
1 
 

Polygenic modulation of lipoprotein(a)-associated cardiovascular risk. 1 
 2 
Brief title: Lipoprotein(a)-associated cardiovascular risk. 3 
 4 
Mark Trindera,b, MSc, Liam R. Brunhama,b,c,d, MD, PhD. 5 
 6 
a Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada. 7 
b Experimental Medicine Program, University of British Columbia, Vancouver, British 8 
Columbia, Canada 9 
c Department of Medicine, University of British Columbia, Vancouver, British Columbia, 10 
Canada 11 
d Department of Medical Genetics, University of British Columbia, Vancouver, British 12 
Columbia, Canada 13 
 14 
Funding: This project was supported by the Providence Health Care Research Institute. M.T. is 15 
supported by a Vanier Canada Graduate Scholarship. L.R.B. is supported by a Michael Smith 16 
Foundation for Health Research Scholar Award and is a Canada Research Chair in Precision 17 
Cardiovascular Disease Prevention. 18 
 19 
Disclosures: None. 20 
 21 
* Address for correspondence: 22 
Dr. Liam R. Brunham 23 
Centre for Heart Lung Innovation 24 
Room 166-1081 Burrard Street 25 
Vancouver, BC V6Z 1Y6 26 
Phone: (604) 682-2344 x63929 27 
Fax: (604) 806-9274 28 
Email: liam.brunham@ubc.ca  29 
Twitter handle: @LiamBrunham  30 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.22.20026757doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.02.22.20026757
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

ABSTRACT 31 

Aims: Elevated levels of lipoprotein(a) are one of the strongest inherited risk factors for 32 

coronary artery disease (CAD). However, there is variability in cardiovascular risk among 33 

individuals with elevated lipoprotein(a). The sources of this variability are incompletely 34 

understood. We assessed the effects of a genomic risk score (GRS) for CAD on risk of 35 

myocardial infarction among individuals with elevated lipoprotein(a). 36 

Methods: We calculated CAD GRSs for 408,896 individuals of British white ancestry from 37 

the UK Biobank using 6.27 million common genetic variants. Lipoprotein(a) levels were 38 

measured in 310,020 individuals. The prevalence and risk of myocardial infarction versus 39 

CAD GRS percentiles were compared for individuals with and without elevated lipoprotein(a) 40 

defined as ≥120 or 168 nmol/L (≈50 or 70 mg/dL, respectively).  41 

Results: Individuals with elevated lipoprotein(a) displayed significantly greater CAD GRSs 42 

than individuals without elevated lipoprotein(a), which was largely dependent on the 43 

influence of genetic variants within or near the LPA gene. Continuous levels of CAD GRS 44 

percentile were significantly associated with risk of myocardial infarction for individuals with 45 

elevated lipoprotein(a). Notably, the risk of myocardial infarction for males with elevated 46 

lipoprotein(a) levels, but a CAD GRS percentile in the lower quintile (<20th percentile), was less 47 

than the overall risk of myocardial infarction for males with non-elevated lipoprotein(a) levels 48 

(hazard ratio [95% CI]: 0.79 [0.64-0.97], p=0.02). Similar results were observed for females. 49 

Conclusion: These data suggest that CAD genomic scores influence cardiovascular risk among 50 

individuals with elevated lipoprotein(a) and may aid in identifying candidates for preventive 51 

therapies.  52 
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INTRODUCTION 55 

 Lipoprotein(a) is a plasma lipoprotein composed of a low-density lipoprotein particle that 56 

is covalently linked to apolipoprotein(a) by a disulfide bond. Lipoprotein(a) levels are among the 57 

strongest inherited risk factors for cardiovascular disease1–9, and Mendelian randomization 58 

studies suggest that elevated levels of lipoprotein(a) are causal for aortic stenosis10, heart 59 

failure11, ischemic stroke12, and coronary artery disease (CAD)1,13. Plasma levels of 60 

lipoprotein(a) are largely determined by genetic factors which include single-nucleotide variants 61 

and copy number variants in the kringle IV type 2 (KIV-2) domain of the LPA gene5,6,14,15.  62 

