

complexities is becoming more feasible due to the significant advances in high throughput 

technologies[5] coupled with  novel bioinformatic tools including those developed by our team. 

[6] Recent examples applying the high throughput  measurements of thousands of metabolites 

coupled with advanced bioinformatic approaches has comprehensively described molecular 

alterations and pathways in multiple diseases.[7-10] We apply these advanced in investigating 

underlying metabolic changes in AD. 

Metabolomic research focuses on examining metabolites, small molecules (typically  <1,500 

Da), that are end products of multiple biological pathways and processes. The human 

metabolome is estimated to contain approximately 150,000 or more of such metabolites and a 

large fraction are still unidentified.[11] Metabolomics aids in identifying downstream 

perturbations from the genetic and post genetic  pathways reflecting a functional signature of 

biochemical activities that are closer to the phenotypical changes.[12] Our work uses high 

resolution untargeted metabolomic approaches, which be a powerful tool in describing novel 

and previously unknown pathways involved in AD pathogenesis.  

Brain hypometabolism has been reported symptomatic AD as well as before the onset of 

cognitive symptoms.[13] Preliminary studies have suggested the existence of multiple metabolic 

changes in this prodromal stage. [14, 15]  However, many previous studies have either included 

small samples, used targeted approaches limited by prior knowledge, or focused on plasma 
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profiling. In this study, we conducted a case-control untargeted high resolution metabolomic 

study on the CSF of a relatively larger sample of normal cognition (NC) and mild cognitive 

impairment (MCI), a prodromal state for AD.  We aimed at investigating the alterations between 

NC and MCI in the metabolome and metabolic pathways using an established high resolution 

metabolomic biospecimen and data analysis pipeline. We further explored the association of 

these metabolic alterations with multiple disease phenotypes related to cognition, CSF Amyloid 

beta 1-42 (Aβ42) and tau biomarkers, and brain MRI measures.  
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2. Methods: 

2.1. Participants description: Data for the current analysis were drawn from the baseline 

assessment of participants in the Brain Stress Hypertension and Aging program (B-SHARP) at 

Emory University.  B-SHARP participants undergo baseline cognitive assessments, 

neuroimaging, and lumbar punctures and are subsequently enrolled clinical studies. This 

analysis used data from the 185 participants enrolled from March 2016- January 2019 who had 

CSF obtained during their baseline evaluations. The protocol was approved by the Emory 

University Institutional Review Board prior to recruitment.  Each participant provided a written 

informed consent. 

 

The sample includes community-dwelling adults 50 years or older with NC or MCI. Potential 

study participants were identified either through a referral from the Goizueta Alzheimer’s 

Disease Research Center at Emory or through strategic community partnerships with grass root 

health education organizations, health fairs, advertisements and mail out announcements.  An 

appropriate study informant, defined as an individual who has regular contact with the 

participant for at least once a week (in person or telephone), was also identified for each 

participant.  The potential study participant attended a screening visit, during which they 

underwent cognitive testing. A study physician also performed a clinical evaluation, cognitive 

interview and a lumbar puncture.  

 

2.2. Cognitive diagnosis and exclusionary criteria: Mild cognitive impairment (MCI) 

categorization was done using modified Peterson criteria. This modification included using the 

Montreal Cognitive Assessment (MoCA)[16] instead of Mini-Mental State Exam (MMSE).[17] 

MCI criteria included subjective memory complaints, a MoCA < 26, Clinical Dementia Rating 

(CDR) score, memory sum of boxes=0.5,[18] education adjusted cutoff score on Logical 
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Memory delayed recall of the Wechsler Memory Scale,[19] and preserved Functional 

Assessment Questionnaire (FAQ)<=7.[20] Normal cognition (NC) was defined as having no 

significant memory complaints beyond those expected for age, a MoCA score >26 points, a 

CDR score of 0 (including 0 on the Memory Box score), and preserved FAQ <=7. Participants 

were excluded  if they had a history of stroke in the past three years, were unwilling or unable to 

undergo study procedures including MRI and LP, did not have a study informant, had a clinical 

diagnosis of dementia of any type, or abnormal serum Thyroid Stimulating Hormone (>10) or 

B12 (<250). 

