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A Novel Method for the Estimation of a Dynamic Effective Reproduction Number 
(Dynamic-R) in the CoViD-19 Outbreak 
 
ABSTRACT 

The CoViD-19 outbreak has escalated to a pandemic in the last few weeks, with no 
signs of stopping. Pharmaceutical solutions based upon virologic studies, at this point, remain 
inconclusive. In contrast, this paper looks towards epidemiological models during this phase 
of viral growth, in particular, by providing a responsive, timely model of the R value based on 
the previous few days' results. 

Such an R value, although bearing less statistical precision due to limited sampling, 
could allow R to become a more effective, responsive standalone measure of infectious 
transmission. It demonstrates that the R value can be used as a dynamic,  time-dependent 
indicator without the use of curve-fitting, and also estimates the most recent R-value of the 
CoViD-19 outbreak to be about 4.29, based on  the data from the previous 3 days. 
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Introduction 

The CoViD-19 outbreak has become increasingly severe, and no drugs so far have 

proved capable of stemming the viral growth. In contrast, this paper looks towards 

epidemiological models of the viral growth on a large scale. This paper attempts to provide a 

responsive, timely model of the effective reproductive number, R, which is used in many 

epidemiological models. This would allow governments to attempt to tackle the pandemic 

more effectively in terms of public health, as it provides a valuable and dynamic metric of the 

pandemic. 

The more commonly known R0 value, or the basic reproduction number, measures how 

many secondary carriers an average infectious case will infect in an entirely susceptible 

population. The basic definition of R0 is the amount of infectious transmissions per unit time 

in contact with other people multiplied by the unit time in contact with others. Obviously, the 

R0 is dynamic. Public health measures aiming to reduce the transmissibility of the contact time 

people have with each other (e.g. curfews), or the number of infectious transmissions (e.g. 

through the use of protective equipment). The number has known to change during epidemics. 

For example, during the SARS outbreak, the R0 value dropped rapidly following public health 

measures that were taken. As such, the R0 value should be used as a dynamic indicator, and not 

necessarily as a stable predictor of future trends. The R value is an even more dynamic version 

of this. It is a measure of how many secondary carriers an average infectious case will infect, 

regardless of the  susceptibility of the population. At the early stages of a pandemic, the 2 

values are equal, but as the infected population begins to increase, and the susceptible 

population begins to decrease, the 2 values start to differ, and the R value begins to be a more 

valid indicator of the overall transmission of the disease.1 

There are 2 main models of R estimation. The first model is to account for large 

amounts of data regarding behaviour of the infected population (e.g. traffic data), as well as 
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data about the likelihood of transmission to build a simulation of predicted transmissions, 

usually with stochastic methods.2 This method is viewed as more accurate, as it factors in many 

different variables, but still has several flaws. First of all, the simulation obviously may not 

include confounding factors that have not been taken into account, causing inaccuracies. 

Secondly, it does not make sense to use R values to make predictions if said R values comes 

from predictions already. The R value is meant to be a simple indicator that can be used to 

make predictions. Third, the lack of responsiveness in the simulations means that the estimated 

R value is relatively static. If the R value changed rapidly, say, over the course of a few days, 

this model would be unable to keep up. 

The second estimation method of the R value works with a simplified model of 

infection in 3 stages – Exposed, Infectious, and Isolated, which is a modified version of the 

SEIR structure. “Exposed” refers to the stage when a person becomes infected by a disease 

vector, but has not reached the stage where it can infect another person; “Infectious” refers to 

the stage when the person is a potential disease vector; “Isolated” refers to the stage where the 

person loses the ability to be a disease vector (i.e. the person either is isolated in quarantine, 

recovers, or passes away). This model was developed during the SARS epidemic by Lipsitch 

et al.1 

This model develops a statistical approach – it discounts individual variables, using 

holistic statistics of cases per day, as well as basic viral data1. This vastly simplifies the problem, 

allowing for quick, responsive calculation. Furthermore, it uses R as a descriptor of past trends, 

rather than a predictor of future ones. Therefore, it is a more fitting method for my purpose of 

creating a responsive indicator of the current infectious situation. 
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Method 