 Elevated lipoprotein(a) is a common condition that is estimated to affect 1 in 5 63 

individuals of European ancestry (plasma lipoprotein(a) levels greater than 50 mg/dL)16. 64 

Although elevated lipoprotein(a) is associated with increased cardiovascular risk, the optimal 65 

treatment of elevated lipoprotein(a) is uncertain. While there are currently no approved therapies 66 

for lowering lipoprotein(a), antisense oligonucleotides that target apolipoprotein(a) and reduce 67 

lipoprotein(a) levels by up to 80% have been developed and are currently being studied in 68 

clinical trials17–19. At the individual level, there is substantial variability in cardiovascular risk 69 

among individuals with elevated lipoprotein(a)1,20,21, and it remains unclear whether isolated 70 

elevated lipoprotein(a) in the absence of other cardiovascular risk factors merits treatment to 71 

reduce cardiovascular risk .  72 

Recent work suggests that genomic risk scores (GRSs), which summarize the association 73 

of millions of common genetic variants with risk of CAD into a single value, may be a useful 74 

tool for improving risk prediction of CAD7,22–25. Here we tested the hypothesis that, among 75 

individuals with elevated lipoprotein(a), the risk of CAD would be modulated by a GRS for 76 

CAD, and that this may be useful for risk stratification.     77 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.22.20026757doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.22.20026757
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

 78 

METHODS 79 

Study population. 80 

We studied participants from the UK Biobank, a large population-based prospective 81 

cohort study from the United Kingdom that aims to improve the prevention, diagnosis and 82 

treatment of disease by following the health and well-being of approximately 500 000 83 

individuals. Individuals were enrolled between 2006-2010 and were between 40-69 years-of-age. 84 

Individuals underwent deep phenotyping at study enrollment and DNA was collecting for 85 

genotyping, as previously described26. The UK Biobank resource was approved by the UK 86 

Biobank Research Ethics Committee, and all participants provided written informed consent to 87 

participate in the study. This study was approved by the UK Biobank (application ID: 42857) 88 

and by the Clinical Research Ethics Board of the University of British Columbia (H18-02181).  89 

Biochemical measurements. 90 

Biochemical measurements were assessed at the time of study enrollment (Supplemental 91 

Methods; Supplemental Table 1). Lipoprotein(a) was measured using an immuno-turbidimetric 92 

method on the Beckman Coulter AU5800 platform (Randox Bioscience, UK), which is 93 

essentially isoform insensitive27. Where indicated, lipoprotein(a) concentration was converted 94 

from nmol/L to mg/dL by dividing values by 2.43,28. Elevated lipoprotein(a) was defined as 95 

lipoprotein(a) levels ≥  120 nmol/L (≈50 mg/dL) or ≥ 168 nmol/L (≈70 mg/dL)27,29,30. For 96 

individuals taking cholesterol-lowering medication, total cholesterol and low-density lipoprotein 97 

cholesterol levels were adjusted by multiplying on-treatment lipid levels by 1.43, corresponding 98 

to an estimated 30% reduction in low-density lipoprotein cholesterol31,32.  99 

Calculation of coronary artery disease genomic risk scores. 100 
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The weightings used to calculate CAD GRSs were obtained from the Cardiovascular 101 

Disease Initiative Knowledge Portal and can be accessed at www.broadcvdi.org7,22. CAD GRSs 102 

were calculated for individuals of British white ancestry using imputed genetic data that were not 103 

flagged as outliers for excess missingness or heterozygosity26. CAD GRSs were calculated using 104 

6.27 million of the 6.63 million potential single-nucleotide variants described by Khera et al. 105 