  

2.3. Cognitive Assessment and biomarker measurements: Demographics (age, sex, education), 

anthropometrics (weight and height), medical diagnosis, and medications were collected at 

baseline by interview. Cognitive assessment included those described above plus Trail Making 

Tests (Part A and B) a measure of executive function and Hopkins Verbal Learning test (HVLT) 

for episodic memory.  Cognitive assessment was performed by trained personnel supervised by 

the study neuropsychologist. Following a fast of no less than 6 hours, CSF samples were 

collected via lumbar puncture using 24G Sprotte atraumatic spinal needles. Samples were 

collected in sterile polypropylene tubes, separated into 0.5cc aliquots and stored at −80 °C, 

Samples were subsequently shipped to and analyzed by the Biomarker Research Laboratory at 

the University of Pennsylvania (Dr. Leslie Shaw).[21] CSF Biomarkers: Aβ, t-Tau, and p-Tau 

were measured using the multiplex with the multiplex xMAP Luminex platform (Luminex Corp, 

Austin, TX) with Innogenetics (INNO-BIA AlzBio3; Ghent, Belgium; for research use–only 

reagents) immunoassay kit–based reagents. The test–retest reliabilities are 0.98, 0.90, and 0.85 

for t-Tau, Aβ, and p-Tau181p, respectively. [21]  

 

2.4. MRI Brain Imaging:   Brain MRI’s were also completed at Emory University (3.0 Tesla Trio 

MRI scanner, Siemens Medical Solutions, Malvern, PA). Anatomical images were acquired 
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using high-resolution three-dimensional (3D) magnetization-prepared rapid acquisition with 

gradient echo (MPRAGE). Images were then digitally saved for offline processing. Hippocampal 

volume and other volumetric measurements were calculated using the free-surfer package with 

manual supervision. Quality checks were performed for each scan. Left and right hippocampal 

volumes were obtained and combined to derive the total hippocampal volume and cortical 

thickness. Intra-cranial volume (ICV, mm^3) was also derived from this analysis. Volumetric 

measurements using free surfer has been shown to provide similar estimates to a fully manual 

procedure.[22] We used ICV-adjusted hippocampal volume to reflect the degree of 

neurodegeneration for each participant.[23] 

2.5. Untargeted metabolomic High-resolution metabolomics (HRM) approaches and pipeline: 

Our metabolomic approaches used an established pipeline developed at the Clinical Biomarker 

Laboratory, led by Dr. Dean Jones (diagrammatic representation of this pipeline is included in 

the online supplement). HRM was completed using established methods by an analyst blinded 

to sample identity.[8, 24] Briefly, CSF samples were prepared and analyzed in batches of 20. 

Prior to analysis, CSF aliquots were removed from storage at −80°C and thawed on ice. A 65 μL 

aliquot of CSF was then treated with 130 μL of LC-MS grade acetonitrile, equilibrated for 30 min 

on ice and centrifuged (16.1 ×g at 4°C) for 10 minutes to remove precipitated proteins. The 

supernatant was added to an autosampler vial and maintained at 4°C until analysis. Sample 

extracts were analyzed using liquid chromatography (LC) and Fourier transform high-resolution 

mass spectrometry (Dionex Ultimate 3000, Q-Exactive HF, Thermo Scientific). For each 

sample, 10 μL aliquots were analyzed in triplicate using hydrophilic interaction liquid 

chromatography (HILIC) with electrospray ionization (ESI) source operated in positive mode. 

This use of complementary chromatography phases and ionization polarity has been shown to 

improve detection of endogenous and exogenous chemicals.[25] Analyte separation was 

accomplished by HILIC using a 2.1 mm x 100 mm x 2.6 μm Accucore HILIC column (Thermo 
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Scientific) and an eluent gradient (A= 2% formic acid, B= water, C= acetonitrile) consisting of an 

initial 1.5 min period of 10% A, 10% B, 80% C, followed by linear increase to 10% A, 80% B, 

10% C at 6 min and then held for an additional 4 min, resulting in a total runtime of 10 min per 

injection. Mobile phase flow rate was held at 0.35 mL/min for the first 1.5 min, increased to 0.5 

mL/min and held for the final 4 min. 

