
 1 

 

Abstract— Objective: This study develops a procedure and 
related analytical methods for deriving indices of cerebral 
hemodynamics in the magnetic resonance imaging (MRI) 
setting using resting state recordings of systemic blood 
pressure, pulse rate, and end-tidal CO2 synchronized with 
the MRI image acquisitions of blood oxygenation level 
dependent (BOLD) data as a measure of cerebral perfusion. 
Methods: We employed the concept of Principal Dynamic 
Modes (PDM) to model the effect of three determinants of 
cerebral perfusion: mean arterial blood pressure (MABP), 
end-tidal CO2 (PETCO2), and pulse rate (PR). The relation 
between these signals and the BOLD signal were used 
respectively to quantify cerebral autoregulation (CA), CO2 
vasoreactivity (CVR), and pulse rate reactivity (PRR). 
Results: Hemodynamic indices were obtained from 129 
participants with normal cognition (NC) and mild cognitive 
impairment (MCI).  CA was reduced in MCI compared to 
NC in the parietal lobe, CVR was reduced in MCI in the 
occipital and temporal lobes, and PRR was reduced in the 
frontal, parietal, occipital and temporal lobes. Reduced 
CVR and PRR were associated with worse cognitive scores 
including memory and executive function. Conclusion: 
Employed acquisition and analysis of MRI hemodynamic 
identified cerebral hemodynamic alterations in MCI, related 
to PR and ETCO2 changes. Significance: This modeling 
approach may offer a novel way to clinically assess cerebral 
hemodynamics during MRI. 
 
Index Terms—BOLD, cerebral autoregulation, CO2 
vasoreactivity, Alzheimer’s Disease 
 

I. INTRODUCTION1 
Impaired cerebrovascular regulation is an important factor in 
the pathogenesis of cognitive impairment and 
neurodegenerative illnesses such as Alzheimer’s disease 
(AD) [1-5]. Cerebral autoregulation (CA) and cerebral 
vasomotor reactivity to CO2 (CVR) are two fundamental 
measures of cerebral hemodynamics that are quantified by 
estimating the effects of changes in systemic arterial blood 
pressure and arterial CO2 tension upon changes in cerebral 
blood flow, respectively. These are traditionally measured  
using beat-to-beat changes in mean arterial blood pressure 
(MABP), arterial partial pressure of CO2 reflected by end-
tidal CO2 (PETCO2), and cerebral blood flow velocity using 
transcranial Doppler (TCD) [6-8]. Mathematical models 
have been employed to study the relation between time-
series recordings of MABP and PETCO2 which are viewed 
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as “inputs” and cerebral blood flow (CBF) which is viewed 
as an “output” to a theoretical “cerebrovascular system” 
defined by the input-output data [9-11]. Under this model, 
the simultaneous fluctuations in the time-series recordings of 
hemodynamic data from an individual participant provide a 
means to derive subject-specific indices of cerebral 
hemodynamics. In this context, a body of studies have 
concluded that alterations in cerebral hemodynamics are 
associated with cognitive decline [12-15].  

A key limitation of TCD studies is the low spatial 
resolution, since it is typically measured at the middle or 
anterior cerebral artery. This may veil potentially useful 
clinical information about cerebral hemodynamics in smaller 
regions or at higher resolutions. For this reason, interest has 
begun to shift towards magnetic resonance imaging (fMRI) 
as an alternative approach for assessing cerebral perfusion 
regulation and hemodynamics [16-18]. Using CO2 challenge 
by increasing inhaled air CO2 composition  to 5-8%, CVR 
measured using blood oxygen level dependent (BOLD) MRI 
has been shown to be reduced in AD [19]. However, CO2 
challenge in an MRI suite can be cumbersome. Hence, 
obtaining CVR without an external increase in CO2 may be 
more convenient.  