(2018). Variants that displayed deviation from Hardy-Weinberg equilibrium (p<1x10-6), a 106 

genotyping rate <95%, or minor allele frequency <1% were removed. The PLINK score function 107 

was used to multiply the number of alleles associated with adjusted β-coefficient for increased 108 

risk of CAD at each single-nucleotide variant by its respective linkage disequilibrium-adjusted 109 

weight and sums these products across all available variants to generate a GRS for each 110 

individual23,33. CAD GRSs were also calculated after excluding genetic variants located within 111 

7.5 million base pairs upstream and downstream of the LPA gene. CAD GRSs were converted 112 

into percentiles relative to the distribution of CAD GRSs in the UK Biobank study population.  113 

The top 100 genetic variants used in the calculation of CAD GRSs were manually curated 114 

for association with known cardiovascular risk factors using the NHGRI-EBI Genome-Wide 115 

Association Study Catalog34. 116 

Definition of cardiovascular events. 117 

Phenotypes, including the primary outcome of myocardial infarction, were defined using 118 

reports from medical history interviews occurring at enrollment, International Classification of 119 

Diseases (ICD)-9th and -10th Revision codes, and death registry records (Supplemental Methods, 120 

Supplemental Table 2). Events occurring before and after enrolment were included unless 121 

otherwise stated. Events occurring prior to enrolment were identified by either self-reported 122 

medical history and/or previous hospital admission within an electronic health record. Incident 123 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.22.20026757doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.22.20026757
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

events were defined by hospital admission with an electronic health record entry or death 124 

records. Events were censored on the date of loss-to-follow-up or if individuals remained event-125 

free up to March 31, 2017.  126 

Statistical analyses. 127 

 All statistical analyses were performed using R version 3.6.0 software (R Core Team, 128 

2019). Individuals with missing values were excluded from analyses. 129 

Chi-square tests were used for contingency analyses. For comparison of 2 groups, data 130 

were analyzed with an unpaired t-test or Mann–Whitney U test as appropriate.  For comparison 131 

of more than 2 groups, data were analyzed with one-way analysis of variance test (with Tukey's 132 

multiple comparison post hoc tests) or Kruskal-Wallis test, as appropriate (with Dunn’s multiple 133 

comparison post hoc tests).  134 

 The distributions of CAD GRS percentiles were compared between individuals with 135 

traditional cardiovascular risk factors determined at study enrollment that included: 136 

hypertension, severe hypercholesterolemia (low-density lipoprotein cholesterol levels ≥ 4.9 137 

mmol/L), diabetes mellitus, obesity (body mass index ≥ 30 kg/m2), current smoker status, 138 

insufficient physical activity (classification of low activity level according to the International 139 

Physical Activity Questionnaire), insufficient fruit and vegetable intake (< 3 servings per day; 140 

sum of cooked vegetable intake, fresh fruit intake, and salad/raw vegetable intake), and strata of 141 

lipoprotein(a) levels (<72, 72-120, 120-168, and ≥168 nmol/L).  142 

 The prevalence of cardiovascular events of interest were calculated for each decile of 143 

CAD GRS percentile. Linear regression models were used to assess the correlation between 144 

cardiovascular disease prevalence and CAD GRS percentile using elevated lipoprotein(a) status 145 

as a covariate or interactive term 146 
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Time-to-event analyses were analyzed with the “survival” version 2.43-3 package for R 147 

with Log-rank tests. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated 148 

using Cox regression models stratified by sex with age of event as a time scale. All Cox 149 

regression models were adjusted for the first 4 principal components of ancestry and genotyping 150 

array. 151 

Statistical significance was claimed when two-sided p-values were <0.05. 152 

 153 

RESULTS 154 

Characteristics of individuals from the UK Biobank. 155 

 This study included 408,896 individuals of British white ancestry from the UK Biobank 156 

study, of whom 310,020 had lipoprotein(a) levels measured at enrollment (Table 1). The average 157 

age of enrollment was 56.9 years-of-age (standard deviation: 8.0 years) and 54.1% were female.  158 