The high-resolution mass spectrometer was operated in full scan mode at 120,000 resolution 

and mass-to-charge ratio (m/z) range 85–1275. Probe temperature, capillary temperature, 

sweep gas and S-Lens RF levels were maintained at 200°C, 300°C, 1 arbitrary units (AU), and 

45 AU, respectively, for both polarities. Positive tune settings for sheath gas, auxiliary gas, 

sweep gas and spray voltage setting were 45 AU, 25 AU and 3.5 kV, respectively. Raw data 

files were extracted and aligned using apLCMS[26] with modifications by xMSanalyzer.[27] 

Uniquely detected ions consisted of accurate mass m/z, retention time and ion abundance, 

referred to as m/z features. Data filtering was performed to remove m/z features with median 

coefficient of variation (CV) within technical replicates ≥ 75%. Additionally, only samples with 

Pearson correlation within technical replicates ≥ 0.7 were used for downstream analysis. 

Feature intensities for triplicates were median summarized with the requirement that at least two 

replicates had non-missing values. Batch-effect correction was performed using ComBat[28]. 

2.6. Metabolome-wide association analysis (MWAS): A feature was retained for further analysis 

if at least 90% of the subjects had non-zero intensity reading in either MCI or NC groups. After 

exclusion, the missing values for a feature were imputed as half of the lowest signal detected for 

that feature across all samples. Following data filtering, all intensity values were log2 

transformed to reduce heteroscedasticity and quantile normalized to reduce systematic errors 

due to technical and other non-biological factors. MWAS was conducted using partial least 

squares discriminant analysis (PLS-DA) implemented in the mixOmics[29] R package and 

features were selected based on the variable importance for projection (VIP) criteria. P-values 
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were obtained for each feature using a permutation test. A 1000-permutation approach was 

performed by randomly shuffling the group labels of subjects and performing feature selection 

using PLS-DA at each iteration.30 Multiple testing correction was performed using Storey and 

Tibshirani FDR adjustment.[30] Discriminatory features were selected using the thresholds of 

variable importance for projection (VIP) ≥ 2, permutation derived p<0.05, and FDR< 0.1. Only 

features that passed all three criteria were considered significantly different between the two 

groups. Manhattan plot was used to visualize the pattern of differential expression across all 

features with respect to molecular mass. Fold change of log2 transformed intensity values was 

calculated for each feature as the difference between the average intensity of the two groups, 

log2 FC=averageNC-averageMCI.  

2.7. Pathway analysis: Pathway enrichment analysis was performed using mummichog (v2.0.6), 

which uses both m/z and retention time, and included discriminatory features that met the 

following criteria: VIP≥1.5, p<0.05, and FDR<0.1. A lower VIP was used to increase enrichment 

within the pathway and prevent information loss.[10, 31] Detailed descriptions of mummichog 

computational procedures were previously published for V1.0.[32] Discriminatory features 

detected in the pathways were further tested for differential expression between the NC and 

MCI groups using Wilcoxon Rank Sum test.  

2.8. Metabolite annotation and identification: Metabolite annotation and identification was 

performed using MS/MS, comparison with in-house library of confirmed metabolites, and using 

xMSannotator33 with the Human Metabolome Database34 (HMDB). Discriminatory features that 

were associated with the significantly enriched pathways and had p<0.05 using the Wilcoxon 

Rank Sum test were selected for MS/MS analysis. For MS/MS, samples were analyzed using a 

Thermo Fusion Orbitrap high-resolution (120,000 mass resolution) mass spectrometer (Thermo 

Fisher Scientific, San Diego, CA) operated in positive ion mode with 5-minute HILIC column 

chromatography and similar source conditions used for the untargeted metabolic profiling. Prior 
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to analysis, CSF proteins were precipitated using acetonitrile:water (2:1 vol/vol) and allowed to 

sit on ice for 30 minutes. The supernatant was then carefully pipetted for MS/MS analysis. The 

tandem mass spectrometry data was processed using the xcmsSet and xcmsFragments 

functions in XCMS[33] to extract the MS/MS fragments associated with each parent mass and 

the experimental spectra were compared with in-silico fragmentation using MetFrag[34] or the 

spectra available from mzCloud (https://www.mzcloud.org/).  