The view that the effects of cardiorespiratory changes in 
the BOLD signal are useful in estimating cerebral 
hemodynamics is a departure from the traditional view of 
these signals as “physiological interferences” that confound 
interpretation of BOLD MRI. Since the spectral bandwidth 
of spontaneous BOLD fluctuations due to neuronal activity 
overlaps with that of cardiorespiratory fluctuations, they are 
typically filtered-out during BOLD signal analyses [20-22]. 
Although removing this interference might be appropriate to 
estimate neuronal activation in BOLD MRI, the rationale of 
this study is that these fluctuations may offer a way to assess 
hemodynamics in the MRI setting. Hence, we developed a 
modeling approach to estimate cerebral hemodynamics that 
leverage these data. Although using BOLD MRI for deriving 
hemodynamics has been tried previously, our approach has a 
number of innovative aspects. It uses the normal respiratory 
fluctuations in PETCO2 rather than an external CO2 
challenge. It incorporates continuous blood pressure 
measurement concurrent with the BOLD signal acquisition. 
It also models the contribution of pulse rate (PR) and MABP 
to CBF during BOLD MRI acquisition, an area that has been 
rarely focused on in MRI settings.  

We incorporated the concept of Principal Dynamic Modes 
(PDM) to model the BOLD response to PR, MABP and 
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PETCO2 fluctuations using six minutes of resting state time 
series data during normal breathing. The PDMs represent the 
basic information in the dynamic relationship between PR, 
PETCO2 and MABP (the three inputs) and the BOLD signal 
(the output). This work assumes that the resulting three-input 
model may be used to calculate a measure of CA from the 
MABP input and CVR from the PETCO2 input. BOLD 
signal variability reflects, in part, changes in CBF driven by 
local neural activity as well as neurogenic, myogenic and 
other mechanisms related to perfusion pressure and pH [4, 
23]. TCD studies suggest that most of the systemic effects of 
MABP on CBF or CA occur in the low-frequency range 
(below 0.1 Hz) [11, 12, 24]. On the assumption that 
fluctuations within the same frequency range in the BOLD 
signal are also related to MABP, we derived CA from the 
resting state fMRI. We further extended our analysis by 
modeling the contribution of PR to CBF regulation, 
providing a measure pulse rate reactivity (PRR). Our aim in 
this report is to describe the set-up, related procedures, and 
analytical methods for deriving these cerebral hemodynamic 
indices in the MRI setting as well as investigate their 
alterations in mild cognitive impairment (MCI), a prodromal 
stage of AD dementia.  

 
II. METHODS2 

Participant Summary: Data from 129 Brain, Stress, 
Hypertension, and Aging Research Program (BSHARP) 
participants with either normal cognition (NC) or MCI were 
analyzed in this study. Inclusion criteria for MCI included 
subjective memory concern, abnormal cognitive function 
determined by the Logical Memory subscale (Delayed 
Paragraph Recall, Paragraph A only) from the Wechsler 
Memory Scale-Revised (<11 for 16+ years of education, <9 
for 8-15 years of education, <6 for <7 years of education), a 
Montreal Cognitive Assessment (MoCA) score <26, both a 
clinical dementia rating (CDR) global score and memory box 
score = 0.5, and a functional assessment questionnaire (FAQ) 
<9 [25]. Inclusion criteria for NC included MoCA≥26, 

 
  