Genomic risk scores for coronary artery disease associate with the prevalence of traditional 159 

cardiovascular risk factors. 160 

 First, we assessed how CAD GRSs were associated with traditional cardiovascular risk 161 

factors. Individuals with hypertension, severe hypercholesterolemia, diabetes mellitus, obesity, 162 

and a current smoker status displayed significantly higher CAD GRS percentiles than those 163 

without the cardiovascular risk factor of interest (Mann-Whitney U test: p=0.0006 for smoking 164 

status, p<0.0001 for others; Figure 1a-e; Supplemental Table 3). There was also a significant 165 

stepwise increase in the median CAD GRS percentile as the number of traditional CAD risk 166 

factors per an individual increased (Kruskal-Wallis test: p<0.0001; Figure 1f). Alternatively, 167 

CAD GRSs did not display an association with insufficient physical activity (Mann–Whitney U 168 
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test: p=0.40) or an insufficient daily intake of fruits and vegetables (Mann–Whitney U test: 169 

p=0.40) (Supplemental Figure 1).  170 

Individuals with elevated lipoprotein(a) have higher genomic risk scores for coronary artery 171 

disease. 172 

 CAD GRS percentiles displayed a significant and strong association with lipoprotein(a) 173 

levels (Kruskal–Wallis test: p<0.0001; Figure 2A). Notably, individuals with lipoprotein(a) 174 

levels greater or equal to 120 nmol/L (≈50 mg/dL) displayed a median CAD GRS of 65.2 175 

percentile. Individuals with elevated lipoprotein(a) tended to have CAD GRSs that were 176 

comparable to individuals with multiple traditional cardiovascular risk factors at the time of 177 

study enrollment (i.e. the median CAD GRS percentile for individuals with hypertension, severe 178 

hypercholesterolemia, diabetes mellitus, obesity, and current smoker status was 65.5 percentile). 179 

The higher CAD GRS percentile observed among individuals with elevated lipoprotein(a) was 180 

dependent on genetic loci within and around the LPA gene. When CAD GRSs were re-calculated 181 

after the exclusion of DNA variants located 7.5 million base pairs up- or downstream of the LPA 182 

gene, the difference in CAD GRSs across strata of lipoprotein(a) levels was attenuated (Kruskal–183 

Wallis test: p=0.02; Figure 2B; Supplemental Table 4). 184 

 The strong association between CAD GRSs and elevated lipoprotein(a) reflects both the 185 

high heritability and atherogenicity of lipoprotein(a) particles. Specifically, the locus in the CAD 186 

GRS with the greatest standardized effect size (rs186696265; GRCh37 position 187 

6:161111700:C:T), and hence the greatest influence on CAD GRSs by weight, is known to 188 

associate with lipoprotein(a) levels (Figure 2C). Moreover, 6 of the top 100 loci with the largest 189 

standardized effect sizes in the CAD GRSs have known associations with lipoprotein(a) levels 190 

and include: rs186696265, rs10455872 (6:161010118:A:G). rs55730499 (6:161005610:C:T), 191 
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rs118039278 (6:160985526:G:A), rs56393506 (6:161089307:C:T), and rs4252185 192 

(6:161123451:T:C) (Figure 2C).  193 

Association of lipoprotein(a) levels with risk of myocardial infarction. 194 

Consistent with previous studies1,27, lipoprotein(a) levels were right-skewed among 195 

individuals of British white ancestry from the UK Biobank (Figure 3A). The median and 196 

interquartile range of lipoprotein(a) levels was 20.1 and 50.9 nmol/L, respectively. The risk of 197 

myocardial infarction was significantly associated with lipoprotein(a) levels for both male 198 

