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 2 

Abstract 47 

 48 
A better understanding of the nonrandom localization patterns of gliomas across the brain could 49 

lend clues to the origins of these types of tumors. Following hypotheses derived from prior 50 

research into neuropsychiatric disease and cancer, gliomas may be expected to localize to brain 51 

regions characterized by hubness, stem-like cells, and transcription of genetic drivers of 52 

gliomagenesis. We combined neuroimaging data from 335 adult patients with high- and low-53 

grade glioma to form a replicable tumor frequency map. Using this map, we demonstrated that 54 

glioma frequency is elevated in association cortex and correlated with multiple graph-theoretical 55 

metrics of high functional connectedness. Brain regions populated with stem-like cells also 56 

exhibited a high glioma frequency. Furthermore, gliomas were localized to brain regions 57 

enriched with the expression of genes associated with chromatin organization and synaptic 58 

signaling. Finally, a regression model incorporating connectomic, cellular, and genetic factors 59 

explained 58% of the variance in glioma frequency. Our findings illustrate how factors of diverse 60 

scale, from genetic to connectomic, can independently influence the anatomic localization of 61 

oncogenesis. 62 
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 3 

Introduction 93 

 94 
     Tumor location represents one of the most important prognostic factors for patients suffering 95 

from primary brain cancers
1,2

, yet little is known about the mechanisms that determine the spatial 96 

distribution of gliomas across the brain.  97 

     The importance of glioma location for diagnosis and treatment has been recognized since 98 

Percival Bailey and Harvey Cushing’s seminal classification of brain tumors in the early 20
th

 99 

century
3
. Whilst brain imaging, primarily MRI, plays an important and routine role in diagnosis 100 

and treatment of brain tumors, there has been little quantitative mapping of their distribution at a 101 

population level. Comprehensive modeling of the key factors involved in determining why 102 

gliomas might be heterogeneously distributed across the brain could shed light on the origins of 103 

these tumors, and consequently inform treatment targets. Three general hypotheses for the spatial 104 

distribution of gliomas include a “connectomic hypothesis”, a “cellular hypothesis”, and a 105 

“genetic hypothesis”, and each is now considered in turn.     106 

     The connectomic hypothesis posits that highly connected brain regions, known as hubs, are 107 

especially vulnerable to disorders, such as oncogenesis, due to the metabolic costliness of 108 

maintaining many connections
4,5

. The term “connectome” was originally conceived by analogy 109 

to the term “genome”, and refers to the collection of all connections, anatomical or functional, in 110 

the brain
6
. The connectome can be defined at the microscale, in which case the connections 111 

represent synaptic links between neurons, or at the macroscale, where the connections can 112 

represent anatomical white matter pathways (structural connectome), or correlations in neuronal 113 

activity (functional connectome) between brain regions
7
. A foundational finding of network 114 

neuroscience is that the connectomes of many different species, across multiple scales, possess a 115 

small-world architecture
8
. In other words, they are composed mostly of short distance 116 

connections between neighboring nodes (brain regions or neurons), but with a few long-distance 117 

connections between distant nodes. The nodes from which originate many of the short and long 118 

distance connections are crucial for efficient communication across the network, and these are 119 

the hubs
9
. Brain hubs are believed to be “costly” due to the metabolic demand of maintaining 120 

many connections
10

, a factor that makes these regions vulnerable to disease
11–14

. Long distance 121 

axonal connections for instance, are physiologically expensive to maintain since proteins in the 122 

neuron’s presynaptic terminal must be produced in the nucleus, and thus travel the full distance 123 

of the axon to reach their target. This factor contributes to the vulnerability of upper motor 124 

neurons to degeneration
15

. In a similar way, long distance connections important for the 125 

construction of large-scale cortical networks also pose a challenge for glial cells (in particular, 126 

oligodendrocytes) to support the requisite axonal tracts
16

. Furthermore, brain hubs also receive 127 

many connections, and therefore are populated with many synapses which impose metabolic 128 

demand upon supporting astrocytes
17

. Metabolic demands on the glial cells of hub regions could 129 

contribute to elevated cell turnover, enhancing the likelihood of a cell acquiring an oncogenic 130 

mutation during mitosis
18

. Metabolic stress could also contribute to oncogenesis via enhanced 131 

production of mutagenic reactive oxygen species
19

. For these reasons, one may expect gliomas to 132 

localize to hubs of the brain connectome.  133 

     With their shared dedifferentiated and proliferative nature, the commonalities between stem 134 

cells and cancer cells have not gone unnoticed among cancer biologists. These commonalities 135 

form the basis of the stem cell hypothesis of cancer, which maintains that cancers tend to 136 

originate from normal stem and stem-like cells in the body
20–22

. When applied to adult glioma, 137 

this hypothesis points to two clear suspects as possible cells-of-origin: neural stem cells (NSCs) 138 
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and oligodendrocyte precursor cells (OPCs)
21,22