CDR=0, and normal Logical Memory subscale (<12 for 16+ 
years of education, >8 for 8-15 years of education, >5 for <7 
years of education). This study was approved by the Emory 
IRB and each participant provided a written informed 
consent.  
MRI acquisition: A 50 to 60-minute MRI scan was 
performed on each participant in supine position using a 3T 
scanner (Magnetom Prisma; Siemens, Erlangen, Germany). 
3D T1-weighted images were acquired using a rapid 
gradient-echo imaging sequence: 170 measurements with 
repetition time (TR) = 2500 ms (7-min record); voxel size = 
3.0x3.0x3.0 mm; field of view = 220 mm; 48 transversal 
slices with thickness = 3.0 mm; echo time (TE) = 27 ms; 
flip angle = 90 degrees. This analysis uses the last six of the 
seven-minute resting state session of the MRI protocol. 
Participants underwent an additional CO2 challenge during 
the same scan session as the resting state protocol. This 
challenge included two phases: a normocapnic phase where 
each participant breathed room air followed by two minutes 
of exposure to hypercapnia (8% CO2 gas) via facemask. 
These data were used to derive CVR using the traditional 
method of increasing inhaled CO2 enriched air and was 
calculated as the percent change in BOLD divided by the 
change in PETCO2 from the average of the last minute of 
normocapnia to the last minute of hypercapnia during the 
CO2 exposure. Participants who failed to experience an 
increase in PETCO2 of more than 1.00 mmHg from the 
normocapnia to hypercapnia were not included in the 
analysis. Figure 1 illustrates the setup of the data 
acquisition system at rest and during the CO2 challenge in 
the MRI suite.  

Cardiorespiratory signal acquisition: Simultaneously, 
the cardiorespiratory signals were acquired through the 

 
Figure 1. Set-up of the hemodynamic data acquisition 
system in the MRI suite. PETCO2: Partial pressure of 
CO2; NIBP: Non-invasive blood pressure; PPG: 
photoplethysmography. 
 

 
Figure 2. An example of 6 minutes of preprocessed time-
series data recorded from a single participant, representing 
fluctuations in BOLD (top two panels: whole brain and 
lobar regions) and TR-averaged fluctuations in MABP 
(third panel), ETCO2 (fourth panel), and PR (bottom 
panel: beats per minute, BPM). 
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BIOPAC Systems hardware (MP 150). Continuous blood 
pressure was measured using a finger cuff placed on the 
thumb and connected to CareTaker© system (CT 4.5.0.12) 
[26]. All signals were monitored in AcqKnowledge© 
software (4.4.0) and analyzed using MATLAB (R2019a). 
Photoplethysmography was acquired using a BIOPAC 
BioNomadix pulse transducer. PR was computed by taking 
the inverse of the time interval between each systolic peak in 
the pulse waveform and multiplying the result by 60 to 
achieve the units of beats per minute (BPM). Using the 
systolic (SBP) and diastolic (DBP) points in the blood 
pressure waveform, MABP was calculated as MABP = (SBP 
+ 2DBP)/3. PETCO2 was defined as the value of the %CO2 
signal at the end of a breath and was scaled by 7.13 to convert 
from %CO2 to mmHg.   

MRI image analysis: Statistical Parametric Mapping 
(SPM) was used to perform image realignment and Gaussian 
spatial smoothing. A brain mask was used to remove voxels 
not corresponding to the brain. Next, the T1-weighted 
images were co-registered with the mean of the resting state 
images. The co-registered images were then normalized to 
Montreal Neurological Institute (MNI) template. In the MNI 
space, the whole brain and frontal, parietal, occipital and 
temporal lobes were obtained via segmentation and 

transformed to each participant individually. The whole 
brain and regional BOLD signals were finally extracted from 
these images. The obtained MABP, PR and ETCO2 signals 
were down-sampled to match the BOLD TR (2.5 sec), 
yielding three cardiorespiratory datapoints for each BOLD 
datapoint in the time series. All signals were then low-pass 
filtered at 0.1 Hz to protect the analysis from possible effects 
of aliasing, since the sampling rate of the BOLD signal (1/TR 
= 0.4 Hz) implies a Nyquist rate of 0.2 Hz, below the 
respiratory (~0.3 Hz) and cardiac (~1.0 Hz) cycle [21, 22, 
27]. The voxel-wise resting state BOLD data was normalized 
by dividing the data by the standard deviation of the average 
CSF signal. The BOLD data obtained during CO2 challenge 
was divided by the last 60 seconds of the average CSF signal 
before the onset of CO2. An example of a preprocessed 
resting-state BOLD and cardiorespiratory data from one 
participant is presented in Figure 2.  
Modeling and Statistical Methods: The dynamic effects of 
fluctuations in MABP, ETCO2 and PR upon BOLD intensity 
were estimated and analyzed using the PDM modeling 
concept. The PDM method has been used successfully to 
model cerebral hemodynamics using TCD and near-infrared 
spectroscopy (NIRS) in previous studies [24]. The PDM 
method is based on the Volterra model, a generalized 