(adjusted HR [95% CI] 1.06 [1.06-1.07] per 20 nmol/L increase, p<0.0001; Figure 3B) and 199 

female UK Biobank participants (adjusted HR [95% CI] 1.03 [1.02-1.05] per 20 nmol/L 200 

increase, p<0.0001; Figure 3C). 201 

Risk of myocardial infarction is modulated by coronary artery disease genomic risk score 202 

among individuals with elevated lipoprotein(a). 203 

 Next, we assessed if CAD GRSs may help explain some of the heterogeneity in risk of 204 

CAD that is observed in individuals with elevated lipoprotein(a), defined as ≥120 nmol/L (≈50 205 

mg/dL). The prevalence of myocardial infarction was significantly associated with deciles of 206 

CAD GRS percentile in both individuals with and without elevated lipoprotein(a) (Figure 4A). 207 

Individuals with elevated lipoprotein(a) displayed a significantly greater prevalence of 208 

myocardial infarction relative to individuals with non-elevated lipoprotein(a) levels across all 209 

deciles of CAD GRS (β [SE] = 0.786 [0.194], R2=0.913, p=0.0009; Figure 4A; Supplemental 210 

Table 5). This effect was even more striking when deciles of CAD GRS percentile were 211 

calculated after excluding loci associated within and in proximity to the LPA gene (β [SE] = 212 

1.494 [0.216], R2=0.920, p<0.0001; Figure 4B). Individuals with elevated lipoprotein(a) but a 213 

CAD GRS in the first decile had a lower prevalence of myocardial than individuals with non-214 
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elevated lipoprotein(a) and a CAD GRS in the tenth decile (2.98% vs 6.61%, Figure 4B). These 215 

data indicate that the CAD GRS modulates the risk of myocardial infarction associated with 216 

elevated lipoprotein(a). There was no significant interaction between lipoprotein(a) status and 217 

CAD GRS that included or excluded loci in and nearby LPA. 218 

 We next examined the cumulative risk of myocardial infarction across time in males and 219 

females with elevated lipoprotein(a) as a function of CAD GRS. We observed a significant effect 220 

of the CAD GRS on risk of myocardial infarction in these individuals with elevated 221 

lipoprotein(a). The adjusted HR for males was 1.28 (95% CI: 1.23-1.33, p<0.0001) and for 222 

females was 1.16 (95% CI: 1.08-1.25, p<0.0001) per 20 unit increase in continuous CAD GRS 223 

percentile. Notably, the risk of myocardial infarction for individuals with elevated lipoprotein(a) 224 

levels, but a CAD GRS percentile in the lower quintile (<20th percentile), was less than or 225 

equivalent to the overall risk of myocardial infarction for those with non-elevated lipoprotein(a) 226 

levels (adjusted HR [95% CI]: 0.79 [0.64-0.97] and 0.91 [0.66-1.26] with p=0.02 and p=0.58 for 227 

males and females, respectively; Figure 4C). Similar results were observed when the risk of 228 

myocardial infarction was compared between quintiles of CAD GRS percentiles that excluded 229 

loci surrounding the LPA gene (adjusted HR [95% CI] were 0.85 [0.73-0.98] and 0.83 [0.64 -230 

1.07] with p=0.03 and p=0.15 for males and females, respectively; Figure 3D).  231 

Even among individuals with higher lipoprotein(a) levels of  ≥168 nmol/L (≈70 mg/dL 232 

and comprising the top 3.5 percent of the population distribution), we observed a significant 233 

effect of the CAD GRS percentiles on risk of myocardial infarction (Supplemental Figure 2). 234 