We further annotated and confirmed identities of the selected metabolites using an in-house 

library of metabolites that have been previously confirmed by comparing the retention time and 

MS/MS of the metabolic feature with authentic standards. Additionally, we performed 

computational annotation using xMSannotator33 (v1.3.2) with the HMDB34 (v3.5). xMSannotator 

uses adduct/isotope patterns, correlation in intensities across all samples, retention time 

difference between adducts/isotopes of a metabolite, and network and pathway associations for 

associating m/z features with known metabolites and categorizing database matches into 

different confidence levels.[35] This multi-step annotation process reduces the number of false 

matches as compared to only m/z-based database search. Metabolite identification levels were 

assigned using an adapted version of the criteria proposed by Schymanski et al.: a) confirmed 

by MS/MS and co-elution with authentic standards (level 1);  b) confirmed by MS/MS and 

matches with online databases or in-silico predicted spectra (level 2); c) confirmed by MS/MS at 

the chemical class level, but no evidence for a specific metabolite (level 3); d) computationally 

assigned annotation using xMSannotator (medium or high confidence)  (level 4); e) accurate 

mass match (level 5).[36] 

 

2.9. Association of discriminatory features with other disease phenotypes: Discriminatory 

metabolites associated with significantly enriched pathways were then tested for associations 

with three AD phenotypical or endophenotypic areas: cognitive performance (MoCA for global 
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function, TMT A and B for executive function and HVLT-delayed recall for episodic memory), 

neuroimaging (hippocampal volume and cortical thickness as indicators of neurodegeneration) 

and CSF AD biomarkers (Amyloid beta 1-42 (Aβ42), total and phosphorylated tau (tau, Ptau)  

using Spearman’s correlation analyses. A heatmap was used to visualize the correlation 

patterns between significant metabolic features and these measures. 

3. Results: 

3.1. Participant: Of the 185 participants who provided CSF, 93 were MCI and 92 were normal 

controls. The basic clinical characteristics of the sample are provided in Table 1. The MCI group 

were older (p=0.007) and had higher levels of Tau and p-tau (both p<0.0001), but not Abeta 

(p=0.6) .They also had lower cognitive performance in all measures as expected and lower 

hippocampal volume (p<0.0001). 

3.2 MWAS results: Overall, 13,064 features were detected, and 8,043 features met the data 

filtering criteria and were used for downstream analyses. Using partial least squares 

discriminant analysis (PLS-DA), 294 discriminatory features were identified using the predefined 

criteria (Figure 1). Of those, 107 features were under-expressed and 187 features were 

overexpressed in MCI patients relative to NC, as shown in Figure 1. Of the 294 features, 94 

were successfully matched to known metabolites in HMDB using xMSannotator with an 

annotation confidence score of medium or high (Supplemental Table 1).  

3.3 Pathway Analysis: To enhance the coverage of metabolites for pathway enrichment 

analyses and to prevent information loss, 1,049 discriminatory features were included using the 

less stringent criteria of VIP>1.5, p<0.05, and FDR<0.1. We identified 13 pathways that were 

perturbed between the MCI and normal control groups which are shown in Figure 2.  The top 4 

pathways were related to bioenergetics and glucose metabolism: N-Glycan (p=0.0007), Sialic 

Acid (p=0.0014), Amino-sugars (p=0.0042), and Galactose (p=0.0054) metabolism. Keratan 
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sulfate (p=0.0173), Methionine (p=0.0081), Cyanocobalamin (p=0.0106), Tyrosine (p=0.0193), 