 
Figure 3. Block diagram of the PDM model for three inputs MABP, ETCO2 and PR, and voxel-wise percent BOLD change 
output. Each PDM receives their respective input, 𝑥(𝑡), by convolution to generate the PDM output,  𝑢&',)(𝑡). Each PDM 
output is scaled by their respective gains, 𝑔&',+. The predicted voxel-wise output, 𝐵𝑂𝐿𝐷+(𝑡), is the sum all components, 
𝑔&',+ ∙ 𝑢&',)(𝑡) and a constant offset 𝐵𝑂𝐿𝐷1,+. 
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mathematical representation of the input-output relation of a 
dynamic system. The pattern of this relation is defined by the 
Volterra kernels, which at a given time, quantifies the 
relative contribution of the present and past values of the 
input signal in generating the present value of the output 
signal. In this work, we defined a novel voxel-wise 
hemodynamic mapping where each voxel of the brain image 
(≈ 196,900	𝑝𝑒𝑟	𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡	) is treated as an output with 
MABP, PR, PETCO2 defined as the three inputs. As 
illustrated by the block diagram in Figure 3, the input-to-
output transformation performed by the PDM model consists 
of the cascade of dynamic and static operations. The dynamic 
transformation is defined by the convolution of the inputs 
with their respective PDM. Then, the output of each 
convolution is separately received by associating gains that 
determining the relative contribution of each PDM output to 
the BOLD value at each voxel. The voxel components are 
then summed together (along with a constant offset) to form 
the model output prediction at that voxel.  

The PDMs of the three inputs were obtained separately by 
first estimating the kernels using the Laguerre Expansion 
Technique (LET) [28] from the NC group data. Background 
information for this approach is provided in the Appendix. 
The LET model is specified by three parameters: the number 
(L) of orthonormal Laguerre basis functions, the relaxation 
parameter (α) that determines the memory of the system, and 
the model order (Q) which defines the degree of interaction 
of the input epoch. For the purpose of finding the appropriate 
value for these parameters, we assumed a linear LET model 
(Q = 1) and searched for the L and α that minimized the 
normalized mean square error (NMSE) for each input 
individually with the whole brain BOLD signal taken as the 
single output. Using the obtained L and α, the voxel-wise 
kernels were estimated using a three-input model. Singular 
value decomposition (SVD) was applied to the matrix 
containing the voxel-wise kernels of each input individually 
for all participants in the NC group. The smallest set of 
singular vectors required to explain at least 90% of the 
variance in the kernel matrix was selected as the PDMs for 
that input. The PDM gains were estimated for each 
participant using their input-output data (Appendix). Since 
this study is constrained to linear analysis, the PDMs and 
their respective gains contain all the information required to 
quantify reactivity for each participant.  
Hemodynamic indices: In order to quantify the 
cerebrovascular hemodynamic characteristics, we computed 
the model-predicted voxel-wise steady-state percent change 
in BOLD response to a step change in MABP, ETCO2 and 
PR. These quantities are referred to as BP reactivity or 
cerebral autoregulation (CA), CO2 vasoreactivity (CVR), 
and the newly defined PR reactivity (PRR), respectively. 
We note that each quantity is obtained by applying a step 
signal at the respective input while the other three are held 
constant at zero. These quantities reflect static 
hemodynamic indices, since we use the steady state 
%ΔBOLD value at each voxel. In addition, we quantify 
dynamic reactivity by way of the estimated PDM gains 
which quantifies frequency-dependent hemodynamic 
 

  

indices. Whole brain and regional estimates are computed 
by averaging over all brain tissue voxels and voxels 
corresponding to a region in the MNI space, respectively. 