Specifically, among these individuals, the adjusted HR for myocardial infarction was 1.31 for 235 

males (95% CI: 1.22-1.41, p<0.0001) and 1.19 for females (95% CI: 1.04-1.34, p=0.009) per 20 236 

percentile increase in continuous CAD GRS. These findings highlight that genomic background 237 
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can still modulate the risk of myocardial infarction for individuals with elevated lipoprotein(a) 238 

and suggest that the CAD GRS may be useful to stratify cardiovascular risk in individuals 239 

identified to have elevated lipoprotein(a). 240 

Effect of coronary artery disease genomic risk score on other cardiovascular outcomes 241 

associated with lipoprotein(a). 242 

Lipoprotein(a) is also likely a causal risk factor for peripheral vascular disease and aortic 243 

stenosis10,35, and, to a lesser extent, ischemic stroke12,36. Since there is considerable overlap of 244 

risk factors between these cardiovascular conditions and CAD37, we sought to assess if CAD 245 

GRSs also modulate the risk of these conditions among individuals with elevated lipoprotein(a). 246 

We observed a  trend towards increased prevalence of peripheral vascular disease (β [SE]: 0.120 247 

[0.055], p=0.002, R2=0.712), aortic stenosis (β [SE]: 0.241 [0.056], p=0.0005, R2=0.615), and 248 

ischemic stroke (β [SE]: 0.182 [0.072], p=0.02, R2=0.361) for individuals with elevated 249 

lipoprotein(a), relative to individuals with non-elevated lipoprotein(a) (Supplemental Figure 3; 250 

Supplemental Tables 6-8). The strength of the association between prevalence of ischemic stroke 251 

and deciles of CAD GRS percentile was weak due to fewer events relative to the other 252 

cardiovascular conditions.  253 

 254 

DISUCSSION 255 

 Here we report that common genetic factors modify the risk of myocardial infarction and 256 

other adverse cardiovascular outcomes among individuals with elevated lipoprotein(a). These 257 

data highlight the atherogenicity and high heritably of lipoprotein(a) levels, as reflected by the 258 

substantial increases in CAD GRSs observed among individuals with elevated lipoprotein(a). 259 

The increased CAD GRSs observed in individuals with elevated lipoprotein(a) were almost 260 
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entirely explained by single-nucleotide variants near the LPA gene having large weighted effect 261 

sizes, and thus, a large influence on the CAD GRS.  262 

 This work adds to the growing literature highlighting the role that polygenic factors play 263 

in modifying the penetrance or expressivity of monogenic conditions, such as familial 264 

hypercholesterolemia22,38–40. To our knowledge, this is the first study to describe the polygenic 265 

modulation of myocardial infarction and other adverse cardiovascular outcomes by CAD GRSs 266 

among individuals with elevated lipoprotein(a).  267 

Elevated lipoprotein(a) is a common monogenic condition resulting from genetic 268 

variation in and around the LPA gene, which includes single-nucleotide variants and copy 269 

number variation in the KIV-2 DNA sequence. Variation in the number of KIV-2 repeats results 270 

in plasma lipoprotein(a) particles that display considerable interindividual variation in 271 

apolipoprotein(a) isoform size (ranging from 300-800 kDa). The number of KIV-2 repeats are 272 

also inversely associated with lipoprotein(a) levels. However, lipoprotein(a) levels (i.e. molar 273 

concentration), rather than apo(a) isoform size, appears to be most strongly associated with risk 274 

of CAD20,41,42.  275 

 Approximately 1 in 5 individuals of European ancestry have lipoprotein(a) levels greater 276 

than 120 nmol/L (≈50 mg/mL), which is a common cut-off for estimation of cardiovascular risk 277 

and consideration of therapy30. Lipoprotein(a) levels greater than 120 nmol/L are also common 278 

among individuals of African (1 in 4), South and South East Asian (~1 in 10), Arab (~1 in 10), 279 

and Latin American (~1 in 7) ethnicity and also associated with risk of CAD in these 280 

populations20,43,44. However, the optimal management of patients with elevated lipoprotein(a) is 281 

uncertain. Antisense inhibitors that potently lower lipoprotein(a) are currently being studied in 282 

clinical trials in subjects with elevated lipoprotein(a) and established cardiovascular disease17–19. 283 
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Our study suggests that the CAD GRS may be useful for identifying high risk patients that are 284 