Purine (p=0.0352) and Biopterine (p=0.0275) were also differentially activated between the 2 

groups. Within the enriched pathways that were significantly different between NC and MCI, 

multiple features with an identification confidence of 1 to 5 were differentially expressed and are 

shown in Table 2. Combined together, the overall CSF metabolic signature for MCI is shown in 

the KEGG pathway map 01100 (metabolic pathways; Homo sapiens) and the corresponding 

boxplots are shown in Figure 3. This signature is characterized by increased expressions of 

features related to sugar metabolism/bioenergetics, homocysteine, Tyrosine and Biopterin 

pathways and lower expression of methionine. The complete list of features in these analyses is 

provided in Supplementary Table 2.   

3.4. Correlation with disease phenotype: We then explored the associations between these 

signature features with disease phenotypes. These results are shown in Figure 4. Increased 

expression of bioenergetics and glucose metabolism were associated with higher tau and Ptau 

but also with lower cognitive performance, hippocampal volume and cortical thickness, 

decreased cognitive and neuroimaging. Sugar metabolism dysregulations were associated with 

increased Tau, and ptau. Further, 5 of these features were associated with decreased cortical 

thickness, hippocampal volume and cognitive performance on MoCA, TMT and delayed recall. 

S-Adenosylhomocysteine was associated with lower MoCA scores and decreased cortical 

thickness. In the Tyrosine pathway, Salsolinol-1- Carboxylate was associated with higher Tau 

and pTau whereas VMA was associated with lower MoCA Score. Finally, features in the 

biopterin pathway were not associated with any disease phenotype. Detailed results are 

provided in supplemental Table 3. 

4. Discussion 

This study of untargeted high resolution metabolomics identified a  CSF signature in prodromal 

AD characterized by dysregulation of sugar, homocysteine/methionine and tyrosine metabolism. 
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Multiple features within this signature was associated with increased total tau and Ptau 

biomarkers and lower cognitive measures, hippocampal volume and cortical thickness. 

Multiple studies have suggested an association between AD and peripheral impaired glucose 

metabolism that may be pronounced in those with type 2 Diabetes and insulin resistance. [37, 

38] There is also evidence that in AD, a central insulin resistant state is detectable even in the 

pre-symptomatic stages.[39, 40] Our study suggests that in the CSF of those with MCI, there 

was dysregulation of multiple glucose-metabolism pathways and related increase in glucose 

metabolism byproducts. Prior FDG-PET scans have suggested decreased brain metabolisms 

across the spectrum of AD.[41, 42] Taken together, the increased in CSF features of sugar 

metabolism pathways couple with the previously reported brain hypometabolism may in part be 

explained by a lower brain glucose uptake, for example secondary to glucose uptake transporter 

pathways, [43, 44] leading to an increased CSF levels. An alternative explanation is that the 

possible central insulin resistance reported in AD is associated with increases metabolic by-

products in the brain and CSF. This is further supported by our observation that these increased 

metabolic features are associated with increased tau measures and with lower performance on 

cognitive assessments, hippocampal volume and cortical thickness.  The link between the 

various metabolism and energetic pathways with AD and tau has been reported previously 

using FDG-pet. [45, 46] We did not measure brain glucose uptake or metabolism and hence 

these are potential explanations that need further confirmation.  

Our observation that alterations in pathways related to homocysteine and methionine 

metabolisms is of great interest. Specifically, S-adenosylmethionine (SAM) was under-

expressed and S-adenosylhomocysteine (SAH) was overexpressed in CSF of the MCI 

participants. SAM is a key molecule in methionine cycle involved in nucleic acid and protein 

metabolism and synthesis. SAH is formed by demethylation of SAM. Prior reports suggest that 

SAM is decreased and SAH is increased in CSF of AD and are related to tau bioamrkers.[47] 
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However, in this study only SAM was related to additional disease phenotypes including 

cognitive measures and cortical thickness. Nevertheless, this untargeted approach suggest that 

homocysteine-methionine pathways are dysregulated in the prodromal stages of AD. 