. Neither are randomly distributed throughout the 139 

brain, and therefore their specific localization patterns have been hypothesized to play a role in 140 

determining the nonrandom distribution of gliomas
23,24

. The notion that neural stem cells exist 141 

and continue to proliferate in the adult human brain is relatively new and historically 142 

controversial, but a consensus has arisen that they can be found in at least two locations: the 143 

subgranular zone of the dentate gyrus of the hippocampus, and the subventricular zone 
22,25

. 144 

Rodent work has demonstrated that OPCs are widely distributed throughout the mammalian 145 

brain
26

. The patterning of OPCs in the adult human brain is unclear, but could be estimated by 146 

utilizing brain-wide maps of gene expression patterns
27,28

.  147 

     Adult gliomagenesis is the result of glial cells acquiring a series of somatic mutations which 148 

trigger uncontrollable cell proliferation
30,31

. Recent research has demonstrated that tumor 149 

location is influenced by the genetic aberrations that guide the development of tumors
23,29

. 150 

Gliomas may be expected to localize to brain regions where the genetic risk factors for the 151 

disease are normatively expressed. Furthermore, consequential to the connectomic and cellular 152 

hypotheses, it may be expected that brain regions frequented by glioma are enriched with the 153 

expression of genes associated with cell proliferation or metabolically intensive processes 154 

required for long distance neuronal signaling.  155 

     In this study, we tested these three hypotheses by examining the connectomic, cellular, and 156 

genetic correlates of brain regions commonly plagued by glioma. We began by deriving a 157 

replicable tumor frequency map from neuroimaging data of 335 adult patients with high- and 158 

low-grade glioma. Using this map, we compared glioma distributions across canonical 159 

subnetworks and correlated them with hub measures calculated from averaged functional 160 

connectivity data from a large number of healthy individuals. Then, we determined if glioma 161 

frequency was elevated among brain regions expected to be enriched with NSCs and OPCs. 162 

Next, we conducted a transcriptomic analysis to find genes with spatial expression patterns that 163 

followed the observed glioma distribution. Finally, we combined all these factors of glioma 164 

distribution into a single regression model to explore the putative inter-relationships of predictors 165 

of glioma frequency.  166 

 167 

Results 168 

 169 

Anatomical mapping of glioma distribution  170 

 171 
     We initially constructed a map of glioma distribution from aligned masks of tumor volume 172 

across 335 high- and low-grade glioma patients. This tumor frequency map displayed a 173 

hemispherically symmetric, but heterogeneous spatial distribution (Figure 1A). Consistent with 174 

prior reports, gliomas were rare in the occipital lobe, but relatively common in insular cortex 175 

(Figure 1B; Supplementary Table 1). Tumor frequency distributions were replicable across 176 

independent, randomly assigned subsets of half of the images (Groups 1 and 2) with an inter-177 

regional correlation of r=0.83 (95% CI: r=0.70-0.93). Replicability of subsequent analyses was 178 

tested with Group 1 and Group 2 tumor frequency maps (see Supplementary Information). 179 

     Tumor frequency was compared across canonical, large-scale functional networks and 180 

primary versus association cortex. Association regions responsible for consolidating information 181 

across multiple sensory modalities showed higher tumor prevalence (average voxel: 4.57%) than 182 

visual and somatosensory primary cortices which had the lowest tumor frequency (2.45%), 183 

particularly in the visual cortex (1.56%; Figure 2A and 2B).  184 
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 185 

Gliomas localize to hubs of high connectivity and centrality  186 

 187 
     Graph theory measures were calculated from the mean functional connectome derived from 188 

resting state fMRI scans of over 4000 UK BioBank participants, and then compared with glioma 189 

frequency. The connectome was first organized into seven communities of interconnected nodes 190 

based on their overlap with previously defined large-scale functional networks
32

 resulting in a 191 

neat modular organization, with strong connections within modules and sparse connections 192 

between modules (Figure 2C). Graph theory measures of hubness were then calculated, 193 

measuring properties such as connectivity with neighboring nodes, involvement in shortest paths 194 

across the network, connectivity to nodes in different modules, and within-module connectivity 195 

(see Methods for how these measures were defined and selected). The inter-regional correlation 196 

between measures of hubness and glioma frequency was tested for significance by comparison to 197 

spatially contiguous null models (Figure 2D). 198 

     Glioma frequency strongly correlated with the simplest measure of hubness, nodal strength (ρ 199 

= 0.34; Pspin = 0.00055), which aggregates the weights of a node’s immediate connections. 200 

Glioma frequency was also significantly correlated with betweenness centrality (ρ = 0.51; Pspin = 201 

0.0002) and with a measure of connectivity to diverse communities, the participation coefficient 202 

(ρ = 0.30; Pspin = 0.011). Connectivity within a community, measured by Z-score modularity, did 203 

not relate with glioma frequency (ρ = 0.062; Pspin = 0.21; Figure 2D). This profile of connectivity 204 

measures was most consistent with that of connector hubs that link together multiple sub-205 

networks. 206 

 207 

Glioma frequency is elevated in areas with populations of stem-like brain cells  208 