likely to benefit most from lipoprotein(a)-lowering therapy, or other therapies that reduce 285 

cardiovascular risk among individuals with elevated lipoprotein(a). In support of this hypothesis, 286 

previous studies have shown that individuals with high genetic risk for CAD demonstrate greater 287 

absolute risk reduction of cardiovascular events from statins24,45 or PCSK9 inhibitors46 relative to 288 

individuals at lower genetic risk. In addition, the data presented here suggest that a GRS may be 289 

useful to de-risk patients with isolated elevated lipoprotein(a), as we observed that a low GRS in 290 

such individuals was associated with a risk of myocardial infarction that was similar to, or lower 291 

than, that of individuals with non-elevated lipoprotein(a) and a median GRS. The extent to which 292 

CAD GRSs can improve risk prediction beyond established clinical risk scores requires further 293 

investigation47. However, a major advantage of assessing germline genetic variation for 294 

cardiovascular risk assessment is that it only needs to be measured once and can be measured 295 

early in life, allowing for earlier intervention before other clinical risk factors may emerge7,25,46. 296 

 This study has some notable strengths and limitations worthy of consideration. Firstly, we 297 

were able to use a very large population of more than 300,000 individuals with standardized 298 

lipoprotein(a) measurements using an isoform insensitive assay, and genome-wide genotype 299 

data. As such, this represents one of the largest population-based studies of lipoprotein(a) to date. 300 

Limitations are that the population studied was comprised of individuals of European ancestry 301 

and may not be representative of other global populations. While this aspect of the study reduces 302 

the risk of bias or confounding due to population stratification, it also limits the generalization of 303 

these results to other ancestral populations. Future studies using large populations of individuals 304 

from diverse ancestral backgrounds are therefore essential. Indeed, as the calculation and 305 

calibration of the CAD GRSs depend on linkage disequilibrium7,23, which varies substantially 306 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.22.20026757doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.22.20026757
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

across ancestries, future studies will be needed to derive and validate CAD GRSs in other 307 

ancestral groups. The UK Biobank population also displays a healthy volunteer selection bias 308 

relative to the overall health and well-being of individuals living across the United Kingdom48. 309 

Furthermore, the CAD GRS was constructed to best identify individuals at risk of CAD and is 310 

likely not as sensitive at identifying individuals at risk of the other cardiovascular conditions 311 

described, which include peripheral vascular disease, aortic stenosis, and ischemic stroke. GRSs 312 

calibrated specifically for these conditions will likely improve risk prediction. 313 

 In summary, genetic factors were shown to significantly modulate the risk of CAD in 314 

individuals with elevated lipoprotein(a). Assessment of background polygenic factors may help 315 

to personalize risk assessment in individuals with elevated lipoprotein(a) and identify candidates 316 

for preventative therapy. 317 

318 
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FIGURES 548 

 549 

Figure 1. Genomic scores for coronary artery disease associate with traditional 550 

cardiovascular risk factors. The distribution of coronary artery disease genomic score 551 

percentiles are displayed for traditional cardiovascular risk factors assessed at study enrollment 552 

which include: (A) hypertension, (B) high low-density lipoprotein cholesterol (LDL-C ≥ 4.9 553 

mmol/L), (C) diabetes mellitus, (D) obesity (body mass index ≥ 30 kg/m2), (E) current smoking 554 

status, and (F) a sum of the aforementioned risk factors. Boxplots display the median and 555 

interquartile range. The boxplot’s whiskers show the range and the accompanying density 556 

distribution. *** p<0.001, **** p<0.0001. 557 
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 559 