We identified perturbations in Tyrosine pathways with overlapping features in the purine, 

methionine and  homocysteine pathways, including SAM, SAH, VMA, and thyroxine. These 

cycles are  involved in catecholamine and serotonin  neurotransmitter systems and might be 

altered in AD.[48] A prior CSF analysis in a smaller number of MCI using targeted metabolomic 

approach suggested a similar finding of impairments in methionine and tyrosine pathways.[49] 

Despite the difference between the groups in this pathway, there were minimal associations with 

the other disease measures. 

There are multiple advantages to this study including the untargeted and advanced 

bioinformatic approaches which allowed us to consider a large number of pathways and 

features, the comparably larger number of sample with CSF, and the availability of multiple 

additional disease phenotypes that offer greater confidence in the associations with MCI. The 

limitations include the cross-sectional design and the number of identified features that could 

not be matched to known metabolites or matched to multiple metabolites, which is a major 

bottleneck in untargeted metabolomics.[6] The use of MS/MS with an in-house library of 

confirmed metabolites in the Clinical Biomarker Lab where these analyses were performed 

using authentic standards. This coupled with advanced bioinformatics tools for metabolite 

identification and annotation enhanced the reliability of the identity of our metabolites compared 

to many prior untargeted studies.  

Clinical translations of these findings are important. The key pathways that are perturbed in AD 

are potential targets for existing or new drug developments. For example, insulin and other 

antidiabetic agents may address the sugar metabolism abnormalities identified in this analysis. 
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[50, 51] Drugs that may restore balance between SAM and SAH may also be of relevance in the 

drug development of AD.[52] 

 

5. Conclusion 

In this untargeted HRM study, we identified a metabolic signature characterized by impairments 

in sugar metabolism and methionine, homocysteine and tyrosine pathways in MCI. These offer 

insight into the metabolic derangements that occur in predementia stages of AD and potential 

therapeutic targets. 
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Table 1 Characteristics of the overall sample by the 2 groups, Normal Cognition and Mild 

Cognitive Impairment (MCI) 

 

Characteristic Overall 

(n=185) 

Normal 

(n=92) 

MCI 

(n=93) 

p 

value 

Sex     

  Female 116(62.7) 62(67.4) 54(58.1) 0.19 

  Male 69(37.3) 30(32.6) 39(41.9)  

Age, years     

  Mean ± SD (N) 64.4 ± 

8.2(185) 

62.7 ± 

7.1(92) 

66.1 ± 8.9(93) 0.007

1* 

Race     

  White 117(63.2) 63(68.5) 54(58.1) 0.24 

  Black or African American 65(35.1) 27(29.3) 38(40.9)  

  Other  3(1.6) 2(2.2) 1(1.1)  

Education, years     

  Mean ± SD (N) 16.3 ± 

2.9(179) 

16.6 ± 

3.0(92) 

15.9 ± 2.9(87) 0.23 

BMI     

  Mean ± SD (N) 27.3 ± 

5.5(178) 

27.4 ± 

5.0(92) 

27.3 ± 6.0(86) 0.66 

Systolic Blood Pressure     

  Mean ± SD (N) 128.9 ± 

18.1(179) 

129.6 ± 

19.3(92) 

128.1 ± 

16.8(87) 

0.80 
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Diastolic Blood Pressure     

  Mean ± SD (N) 75.1 ± 

12.4(179) 

76.9 ± 

12.1(92) 

73.1 ± 

12.5(87) 

0.037* 

Pulse rate, beats per min     

  Mean ± SD (N) 67.8 ± 

10.8(179) 

66.9 ± 

10.0(92) 

68.8 ± 

11.5(87) 

0.30 

High Blood Pressure, 

mm Hg 

    

  Yes 79(49.7) 52(57.8) 27(39.1) 0.020* 

  No 80(50.3) 38(42.2) 42(60.9)  

High cholesterol     

  Yes 70(44.6) 43(48.9) 27(39.1) 0.22 

  No 87(55.4) 45(51.1) 42(60.9)  