The R estimator of this model deals with 3 variables. E and I are viral constants 

representing the lengths of the Exposed and Infectious stages respectively, in terms of time. K 

is the logarithmic growth rate, which is affected by many statistical factors, but bears the simple 

definition of being the rate of growth in the natural logarithm of the infected population. With 

these variables, R is defined as 𝑅 = 𝐾!𝐸𝐼 + 𝐾(𝐸 + 𝐼) + 1.1 

This model is also the one chosen by Cao et al in their preprint “Estimating the effective 

reproduction number of the 2019-nCoV in China”. E and I, as mentioned, are viral constants, 

and this paper will use the same values (E = 7 and I = 9). However, their methodology’s 

estimation of K is relatively static, and historical, using 6 timeframes over the course of the 

outbreak to create an average logarithmic growth factor.3 However, this method is prone to a 

couple flaws and insufficiencies. First, as a methodological error, using an average over 6 

different timeframes of different length weights the K values in different time periods, 

producing a warped K-value, producing a final K-value closer toward the K-values during the 

shorter timeframes than an unweighted average. However, adopting timeframes of similar 

length would patch the flaw. Secondly, more paradigmatically, this method does not allow for 

the “dynamic indicator” approach to the R value. One key novelty, of the method presented in 

this work, therefore, will be in its dynamic estimation of the K value. 

Similar models have also been used to try to find the instantaneous R values at any time 

t. Some models use regression to first perform curve-fitting on the dataset, before utilizing 

differentials of the curve equations to find the R values at any instance. This idea was first 

presented in Nishiura and Chowell’s “Fitting dynamic models to epidemic outbreaks with 

quantified uncertainty” and reused and refined in other works.4,5 However, this method presents 

several flaws. First of all, any changes in trends are not modelled by the curve fit. For example, 

if public health policies are implemented, and the rate of transmission drops significantly, a 
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curve would smooth out that dramatic effect, and regard the sudden drop as an outlier. This 

removes a lot of the dynamism of the outputted model. In one particular model of the 

coronavirus outbreak, a preprint  accounted for containment measures enacted on January 19, 

by creating a new trendline starting on January 29 (based on a 10.91-day  incubation period).6 

Manually correcting for error in such situations is not dynamic, and only accounts for changes 

that are known to have massive effect, and relies on a very precise knowledge of the incubation 

period. The method presented addresses that by only using recent data to calculate the R value 

on the day, which allows the R value to “respond” to drastic situations and changes. Secondly, 

a sufficient amount of data is required for curve fitting, which is not always available, 

especially near the  start of an outbreak. The method presented in this paper only requires a 

few data points to make an estimation of the R value. Third, the method is exceedingly complex, 

with constant debate on the best methods of curve fitting, and the best models to use to calculate 

the R value. The method presented provides an exceedingly simple calculation method, that 

could be used even by those untrained in the studies of epidemiology or statistics. 

As previously stated, K is defined to be the logarithmic growth rate, or 𝐾 = "	$%	(')
")

, 

where N(t) is the number of confirmed cases at a certain time t (given in days from the start of 

the outbreak, which is 16 December, 2019, in the case of 2019-nCoV). Since the instantaneous 

growth rate is impossible to estimate without regressing to static regression-based curve-fitting 

models, it is obvious that the estimate has to rely on average growth rates. The process of an 

average logarithmic growth rate, therefore, is taking 2 different days, finding the difference in 

ln(N) between them, and dividing that value by the time elapsed. At first glance, it may seem 

impossible to “improve” the simple process. However, the selection of the days in of itself is a 

worthy problem. If the days you select are too far apart or too far in the past, the R value you 

generate loses its dynamism and currency; if you select too few days, you risk the chance of it 

being a statistical fluke. 
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In order for the data to be current, it should start from the most recently available data 

(most likely from the previous day). Furthermore, we should consider a range of K, with an 

average value, in order to clearly state the likely ranges of error. Therefore, I propose estimating 

the K value with the following function: 𝐾*****(𝑡) =
$%+'()),-$%+'()-*),

*
. 

In this set of functions, n represents how many days prior your sample is taken from 

(the larger the value of n, the more reliable your data is, but also the farther the sample size is 

in the past), and t represents the final day that your data ends upon. For the most recent indicator 

for the R value, for example, t would be set to the present day. 

These functions could be better described this way. The average K value as of day t, 

from data collected over the prior n days, is found by dividing the difference in infected 

populations between the days by the number of days. The subscript and functional notation of 

R would remain the same as K, forming a set of 𝑅***** (t). The findings of the R values could be 

stated as: in the n days prior to day t, an average virus carrier infected an average of 𝑅*(𝑡) 

people. A confidence interval can also be constructed, and further analysis could be carried out 

with different values of n. However, the confidence interval constructed would most likely not 

have sufficient statistical data for small values of t. 

A similar study was actually carried out last year in Japan, by Yamauchi et al, where 

the effective reproductive number of each week was calculated. In the definitions set out by 

this paper, their method calculates 𝑅.***(𝑡), with 1-week intervals for t. However, their method 

does not provide a generalizable approach. Using different values of n could provide interesting, 

and more valuable, results. The method presented provides a notation, as well, for the 

estimation of the R value. 
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Testing Methodology 

In order to both test the method so as to generate relevant results for the current outbreak, 

as well as to prove the dynamism of the resulting R values, this paper uses the data from DXY8 

on 2019-nCoV cases in China to model the R(t) values over time, with both n=3 and n=5, over 

a 3-week period from January 25 (t = 40) until February 14 (t = 54). 