Figure 2. Elevated lipoprotein(a) is a major determinant of coronary artery disease 560 

genomic risk scores. The distribution of coronary artery disease genomic risk score percentiles 561 

are displayed across strata of lipoprotein(a) levels calculated (A) with and (B) without genetic 562 

variants in proximity to the LPA gene. Boxplots display the median and interquartile range. The 563 

boxplot’s whiskers show the range and the accompanying density distribution. (C) The 564 

standardized effect sizes for the top 100 genetic variants used in calculating coronary artery 565 

disease genomic risk scores are shown coloured by reported associations with traditional or 566 

emerging cardiovascular risk factors in the NHGRI-EBI Genome-Wide Association Study 567 

Catalog. Lipoprotein(a) [Lp(a)]. 568 
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 570 

Figure 3. Elevated lipoprotein(a) associates with increased risk of myocardial infarction. 571 

(A) The density distribution of lipoprotein(a) levels for UK Biobank participants of British white 572 

ancestry is right-skewed. The risk of myocardial infarction versus continuous lipoprotein(a) 573 

levels are shown for individuals of (B) male and (C) female sex. Hazard ratios were calculated 574 

relative to the median lipoprotein(a) level in this population (20 nmol/L) and adjusted for the 575 
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first 4 components of genetic ancestry and genotyping array/batch. The darker and lighter blue 576 

shading represent the standard error and 95% confidence interval, respectively. 577 
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Figure 4. Coronary artery disease genomic risk scores are a modifier of risk of myocardial 580 

infarction for individuals with elevated lipoprotein(a). The prevalence of myocardial 581 

infarction for each decile of coronary artery disease genomic risk score percentile is shown for 582 

scores calculated (A) with and (B) without genetic variants in proximity to the LPA. Solid lines 583 

depict linear regression analyses and gray shading indicate the associated 95% confidence 584 

interval stratified by non-elevated versus elevated lipoprotein(a) levels. Time-to-first-event 585 

analyses are displayed for risk of myocardial infarction events stratified by quintiles of coronary 586 

artery disease genomic risk score percentile among individuals with elevated lipoprotein(a) (≥ 587 

120 nmol/L) calculated (C) with and (D) without genetic variants in proximity to the LPA gene. 588 

The solid black line depicts the risk of myocardial infarction among a reference group comprised 589 

of all individuals with non-elevated lipoprotein(a) (Lp(a)-, < 120 nmol/L). The horizontal, dotted 590 

black line depicts the myocardial infarction-free probability of the non-elevated lipoprotein(a) 591 

reference group at 70 years-of-age.  592 
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TABLES  593 

Table 1. Enrollment characteristics and cardiovascular history of the study group. High-594 

density lipoprotein cholesterol (HDL-C), interquartile range (IQR), low-density lipoprotein 595 

cholesterol (LDL-C)  standard deviation (SD).  596 

Characteristic Measurement Values 
n no.  408896 

 
Age  mean (SD) 56.9 (8.0) 

  
Female sex  no. (%) 221082 (54.1) 

  
Hypertension no. (%) / n 110888 (27.2)  

/ 408256 
Severe hypercholesterolemia no. (%) / n 31978 (8.2)  

/ 389158 
Diabetes mellitus no. (%) / n 19773 (4.8)  

/ 408003 
Obesity no. (%) / n 98879 (24.3)  

/ 407600 
Current smoker no. (%) / n 41320 (10.1)  

/ 407461 
Total cholesterol (mmol/L) median (IQR) / n 5.8 (1.55)  

/ 389875 
LDL-C (mmol/L) median (IQR) / n 3.61 (1.16)  

/ 389158 
Triglycerides (mmol/L) median (IQR) / n 1.50 (1.11)  

/ 389567 
HDL-C (mmol/L) median (IQR) / n 1.40 (0.50)  

/ 356840 
Lipoprotein(a) (nmol/L) median (IQR) / n 20.1 (50.88)  

/ 310020 
Hemoglobin A1c (mmol/mol) median (IQR) / n 35.2 (5.1)  

/ 389771 
C-reactive protein (mg/L) median (IQR) / n 1.33 (2.1)  

/ 389036 
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