 209 
     We tested the hypothesis that brain regions enriched with NSCs were more likely to coincide 210 

with loci of high frequency of gliomas. Mean tumor frequency was calculated from the 211 

hippocampus and the caudate (Figure 3A), regions which best approximate the locations of the 212 

only known sources of NSCs in the adult human brain. Tumor frequency across bilateral 213 

hippocampus and caudate were averaged, and compared against a null distribution of 10000 214 

different pairs of randomly selected parcels within our 334-region parcellation scheme. Glioma 215 

frequency was observed to be significantly higher in these two regions compared to the null 216 

distribution (p = 0.0315; Figure 3B).  217 

     Next, we tested the spatial correspondence of glioma distribution with the patterning of OPCs, 218 

which are also hypothesized to be cells-of-origin for glioma. OPC distribution was estimated 219 

from the expression of genetic markers of OPC identity using post-mortem the microarray data 220 

of the Allen Human Brain Atlas (AHBA; www.brain-map.org). The list of genetic markers for 221 

OPC’s co-expressed significantly (Figure 3C) confirmed that median expression across this gene 222 

list represents a spatially specific phenotype. This estimate of OPC patterning correlated 223 

significantly with glioma frequency (Figure 3D; ρ = 0.45; Pspin = 0.0001). 224 

 225 

Transcriptomic correlates of glioma frequency  226 
 227 

     We used partial least squares (PLS) regression to relate the spatial transcription patterns of 228 

20647 genes with tumor frequency at 2748 cortical and subcortical locations where gene 229 

expression was assessed in postmortem adult human brain tissue (Figure 4A,B). The first two 230 
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components of the PLS (PLS1 and PLS2) explained 19% and 18% of the tumor frequency 231 

variance, respectively (Supplementary Figure 3A), more than expected by chance (Permutation 232 

test; p < 0.001; Supplementary Figure 3B).  233 

     Bootstrapping was performed on PLS weights resulting in Z statistics for each gene 234 

corresponding to the PLS1 and PLS2 ranking (Supplementary Figure 3C). The ranked gene lists 235 

were entered into a gene ontology (GOrilla; http://cbl-gorilla.cs.technion.ac.il/). Genes 236 

corresponding to PLS1 were related to biological processes such as chromatin organization, 237 

endosomal transport, and G0 to G1 transition. Genes corresponding to PLS2 were related to a 238 

broad set of metabolic processes along with many components of synaptic transmission (Figure 239 

4C). PLS1 was also found to be significantly enriched for genetic drivers of gliomagenesis (p = 240 

0.026; Figure 4D). PLS2 was not significantly enriched for this set of genes (p = 0.75). 241 

      PLS1 was more highly loaded onto the subcortex relative to the cortex (Figure 4E). PLS 242 

loadings for each AHBA sample were mapped to their nearest brain region for visualization on 243 

the cortical surface (Figure 4F). 244 

 245 

Connectomic, cellular, and genetic contributions to glioma frequency are independent  246 
 247 

     Finally, we sought to reveal the interrelations between the connectomic, cellular, and genetic 248 

contributions to glioma distribution uncovered in the study. A multiple linear regression model 249 

was constructed, with factors of nodal strength, OPC distribution, PLS1 loadings, and PLS2 250 

loadings (Figure 5A). NSC distribution was not included in the model because this measure 251 

could not be quantified at each brain parcel. First, we tested a model to determine if there were 252 

interaction effects between connectomic (nodal strength), cellular (OPC distribution), and 253 

genetic (PLS1 and PLS2 loadings) factors. None of the interaction effects were significant. The 254 

model without interaction effects explained approximately 58% of the variance in glioma 255 

frequency (F(4,162) = 59.3; p = 9.37 x 10
-31

; Adjusted R
2
 = 0.584; Figure 5B,C). All individual 256 

factors significantly predicted tumor frequency variance (Table 1; Figure 5D). Because of the 257 

unequal mapping of AHBA samples to cortical versus subcortical regions, the PLS2 component, 258 

which is more highly represented across cortex, explained more of the variance in tumor 259 

frequency than PLS1 once projected onto the anatomy. It is also worth noting that the amount of 260 

variance explained by the PLS factors was inflated by construction, due to the large number of 261 

input variables and the design of the technique which results in maximizing covariance
33

. 262 

 263 

Discussion 264 

 265 
     In this study, we examined the network, cellular, and transcriptomic correlates of brain 266 

regions commonly frequented by glioma to test specific hypotheses regarding gliomagenesis. We 267 

found that gliomas were most common in association cortex and connector hub regions. Elevated 268 

glioma frequency was observed in brain regions expected to be populated by NSCs and OPCs. 269 

Finally, we determined that glioma distribution correlated with the spatial transcription patterns 270 

of genes related to metabolic activity, synaptic signaling, and gliomagenesis. These findings 271 

support the predictions of network neuroscience and cancer theory, and establish links between 272 

concepts from these two frameworks to characterize the spatial distribution of adult gliomas.  273 