To assess the significance and utility of these indices, we 
examined their correlation with two additional measures of 
hemodynamics collected on each participant: 1) CO2-
reactivity derived from a hypercapnic challenge protocol 
described above and 2) the ratio of the sit-to-stand change in 
MABP to PR. The latter is assumed to be an indirect measure 
of autonomic BP regulation in part controlled by CA and 
baroreceptor activity [29]. We next compared the derived 
PDM-based indices between NC and MCI in four brain 
regions: frontal, temporal, parietal and occipital region. 
Lastly, after adjusting for potential  confounders (age, race, 
sex, body mass index and hypertension), we examined the 
associations between these indices and cognitive 
performance on MoCA, delayed recall on the Hopkins 
Verbal Learning Test (HVLT), a measure of memory, and 
Trail Making Test (Parts B-A), a measure of executive 
functioning [25, 30]. 

 
III. RESULTS3 

Participants: Our sample consists of 129 participants (mean 
age 65, 80 female, 69 white, 60 black, 79 MCI). Table 1 
provides key characteristics of the analytical sample.  

TABLE 1 
 Demographic and hemodynamic characteristics of the 

129 participants included in this study. 
    

Normal 
n=50 

MCI 
n=79   

    μ(σ)/n(%) μ(σ)/n(%) p-value 

Age 61.59 
(6.28) 

66.36 
(8.45) 0.002 

Sex 
Male 32 

(65.31%) 
20 

(37.04%) 0.008 
Female 17 

(34.69%) 
34 

(62.96%) 

Race 
White 27 

(55.1%) 
28 

(51.85%) 0.89 
Black 22 

(44.9%) 
26 

(48.15%) 

Body Mass Index 27.59 
(5.05) 

30.38 
(6.13) 0.03 

Hyper-
tension 

No 20 
(41.67%) 

27 
(50%) 0.52 

Yes 28 
(58.33%) 

27 
(50%) 

MoCA 26.27 
(2.61) 

21.22 
(3.99) < 0.001 

Sit-to-Stand 
MABP 

3.26 
(9.36) 

6.58 
(6.81) 0.04 

Sit-to-Stand PR 10.02 
(5.28) 

8.22 
(5.7) 0.10 

  
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 26, 2020. ; https://doi.org/10.1101/2020.02.23.20018846doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.23.20018846


 5 

Model Development and performance: Following the 
analytical procedure described in the Methods section, L and 
α were identified for all three inputs using a search procedure 
on all participants in the NC group which yielded the 
following results: L = 4 and α = 0.25 for the MABP and PR 
inputs and L = 4 and α = 0.4 for the PETCO2 input. Four 
PDM for each input were found to be required to explain at 
least 90% of the variability in the three kernel matrices. 
Modeling performance of observed BOLD signal 
demonstrated good predictive performance reflected by 
comparable NMSE in the NC group (used for obtaining the 
PDM) and the MCI group (Table 2, Supplement). Figure 4 
illustrates the observed and the model-predicted whole brain 
BOLD output for a single participant in the MCI group, 
indicating good predictive performance.  
Dynamic characteristics of obtained PDM models: Based 
on our modeling criteria, we identified four PDM for each 
cardiorespiratory input which are illustrated in the time and 

frequency domains in Figure 5. Each PDM exhibited 
distinct resonant characteristics below 0.1 Hz, similar to 
that found in previous work using NIRS [24]. The first 
PDM for the MABP and PR had a general high-pass 
characteristic with a blunt peak at about 0.08 Hz for MABP 
and two peaks at 0.02 and 0.10 Hz for PR. The first PDM 
for the PETCO2 input exhibited a more integrative 
characteristic with a dominant positive phase and blunt 
resonant peak at about 0.07 Hz.  Common among all three 
inputs where two PDMs that had strong resonances between 
0.02 and 0.06 Hz.  
 Figure 6 illustrates the average whole brain step response 
to each input between NC and MCI, along with 95% 
confidence bounds. Qualitatively, there was a clear 
difference in the average BOLD response to the three 
stimuli between NC and MCI. The response to MABP 
appeared to exhibit the most intragroup variability, while 
the response to the ETCO2 and PR inputs showed less 
variability. The indices described in Methods were derived 
to test for possible statistical differences between the two 
groups. 
 