Diabetes     

  Yes 21(13.1) 11(12.2) 10(14.3) 0.70 

  No 139(86.9) 79(87.8) 60(85.7)  

Heart disease/MI     

  Yes 13(8.2) 6(6.7) 7(10.1) 0.43 

  No 146(91.8) 84(93.3) 62(89.9)  

Congestive Heart failure     

  Yes 4(2.5) 1(1.1) 3(4.3) 0.20 

  No 155(97.5) 89(98.9) 66(95.7)  

Depression     

  Yes 47(29.4) 20(22.2) 27(38.6) 0.024* 

  No 113(70.6) 70(77.8) 43(61.4)  
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Atrial Fibrillation or 

irregular heart rhythm  

    

  Yes 20(12.7) 11(12.4) 9(13.2) 0.87 

  No 137(87.3) 78(87.6) 59(86.8)  

Ab42, pg/dl     

  Mean ± SD (N) 255.5 ± 

83.2(183) 

256.0 ± 

61.1(91) 

255.1 ± 

100.8(92) 

0.61 

Tau,pg/dl     

  Mean ± SD (N) 60.4 ± 

35.8(183) 

48.4 ± 

20.6(91) 

72.2 ± 

43.2(92) 

<0.00

01* 

Ptau,pg/dl     

  Mean ± SD (N) 15.7 ± 

9.5(180) 

12.3 ± 

6.5(90) 

19.0 ± 

10.9(90) 

<0.00

01* 

MOCA, score     

  Mean ± SD (N) 24.3 ± 

3.7(162) 

26.6 ± 

2.6(92) 

21.3 ± 2.8(70) <0.00

01* 

HVLTR, Delayed Recall     

  Mean ± SD (N) 8.1 ± 3.2(161) 9.7 ± 2.0(92) 6.0 ± 3.4(69) <0.00

01* 

Trail Part A     

  Mean ± SD (N) 39.3 ± 

16.6(162) 

34.9 ± 

11.1(92) 

45.1 ± 

20.6(70) 

0.000

8* 

Trail Part B     

  Mean ± SD (N) 108.8 ± 

67.1(161) 

83.3 ± 

41.0(92) 

142.8 ± 

79.3(69) 

<0.00

01* 
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Total Hippocampal 

Volume 

    

  Mean ± SD (N) 7303 ± 

1046(139) 

7654 ± 

881.8(80) 

6828 ± 

1071(59) 

<0.00

01* 

Smoking status     

  Never 44(37.9) 32(43.8) 12(27.9) 0.001

4* 

  Current 21(18.1) 6(8.2) 15(34.9)  

  Ex 51(44.0) 35(47.9) 16(37.2)  

EtOH consumption     

Current 88(89.8) 66(93.0) 22(81.5) 0.09 

Never or remote 10(10.2) 5(7.0) 5(18.5)  
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Table 2: Results of the Pathway Enrichment Analysis with the significant features and associated pathways in the Normal vs MCI 

groups 

m/z 
time 

(s) 

Feature Name (KEGG 

compound name) 
Pathway(s)* 

Fold Change 

VIP 
Wilcoxon 

P 

Metabolite 

identificati

on level*** 

Adduct 

(log2; NC vs 

MCI) 

-ve: lower in NC 

+ve: higher in 

NC 

 

173.0434 52 L-Ribulose (C00508)** 
Tyrosine metabolism; 

Purine metabolism 
-0.1642 3.30 0.0001 3 M+Na[1+] 

205.0682 62 D-Sorbitol (C00794 )** Galactose metabolism -0.124 1.97 0.0025 5 M+Na[1+] 

365.1054 164 Maltose (C00208 )** 
Sialic acid metabolism; 

Galactose metabolism 
-0.2469 2.81 0.0055 5 M+Na[1+] 

385.1303 73 

S-

Adenosylhomocystein

e (C00021) 