     An extensive body of work has demonstrated the utility of network models in predicting the 274 

spread of disease
34–36

 as well as the vulnerability of particular brain regions to disease
11,12,14

. In 275 

this work, we used network models to demonstrate for the first time that functional hub regions 276 
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of the brain are vulnerable to the concentration of gliomas. In particular, gliomas appear to 277 

localize to brain regions expected to play the role of connector hubs, nodes that link diverse 278 

cognitive subsystems with one another, as opposed to provincial hubs, which integrate 279 

communication within their own subsystems
9
.  This suggests that the brain regions which 280 

facilitate long distance connections across the cortex are especially vulnerable to oncogenesis, 281 

consistent with our hypothesis that the high metabolic cost of such connections influences 282 

glioma risk
10

. Alternatively, the results can be interpreted as reflecting a higher likelihood for 283 

tumor infiltration of hub regions. Gliomas are known to migrate throughout the brain via blood 284 

vessels and white matter tracts, which contributes to the poor prognosis of glioblastoma 285 

multiforme. Here we consider only the location of the tumor during the pre-operative scan, 286 

which could represent either the tumor origin, or to where it spread during the progression of the 287 

disease. Although networks were constructed from functional MRI and not white matter tracts 288 

along which tumors are known to infiltrate
37

, recent work on activity-dependent glioma 289 

migration suggests that tumors could preferentially invade functional hubs
38

. Due to their high 290 

centrality, hubs are, by definition, likely to be encountered during random walks within a 291 

network.   292 

     Ever since its conception, association cortex has been thought to play an important role in 293 

integrating information across sensory modalities and in the etiology of neurological 294 

syndromes
39

. The localization of gliomas to association cortex provides support for the 295 

“tethering hypothesis”, or the notion that the association cortices lack developmental stability 296 

compared to the more evolutionarily conserved primary cortices, introducing vulnerability for 297 

neuropsychiatric conditions
10,40

. Past work has implicated the tethering hypothesis within the 298 

context of psychiatric diseases such as autism and schizophrenia
41,42

. The application of this idea 299 

to gliomagenesis suggests that the extensive scaling of association cortex during hominid 300 

evolution, an event purportedly responsible for human-unique cognition
40

, may also have 301 

introduced risk for brain cancer. This idea is consistent with the observation that genes likely 302 

involved in cortical scaling (e.g. neurodevelopmental genes guiding proliferation of neural and 303 

glial cells) are affected in glioma
43

. 304 

     Early work on gliomagenesis hypothesized that mature glial cells were the cells-of-origin for 305 

adult glioma. However, it was soon recognized that the cell-of-origin most likely maintains 306 

pluripotency after development, since such cells require fewer mutations to become cancerous
22

. 307 

Following recent evidence of NSCs in the subventricular zone and dentate gyrus of the 308 

hippocampus of adults, there is an emerging consensus that stem-like cells (including OPCs) 309 

could be the cells-of-origin for glioma
21,22

. Recent work has provided strong evidence that some 310 

IDH-wildtype glioblastomas originate from stem cells in the subventricular zone
44

. Lee and 311 

colleagues demonstrated that for a majority of their glioblastoma patients, the unaffected 312 

subventricular zone carried low-level driver mutations, which were present to greater extent in 313 

the tumor. Our findings complement this research by establishing that gliomas in general are 314 

more highly concentrated in regions enriched with NSCs. 315 

     OPCs have also been hypothesized to represent cells-of-origin for glioma. Evidence for this 316 

idea comes from studies demonstrating that some gliomas express OPC genetic markers
45,46

, and 317 

that OPCs can be experimentally manipulated into becoming cancer stem cells
47,48

. OPCs 318 

comprise the majority of dividing cells in the adult brain and are distributed broadly throughout 319 

the subventricular zone, white matter, and gray matter
21,26

. We estimated this distribution by 320 

quantifying normative expression levels of OPC genetic markers across the human brain, and 321 

found that it significantly correlated with glioma frequency. While this result aligns nicely with 322 
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prior work, estimates of OPC distribution relied on combining data from two independent 323 

transcriptomic studies of post-mortem human brains
27,49

. While this approach has been validated 324 

for determining the brain-wide distribution of other canonical cell types
28

, our result should be 325 

confirmed once reliable estimates of OPC patterning become available.  326 

      Normal cells can become malignant through a series of somatic mutations which disable 327 

tumor suppressors and activate drivers of cell proliferation
50

. To determine the genetic alterations 328 

involved in oncogenesis, much research has focused on identifying molecular genetic differences 329 

between tumor cells and matched healthy tissue
51,52

. Here, we took an alternative approach and 330 

investigated transcriptomic differences between healthy regions where tumors tend to occur 331 

versus healthy regions where tumors are uncommon. As expected, this approach recapitulated 332 

prior research into glioma genetics, in that genes which drive gliomagenesis appeared to be 333 

upregulated among the healthy transcriptomic correlates of glioma distribution. Gene ontology 334 

revealed that the genes driving PLS1 (the component responsible for most of the covariance 335 

between transcription and glioma distribution) were most strongly associated with chromatin 336 

organization, a process perturbed by IDH mutations and critically involved in the pathogenesis of 337 

glioma
31,53

. In addition, our approach also revealed novel findings, such as the carcinogenic 338 

vulnerability of healthy brain regions enriched with genes coordinating synaptic signaling and 339 

metabolic activity. These findings complement our connectomic results, providing more 340 

evidence for the idea that metabolically demanding brain regions crucial for brain-wide 341 

communication are susceptible to oncogenesis.  342 

     The goal of this study was to examine brain regions generally implicated in adult glioma. 343 