Traditional vs. PDM-based hemodynamic indices: Figure 7 
illustrates the comparison between the two methods of 
calculating CVR and CA. There was a positive association 
between the two measurements of CVR (β = 0.03, p = 0.02, 
partial R2 = 0.05). There was a negative association 

 
Figure 4. Actual and PDM-derived predicted whole brain 
BOLD signal for a single MCI participant showing good 
prediction of BOLD signal fluctuations using the PDM 
modeling approach.  
 

 
Figure 5. PDM for the MABP (top), ETCO2 (middle) and 
PR (bottom) inputs in the time (left) and frequency (right) 
domain.  

 

 
Figure 6. Mean (95% CI) model-predicted whole brain 
BOLD step response to MABP (left), ETCO2 (middle), and 
PR (right) for the NC (blue) and MCI (red) groups. 

 

 
Figure 7. Association between a traditional measurement 
of CVR using hypercapnic challenge data and the PDM-
derived CVR (left), and between the ratio of sit-to-stand 
MABP to PR and CA (right). β = slope.  
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between the ratio of sit-to-stand MABP to PR and BPR (β = 
-0.81, p = 0.005, partial R2 = 0.07). 
PDM-hemodynamic indices in MCI vs. NC:  Figure 8 and 9 
(Supplement) illustrate respectively the differences in 
obtained indices between NC and MCI in the four lobes and 
whole brain. Compared to NC, CA and the gain of the 1st 
PDM of the MABP input was reduced in MCI in the 
parietal lobe. CVR was reduced in MCI in the occipital and 
temporal lobes, while there was no reduction in CVR using 
the traditional method (Table 3, Supplement). In the MCI 
group, the gain of the 1st PDM of the ETCO2 input was 
reduced in the occipital lobe. PRR was reduced in the 
frontal lobe in the MCI group. The gain of the 3rd PDM of 
the PR input was reduced in the frontal lobe, while the that 
of the 4th PDM was reduced in whole brain and in the 
parietal, occipital and temporal lobes.   
Associations between cognitive scores and PDM-based 
hemodynamic indices: We show the association of two 
hemodynamic indices (CVR and PRR) that were different 
between the NC and MCI groups, with neuropsychological 

scores in Figures 10 and 11 for the four lobes and whole 
brain in Figure 12 (Supplement). CVR was positively 
associated with delayed recall on HVLT (p = 0.01) and 
negatively associated with Trail Making Test B-A (p = 
0.02) in the occipital lobe, while both were marginal in the 
temporal lobe (HVLT: p = 0.07, Trails B-A: p = 0.12). The 
positive association of whole brain CVR with HVLT 
delayed recall was marginal (p = 0.092). The gain of the 1st 
PDM of the PR input was positively associated with HVLT 
in the frontal (p = 0.0057), parietal (p = 0.019), occipital (p 
= 0.016) and temporal (p = 0.029) lobes and in Trails B-A 
in the frontal lobe (p = 0.048). There was a marginal 
association with MoCA in the frontal (p = 0.067), parietal 
(p = 0.098), occipital (p = 0.053) and temporal (p = 0.084) 
lobes. The positive association of whole brain PRR with 
MoCA was marginal (p = 0.092) but significant with HVLT 
delayed recall (p = 0.006).  