Methionine and cysteine 

metabolism; Vitamin B12 

(cyanocobalamin) 

metabolism; Urea 

cycle/amino group 

-0.2034 2.15 0.0167 1 M+H[1+] 
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metabolism; Tyrosine 

metabolism 

517.9829 81 
 7,8-Dihydroneopterin 3'-

triphosphate (C04895)** 
Biopterin metabolism -0.6569 2.32 0.0217 5 M+Na[1+] 

255.1076 68 
Galactosylglycerol 

(C05401) 

Sialic acid metabolism; 

Galactose metabolism 
-0.4977 2.72 0.0231 4 M+H[1+] 

260.0538 57 
N-Acetyl-D-glucosamine 

6-phosphate (C00357)** 
Aminosugars metabolism -0.1686 2.05 0.0248 5 M+H[1+] 

223.0826 53 
salsolinol 1-

carboxylate (C06160) 
Tyrosine metabolism -0.374 2.22 0.0271 4 M+H[1+] 

708.2568 255 
N-acetyl-alpha-D-

glucosamine (C00043)** 

N-Glycan Degradation; 

Keratan sulfate 

degradation 

-0.308 2.15 0.0289 4 M+H[1+] 

399.1444 145 
S-Adenosylmethionine 

(C00019) 

Methionine and cysteine 

metabolism; Vitamin B12 

(cyanocobalamin) 

metabolism; Urea 

cycle/amino group 

metabolism; Tyrosine 

metabolism 

0.3296 2.17 0.0334 1 M+H[1+] 
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384.1499 231 

beta-D-Galactosyl-1,4-

N-acetyl-D-glucosamine 

(C00611)** 

N-Glycan Degradation; 

Aminosugars metabolism; 

Galactose metabolism 

-0.1902 2.02 0.0357 5 M+H[1+] 

221.042 61 
Vanillylmandelic acid 

(C05584) 
Tyrosine metabolism -0.5378 1.92 0.0365 4 M+Na[1+] 

799.6688 37 
Levothyroxine 

(C01829) 
Tyrosine metabolism -0.7153 2.31 0.0416 4 M+Na[1+] 

277.0894 67 
3-beta-D-Galactosyl-sn-

glycerol (C03692)** 

Sialic acid metabolism; 

Galactose metabolism 
-0.1336 2.18 0.0474 4 M+Na[1+] 

244.0797 49 
 

GlcNAc (C00140)** 

N-Glycan Degradation; 

Sialic acid metabolism; 

Aminosugars metabolism; 

Galactose metabolism; 

Keratan sulfate 

degradation; Hyaluronan 

Metabolism 

-0.0803 2.22 0.0507 5 M+Na[1+] 

 

*Some compounds were matched or involved in multiple pathways  
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** These Features had multiple chemical names or were matched to multiple metabolites in the databases (we report the KEGG 

compound name involved in the significant pathway)  

**Description of metabolite identification levels (adapted from Schymanski et al.):  

Level 1 : confirmed by MS/MS and co-elution with authentic standards 

Level 2 : confirmed by MS/MS and matches with online databases or in-silico predicted spectra 

Level 3 : confirmed by MS/MS at the chemical class level, but no evidence for a specific metabolite 

Level 4 : computationally assigned annotation using xMSannotator (medium or high confidence)  

Level 5 : accurate mass match  
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 Figure 1: Manhattan plot shows the VIP and m/z of 8,043 features. A total of 294 features were significantly different between MCI 

cases (n=93) and controls (n=92) by PLS-DA using a VIP measure of 2.0 or greater (threshold indicated by horizontal line).  187 

metabolic features increased (red dots) and 107 decreased (blue dots) in MCI patients compared to controls are indicated. 
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Figure 2: Pathways altered in MCI cases compared to controls. (Pathway analysis was performed using Mummichog 2.0.6 on the 
1049 features identified by PLS-DA with a VIP ≥ 1.5.) 
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Figure 3: Significant Features identified from the Pathway enrichment analysis and their BOX-PLOTs comparing normal to MCI 

participants. 
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Figure 4. Correlations between significant features and disease phenotypes. Spearman correlation coefficients. Red indicates 

positive correlations and blue indicates negative correlations. Correlations with p≥0.05 are marked in grey. 
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