However, adult glioma is a heterogeneous phenomenon, comprising tumors of differing genetic 344 

etiologies and morphologies. It is known that different types of glioma tend to localize to 345 

different brain regions
4,23,24,29

. Therefore, the exact composition of patients (e.g. proportion of 346 

high-grade to low-grade glioma patients) within our sample could influence the results. To 347 

address this concern, we replicated our results with subgroups of varying proportions of high-348 

grade to low-grade glioma patients and demonstrated that our results are robust to changes to the 349 

composition of the sample. However, we did not have access to the molecular genetic 350 

characterization of the tumors in our sample, limiting our ability to determine the effect of tumor 351 

genotype on the results. Examining glioma subtypes separately could illuminate the network, 352 

cellular, and transcriptomic correlates which distinguish localization patterns of different types of 353 

glioma. Such work could be useful for developing scientifically informed priors for tumor 354 

diagnosis before biopsy, so this question is of both scientific and clinical interest. 355 

 356 

Conclusion  357 
 358 

     Gaining a better understanding of the mechanisms driving glioma localization patterns could 359 

provide a more detailed account of the etiology of the disease and consequently inform treatment 360 

targets. We demonstrated that glioma distribution can in part be explained by functional hubness, 361 

distribution of stem-like cells, and transcription patterns of genetic determinants of glioma. 362 

These results add to previous literature reporting the vulnerability of hub regions to neurological 363 

disease
10,11

, as well as providing support for cancer stem cell theories of glioma
20,22,25

. Our 364 

findings highlight the importance of bridging diverse scales of biological organization in the 365 

study of oncogenesis. 366 

 367 

Methods  368 
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 9 

 369 

Tumor Frequency Map 370 

 371 

     Neuroimaging data of patients with low and high grade gliomas were accessed from the 372 

Multimodal Brain Tumor Image Segmentation Challenge 2019 (BraTS: 373 

http://braintumorsegmentation.org)
54–56

. T1-weighted contrast-enhanced scans from 259 patients 374 

with high-grade glioma and 76 patients with low-grade glioma were segmented by board-375 

certified neuroradiologists, denoting voxels that constituted gadolinium enhancing tumor, non-376 

enhancing core, and peritumoral edema
55

. Segmentation was informed by multimodal imaging, 377 

including T1-weighted, post-contrast T1-weighted, T2-weighted, and T2 Fluid Inversion 378 

Attenuated Recovery (T2-FLAIR) scans. Scans were acquired at nineteen different institutions 379 

(https://www.med.upenn.edu/cbica/brats2019/people.html) with different sequences and 380 

protocols. These data were pre-processed through the same pipeline, undergoing linear 381 

registration to a common template (SRI24)
57

, resampling at 1mm
3 

isotropic resolution, and 382 

removing non-brain tissues from the image
56

.  383 

     The minimally pre-processed images were downloaded from the Center for Biomedical Image 384 

Computing & Analytics Image Processing Portal (CBICA IPP). Images from each patient were 385 

nonlinearly warped to a common template
57

 using Advanced Normalization Tools software 386 

(ANTS)
58

, with cost function masking of abnormal brain tissue. The registered masks comprising 387 

the gadolinium enhancing tumor and non-enhancing core were taken to represent (and hereafter 388 

will be referred to as) the tumor mask.  389 

     Tumor masks were concatenated across all 335 patients to create a tumor frequency map, 390 

where the value at each voxel denotes the percentage of tumors of the sample that overlapped 391 

with that voxel (Figure 1A). Smoothing with a 2 mm full width half maximum (FWHM) 392 

Gaussian kernel was applied to the map. An unsmoothed version of this map is shown in 393 

Supplementary Information (Supplementary Figure 1).  To match genetic data for which most of 394 

the samples come from one hemisphere
27

, we mirrored the tumor frequency map to the left 395 

hemisphere for the following analyses. Given the large sample size and concordance with other 396 

studies
4,59

, this tumor frequency map was interpreted as representing general glioma spatial 397 

distribution.  398 

 399 

Tumor Frequency Parcellation  400 

 401 

     To quantify tumor frequency by common anatomic subdivisions, we applied to the tumor 402 

frequency map an in-house 334 region (with 167 left hemisphere regions) parcellation covering 403 

16 subcortical and 318 neocortical areas. This symmetric parcellation was created by applying a 404 

back-tracking algorithm that restricts the parcel size to 500 mm
2
 with the Desikan-Killany atlas 405 

boundaries as starting points
60

. Although this parcellation was gray matter based, parcels were 406 

extended 4 mm into the white matter to capture tumor frequency in adjacent white matter 407 

regions. Tumor frequency for a parcel was calculated by averaging the voxel value (representing 408 

percent tumor overlap) of the mirrored tumor frequency map within each left hemisphere parcel.  409 