 
Figure 8. Left panel: Average CA (top), CVR (middle), and PRR (bottom) in the frontal (F), parietal (P), occipital (O) and 
temporal (T) lobes. Right four panels: PDM gains of the MABP (top), ETCO2 (middle), and PR (input) in NC (blue) and 
MCI (red). *: p < 0.05, ** p < 0.01, *** p < 0.001.  
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IV. DISCUSSION4 
The main results of this study suggest that with 

moderate alterations to the MRI setup and a modeling 
approach to MRI data analyses, we were able to derive a set 
of previously described and novel indices of cerebral 
hemodynamics. We also discovered that PRR, an indicator 
of CBF response to changes in pulse rate is reduced in MCI 
and that this reduction is associated with cognitive 
performance on neuropsychological assessments. In 
addition, the results suggest that hemodynamic indices, 
especially CVR, calculated from spontaneous BOLD and 
cardiorespiratory fluctuations recorded during resting state 
fMRI using a linear input-output model has similar or even 
better utility than the hypercapnic protocol. The observed 
reduction in CVR using the PDM-based measure that was 
absent using the data obtained during hypercapnic 
challenge further suggests that measuring CVR from resting 
state data may be a better alternative than the traditional 
approach. These are consistent with our previous studies 
which indicate that CVR alterations at rest provide better 
correlates with cognition in MCI using TCD and NIRS [14, 
24]. The results of this MRI study indicate that CA is not 
different in MCI relative to NC. Pulse rate has been shown 
to predict heart disease and other complications [31]. To 
our knowledge, however, this study is the first to 
demonstrate a reduction in the BOLD response to pulse rate 
in MCI.  

One implication of the performance of the PDM-based 
measures in explaining differences in cognitive function 
relative to the traditional CVR measurements is that there 
may exist a more cost-effective alternative to assessing 
CVR in the MRI setting. This finding was also reported 
using TCD [15], and motivates further research. In addition, 
 

4  

our results provide a rationale to develop and examine 
hypotheses about the interaction between pulse rate and 
cognitive function. Assuming a relatively constant stroke 
volume, a blunted BOLD response to a change in pulse rate 
may be secondary to a reduced cardiac output in MCI. We 
have previously reported that a state of inotropic 
insufficiency is present in those with MCI. This work 
further supports our prior findings [32].   

Similar to previous studies, the estimated dynamic 
response of BOLD to pulse rate and CO2 tension mimics 
the putative hemodynamic response in fMRI [22, 33]. In 
addition, our preliminary results suggest that the dynamic 
BOLD response to MABP also follows this pattern. Since 
we measured continuous blood pressure in this study, these 
data provide more robust evidence for the BOLD signal-
MABP association. Further, the first PDM of each input is 
qualitatively similar to the previously described 
hemodynamic waveform. A potentially insightful finding of 
this work is the additional PDM which do not emulate the 
hemodynamic response but were required to obtain 
sufficiently accurate adequate CBF modeling. While it is 
not possible to examine the physiological basis of these 
additional waveforms in this present study, our findings 
may provide a foundation to explore the possibility that 
these PDM may reflect other autonomic, myogenic, or yet 
to be discovered mechanisms.  

  An important  limitation of our study is the high TR (2.5 
sec) leading to a lower sampling rate relative to the cardiac 
(~ 1 Hz) and respiratory (~ 0.3 Hz) cycles, which is likely 
to lead to aliasing of the recorded BOLD time series [27]. A 
correction technique that relies on electrocardiogram (ECG) 
and respiratory phase information has been used [34]. Since 
ECG data was not available in our study, we used a low-

 