 

Findings 

The graphs below show the computed values of 𝑅/***(t) and 𝑅0***(t), respectively, plotted 

over time. For the complete data generated, see the Appendix. 

 

 

First of all, with regards to dynamism, the data more than demonstrates the dynamism 

of the R-value. There is massive change in the transmittivity of the data over time. The data 

shows a large spike in R(t) near t = 42, followed by a sharp decline, before increasing again in 

the last few days. The spike could be due to factors including changes in the case reporting 

policy the prior week, the rising availability and ability of hospitals to carry out testing, etc. It 
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also explains why some initial predictions of the infected population from before the end of 

January fall short of the current confirmed case count. The decline shows a relative positive 

outlook in that the transmission appears to be slowing down at least. However, generally, the 

R is also well above the previous R0 estimates of about 2-3. It also appears to have been higher 

than the Cao study's estimate of 4.08. It does, however, seem consistent with  estimates in 

another preprint by Sanche et al., where they estimate it as somewhere between 4.7 and 6.6. 

As for the most recent value, with the 𝑅/***(𝑡) estimate, it appears that the R value as of 14 

February is about 4.275. A simple confidence interval, however, in this case, does not reveal 

any valuable results, because due to the small sample size, the range is exceedingly large; 

furthermore, the K value is small and should be positive, and so the curve will not be normal, 

but rather skewed right. 

 

Conclusions 

The R value is shown to be a very dynamic and sensitive statistic. As such, the previous 

methods of finding long term averages as if the value does not provide very valuable 

information. The use of R as a predictor is not incredibly useful as well; its dynamism seems 

to make it more well-suited as a descriptor of transmissibility, rather than a predictor of future 

transmission. It could be used as a metric to determine how effective certain public health 

policies are, but in predictive models, it may be too fundamentally unstable. This explains why 

many previous models using a static R as a predictive variable did not make accurate 

predictions. As such, static R values are often misleading, and do not provide a good prediction 

of the situation. Trend-wise, it appears that the coronavirus R-value is about 4.3, and generally 

decreasing. 
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Discussion 

The data used, as for most epidemiological studies relies on the number of confirmed 

cases, which could be very different from the number of actual cases, due to factors such as 

variations in case reporting policies and abilities to test for the disease. However, once testing 

becomes commonplace and case reporting is more or less standardized, such confounding 

variables should be minimized. Furthermore, the R value may not be constant in different 

locations, and such, might not provide a global value. Further research is needed to study the 

confounding factors that go into this dynamic-R value. 
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Appendix 
 
Calculated Data for R(t,3) and R(t,5) 
R(3,t) 
t N(t)* Kavg(3,t) Ravg(3,t) 
40 1979 0.4286 19.43 
41 2737 0.4849 23.57 
42 4409 0.5238 26.67 
43 5970 0.3681 15.42 
44 7678 0.3438 13.95 
45 9658 0.2614 9.486 
46 11221 0.2103 7.153 
47 14341 0.2083 7.064 
48 17187 0.1921 6.399 
49 19693 0.1875 6.215 
50 23680 0.1672 5.435 
51 27409 0.1556 5.014 
52 30553 0.1464 4.693 
53 34075 0.1213 3.868 
54 36778 0.09801 3.173 
55 39790 0.08805 2.897 
56 42306 0.07212 2.482 
57 44347 0.06238 2.243 
58 44699 0.03878 1.715 
59 59832 0.1155 3.690 
60 66292 0.134 4.275 

R(5,t) 
t N(t)* Kavg(5,t) Ravg(5,t) 
40 1979 0.3925 16.99 
41 2737 0.4255 19.22 
42 4409 0.4174 18.65 
43 5970 0.4469 20.73 
44 7678 0.4252 19.19 
45 9658 0.3170 12.40 
46 11221 0.2822 10.53 
47 14341 0.2359 8.280 
48 17187 0.2115 7.201 
49 19693 0.1884 6.250 
50 23680 0.1794 5.897 
51 27409 0.1786 5.868 
52 30553 0.1513 4.862 
53 34075 0.1369 4.371 
54 36778 0.1249 3.982 
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55 39790 0.1038 3.340 
56 42306 0.08681 2.864 
57 44347 0.07452 2.542 
58 44699 0.05428 2.054 
59 59832 0.09733 3.154 
60 66292 0.1021 3.290 

    
    

*As stated previously, N(t) data was taken from ncov.dxy.cn.8 All other data in the tables were 
computed from those values. 
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