 410 

Internal Replicability 411 

 412 
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 10 

     The internal replicability of our tumor frequency map was tested by correlating tumor 413 

frequency maps derived from randomly assigned, nonoverlapping cohorts of 168 and 167 414 

patients (Groups 1 and 2). 415 

     Simultaneously, we tested the generalizability of our results to groups constituted of differing 416 

proportions of low grade versus high grade gliomas. The first group (Group 1) had a 50% higher 417 

proportion of low grade gliomas (~34%) as the full cohort (~23%), whereas the second group 418 

(Group 2) was constituted of a 50% lower proportion of low grade glioma patients (~11%), 419 

These tumor frequency maps were constructed with the same processing as that with the full 420 

sample (smoothing, mirroring to the left hemisphere, and parcellation). A 95% confidence 421 

interval (CI) for the inter-parcel correlation between Group 1 and Group 2 was determined by 422 

constructing a distribution of 100 correlation coefficients where different patients were selected 423 

for each group. 424 

 425 

Statistical Inference of Brain Map Correspondence 426 

 427 

     Several analyses in this study involved investigating the spatial correspondence between 428 

different imaging derived measures. In general, this was accomplished by calculating the 429 

measures at each parcel in the common parcellation scheme, then correlating these measures 430 

across parcels for hypothesis testing. However, since the spatial resolution (and thus the number 431 

of parcels) of any parcellation scheme is essentially arbitrary, the actual degrees of freedom 432 

cannot be estimated. This is aggravated by the spatial autocorrelation of measures among 433 

neighboring parcels that violates the assumption of independent observations. This issue has 434 

been addressed in past studies by use of what is termed a “spin test”61–64
. The spin test procedure 435 

is described in more detail in the Supplementary Information. In general, it involves comparing 436 

the observed inter-parcel correlation between maps of two measures with a distribution of 437 

correlations calculated after one of these maps has been spatially permuted in a way that 438 

preserves contiguity among parcels.  439 

 440 

Comparison of Glioma Frequency across Canonical Subnetworks 441 

 442 

     One question of interest was whether gliomas localized to particular brain subnetworks. 443 

Seven canonical subnetworks of the brain 444 

(https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011)
32

 were mapped onto 445 

the tumor frequency map. Violin plots were constructed to compare the distribution of nonzero 446 

tumor frequency values between voxels belonging to differing canonical subnetworks.  447 

 448 

Functional Connectome 449 

 450 

     Glioma frequency was compared to regional connectivity (hubness) as quantified by graph 451 

theory metrics applied to the functional connectome derived from resting state fMRI data
65,66

 452 

from over 4000 UK BioBank participants (age range 44-78 years; 53% female). The publicly 453 

available “dense voxel-wise connectome” of the first UK BioBank cohort 454 

(https://www.fmrib.ox.ac.uk/ukbiobank/) corresponds to a 4-D image, where each voxel consists 455 

of 1200 principal components derived from a group-level PCA
67

. A correlation between voxels 456 

across components gives a close, memory efficient approximation to the correlation of BOLD 457 

signal calculated across concatenated timepoints from all individual participants
67

. The 458 
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aforementioned 334 region in-house parcellation, covering both subcortical and cortical regions, 459 

was applied to the voxel-wise connectome. PCA loadings for voxels within each parcel (i.e. 460 

region) were averaged (analogous to a mean timeseries) and correlated between parcels to 461 

produce the weights of a graph (Figure 2C). Diagonal elements and negative correlations were 462 

set to zero. The same parcellation was also applied to the tumor frequency map to quantify tumor 463 

frequency within each parcel. Tumor frequency for a parcel represented the average percentage 464 

of lesion overlap of voxels within that parcel. The common parcellation allowed for comparison 465 

between measures of tumor frequency and functional hubness. 466 

 467 

Graph Theory Metrics of Hubness 468 

 469 

     Once the weighted healthy connectome had been constructed, we calculated graph theoretical 470 

metrics of hubness using the Brain Connectivity Toolbox
68

. In this graph theoretical approach to 471 

neuroimaging data, parcels of the brain are conceived as “nodes”, whereas correlations in 472 

functional activity between parcels are conceived as the weights of connections between the 473 

nodes. Hub metrics derived included: nodal strength (sum of all weighted connections for a 474 

particular node), betweenness centrality (fraction of all shortest paths in a network that pass 475 

through a certain node), clustering coefficient (average weighted connections of triangular 476 

subgraphs associated with a node), local efficiency (inverse of the average shortest path length 477 

between a node and every other node), eigenvector centrality (the extent to which a given brain 478 

region connects to other regions with higher centrality), participation coefficient (the strength of 479 

connections outside of a node’s given module relative to connections within that node’s module), 480 

and within-module degree z-score (nodal strength of a node within its module, compared to 481 

within-module nodal strengths of each other node in the module). To reduce the impact of 482 

community affiliation on participation coefficient and within-module degree z-score, community 483 

affiliations were designated based on the maximum spatial overlap of each node with one of the 484 

seven canonical subnetworks
32

. 485 

     Hub measures were calculated for each of the 334 nodes of the functional connectome. 486 