 
Figure 10. Association between the PDM-based CVR using resting state BOLD and MoCA (top), delayed recall HVLT 
(middle), and Trail Making test B-A (model) in the frontal (F), parietal (P), occipital (O) and temporal (T) lobes. β = slope. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 26, 2020. ; https://doi.org/10.1101/2020.02.23.20018846doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.23.20018846


pass filter with a cutoff of 0.1 Hz, which would provide a 
similar but not identical correction factor. Future work 
should examine the effect of shortening the TR on the PDM 
modeling results. Another important limitation of this work 
is the absence of the examination of the relation between 
the model-based hemodynamic indices and structural 
information (e.g. cortical thickness) and AD-related 
biomarkers (β-amyloid and Tau). This issue may be 
addressed in future work in the context of voxel-wise 
analysis. With these limitations in mind, the main results of 
this study indicate that cerebral hemodynamics can be 
assessed during resting state in an MRI setting. The PDM 
concept allowed us to measure known CA and CVR, and 
novel (PRR) indices of hemodynamic control, as well as 
perform comparisons within the brain regions for 
hemodynamic alterations. 
 

V. APPENDIX5 
The input-output transformation performed by the 

single-input-single-output linear and time-invariant model is 
defined as  
 

y(t) = k1 + D 𝑘(𝜏)𝑥(𝑡 − 𝜏)𝑑𝜏
I

1

 

 
where y(t) and x(t) denote the output and input, respectively. 
The terms k0 and k(τ) are respectively the 0th order kernel and 
first order kernel, or impulse response function, of the 
system. The kernels are estimated from the input-output data, 
which are in discrete time form. Therefore, the model above 
is estimated using Laguerre kernel expansion, which yields 
the modified Volterra model [28]:  

 
5  

 

y(𝑛) = a1 +K𝑎L

M

LNO

𝑣L(𝑛) + 𝜀(𝑛) 

 

vL(𝑛) = 𝑇 K 𝑙L(𝑚)𝑥(𝑛 −𝑚)
VWO

XN1

 

and 

𝑘(𝜏) =K𝑎L

M

LNO

𝑙L(𝜏) 

where n = t ∙ T is the discrete time index, T is the sampling 
interval, M is the system memory, L is the number of 
Laguerre functions {𝑙L} used for kernel expansion, and {aj} 
is the expansion coefficient. Estimation of the expansion 
coefficients involves minimizing the model prediction error 
𝜀(𝑛) in the mean-square sense. This is achieved using the 
normalized mean-square error (NMSE): 
 

𝑁𝑀𝑆𝐸 =
1/(𝑁)∑ 𝜀a(𝑛)b

cNO

1/(𝑁)∑ 𝑦a(𝑛)b
cNO

 

 
The PDM {ℎL'} are the left singular vectors of singular 

value decomposition (SVD) of the matrix containing the 
estimated impulse response functions of input x in its 
columns. The number of PDM, 𝐻), is defined here to be the 
minimum number of singular vectors required to explain 
90% of the variance in the kernel matrix. This paper extends 
the analysis to the case of multiple outputs: 

 

 
Figure 11. Association between the gain of the 4th  PDM of the PR input and MoCA (top), Delayed recall HVLT (middle), 
and Trails B-A (model) in the frontal (F), parietal (P), occipital (O), and temporal (T) lobes. β = slope. 
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Y(n) = G1 +KKGkl,mukl(n)
ol

klNOm

+ Ε(n) 

 

𝑢L'(𝑛) = 𝑇 K ℎL'(𝑚)𝑥(𝑛 −𝑚)
VWO

XN1

 

and 

𝑘),q(𝜏) = K gL',),q

s'

L'NO

ℎL'(𝜏) 

 
where Y(n) and Ε(n) are a Ξ-row vectors and Ξ is the number 
of output signals. The Hm × Ξ matrix GL',) contains the PDM 
gains gL',),q for the jxth PDM of input x and output yq. The 
kernel of the ξx& voxel, 𝑘),q(𝜏), is constructed by the PDM 
and their associated gains. The NMSE for the case of 
multiple outputs defined as: 
 

𝑁𝑀𝑆𝐸 =
1/(𝑁 ∙ Ξ)∑ ∑ 𝜀qa(𝑛)b

cNOq

1/(𝑁 ∙ Ξ)∑ ∑ 𝑦qa(𝑛)b
cNOq
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