Measures from homotopic nodes were then averaged together, resulting in 167 observations for 487 

each subcortical and cortical parcel per hub metric. Many of the hub measures were observed to 488 

have a high correlation with nodal strength. Therefore, we screened out hub measures which had 489 

a Spearman’s correlation of 𝜌 > 0.95 with nodal strength. This led to the removal of clustering 490 

coefficient, local efficiency, and eigenvector centrality. While this threshold is arbitrary, the 491 

same result was reached with thresholds ranging from 0.65 to 0.99 (Supplementary Figure 2). 492 

Spearman’s correlations were calculated between the remaining hub metrics and tumor 493 

frequency and were assessed for significance by comparison to spatially contiguous null models, 494 

via the spin test (see Supplementary Information). 495 

 496 

Cellular Correlates of Tumor Frequency 497 

 498 

     To determine whether tumors were more common in regions enriched for NSCs, we assessed 499 

tumor frequency within the two parcels of our 334 region parcellation which most closely 500 

aligned with the subventricular zone and the dentate gyrus: the caudate and the hippocampus. 501 

The average tumor frequency between these two parcels was compared to average tumor 502 

frequency between 10000 random pairs of parcels.  503 
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     To determine if tumors were more common in regions enriched for OPCs, we compared 504 

tumor frequency to an expression map of OPC cell class. This expression map was estimated by 505 

assessing transcriptional enrichment of OPC genetic markers using a procedure analogous to that 506 

previously described
28

. An OPC gene set was derived from a single cell RNA sequencing study 507 

performed on adult postmortem cortical tissue
49

 that determined genes with transcription patterns 508 

distinguishing cells by canonical cell types, including excitatory and inhibitory neurons, 509 

astrocytes, oligodendrocytes, and OPCs. The set of 132 genes that distinguished OPCs from 510 

other canonical cell classes across the cortex was downloaded from previously published 511 

material 
49

. Next, we determined parcels where the OPC gene set was upregulated in the adult 512 

brain using the publicly available Allen Human Brain Atlas (AHBA)
27

. The Allen Human Brain 513 

Atlas catalogues postmortem gene expression from six individuals (ages 24 to 57 years old; five 514 

males and one female) at a variety of brain locations. Transcription patterns of 20,647 genes 515 

were aligned to the 159 left hemisphere cortical regions in our parcellation, using prior 516 

methods
69,70

 with code available for download 517 

(https://github.com/RafaelRomeroGarcia/geneExpression_Repository). The resulting 159 x 518 

20,647 regional gene expression matrix was z-scored by parcel. Because the OPC gene set was 519 

derived from sequencing performed on cortical brain tissue, we decided to exclude subcortical 520 

regions from this part of the analysis.  521 

     First, 13 genes in the OPC gene set were not matched to any AHBA probe and were 522 

consequently excluded from the analysis. We evaluated the spatial specificity of the remaining 523 

119 OPC genes by comparing their co-expression pattern with 1000 identically-sized sets of 524 

randomly chosen genes. OPC genes were filtered out that did not share a positive co-expression 525 

pattern with the overall group of genes. Concretely, the 24 genes which had, on average, 526 

negative correlations with other genes in the set were removed from the OPC gene set. We 527 

estimated OPC distribution by calculating the median regional enrichment of the filtered OPC 528 

gene set across cortical parcels. OPC distribution across 159 cortical parcels was then correlated 529 

with tumor frequency and tested for significance using the spin test.  530 

 531 

Aligning Tumor Frequency Map with the Allen Human Brain Atlas 532 

 533 

     Next, we compared tumor frequency with postmortem gene expression from the Allen Human 534 

Brain Atlas (http://human.brain-map.org/)
27

. Pre-processing of the AHBA data followed a 535 

similar pipeline to previous work from our group
69,70

 and is described in more detail in the 536 

Supplementary Information. Transcription levels for 20647 genes across 2748 sample locations 537 

were related to tumor frequency at each sample location using partial least squares (PLS) 538 

regression. Tumor frequency values were aligned with sample locations by warping the non-539 

smoothed, non-mirrored tumor frequency map into the standard stereotactic space of the 540 

Montreal Neurological Institute (MNI), a standard brain template for which the locations of the 541 

AHBA microarray samples are known. Once in MNI space, a 2 mm FWHM smoothing kernel 542 

was applied to the map and the map was mirrored to the left hemisphere. Sample locations from 543 

the AHBA that were located in the right hemisphere were also mirrored to their homotopic voxel 544 

in the left hemisphere. This alignment resulted in a 2748 (samples) by 20647 (genes) expression 545 

matrix and in a vector of 2748 elements representing tumor frequency values matched to each 546 

sample’s MNI coordinates (Figure 4 A,B). Tumor frequency values were square rooted to reduce 547 

the skewness of the tumor frequency distribution (Figure 1B). Gene expression values were Z 548 
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scored for each gene. To test the robustness of the findings, the analyses below were repeated 549 

using tumor frequency maps derived from Group 1 and Group 2. 550 

 551 

Transcriptomic Correlates of Tumor Frequency 552 

 553 

     PLS regression was used to relate spatial transcription patterns of 20647 genes with the 554 

spatial distribution of glioma. PLS regression involves projecting a predictor (X) and a response 555 

(y) matrix into a space where linear combinations of X explain the maximum amount of variance 556 

in y. We chose to focus on the first two components from PLS (PLS 1 and PLS2) as the 557 

subsequent components explained a proportion of variance indistinguishable from one another 558 

(Supplementary Figure 3A). Statistical significance of the PLS model was tested via permutation 559 

testing, by comparing the percent variance explained in the original model to a distribution of 560 

1000 models where the sample labels mapping X to y were randomly shuffled. Significance of 561 

each PLS coefficient was tested via bootstrapping with 1000 iterations, resulting in two Z 562 

statistics for each gene, one for the first PLS component and another for the second PLS 563 

component. Genes were ranked by their Z statistics and entered into gene ontology analyses in 564 

GOrilla (http://cbl-gorilla.cs.technion.ac.il/), resulting in a hierarchy of biological terms 565 

associated with each PLS component, visualized using Revigo
71

. To ensure a data-driven 566 

approach, genes with Z statistic values that did not meet the Bonferroni-corrected significance 567 

threshold were not excluded from the gene lists. 568 

  569 

Relating PLS Components to Glioma-related Genes  570 

 571 

     We sought to determine whether either of our PLS components were enriched for genes that 572 

are dysregulated in glioma. We collected a list of 20 genes from a recent review
30

 (listed in the 573 

Supplementary Information) that are known to be either mutated, amplified, or lost in specific 574 

subtypes of glioma. Four of these genes (PDGFRA1, RIK, RIS, and PI3K) were not matched to 575 

any AHBA probe and were accordingly excluded from the analysis.  576 

     Similar to the OPC gene list preprocessing, we first confirmed that these genes co-expressed 577 

significantly (compared to 10,000 identically sized sets of genes). Next, we filtered out genes 578 

with differing co-expression patterns from the group (denoted by negative correlations, on 579 

average, with other genes in the set), leading to the exclusion of three genes (IDH2, MYCN, and 580 

CIC). The median rank of the final list of 13 genes was determined among the first and second 581 

PLS components and assessed for significance by comparison to median ranks expected by 582 

chance. 583 

 584 

Visualization of PLS Components 585 

 586 

      We were interested in the locations of the samples which drove each PLS component. First, 587 

PLS1 and PLS2 loadings were plotted and colored based of the affiliation of the sample with 588 

cortex or subcortex. To determine how PLS1 and PLS2 loadings mapped onto cortex, we 589 

assigned samples to parcels via a nearest neighbor mapping. Then, the PLS loading of a parcel 590 

was represented as the median PLS loading across samples assigned to that parcel. Two parcels 591 

were assigned zero samples from nearest neighbor mapping, and these parcels were assigned the 592 

mean loading of the group. More samples were mapped to each subcortical parcel (N=8; 593 

mean=78.9; SD=52.1) compared to cortical parcels (N=159; mean=13.3; SD=12.5). 594 
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 595 

Multivariate Model Combining Connectomic, Cellular, and Genetic Contributions to Tumor 596 

Frequency 597 

 598 

     To determine how different measures of biological contributions to glioma risk interrelated, 599 

we developed a multiple linear regression model combining each of the factors we found to be 600 

associated with tumor frequency. The model included nodal strength, OPC distribution, PLS1 601 

loadings, and PLS2 loadings. Each of these measures was represented as a 167-dimensional 602 

vector, with a value ascribed to each parcel within our parcellation scheme. The dependent 603 

variable for the model was the square root of average tumor frequency within each parcel. The 604 

square root of tumor frequency was taken to address the skewness of the original tumor 605 

frequency values (Figure 1B). The dependent variable and each of the predictors were Z scored, 606 

and zeros were assigned to parcels for which no value could be appropriately calculated (e.g. 607 

subcortical parcels for OPC distribution, and parcels mapped to zero samples for PLS1 and PLS2 608 

loadings).  609 

     First, we constructed a model to determine whether there were any two-way interaction 610 

effects between the different scales of biological factors. Nodal strength represented 611 

“connectomic factors”, OPC distribution represented “cellular factors”, and PLS1 and PLS2 612 

loadings represented “genetic factors”. This model had the following form: 613 

 614 

 𝑡𝑢𝑚𝑜𝑟  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  𝑏0 + 𝑏1 ∗ 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ + 𝑏2 ∗ +𝑏3 ∗ 𝑃𝐿𝑆1 + 𝑏4 ∗ 𝑃𝐿𝑆2 + 𝑏5 ∗615 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ|𝑂𝑃𝐶 + 𝑏6 ∗ 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ|𝑃𝐿𝑆1 + 𝑏7 ∗ 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ|𝑃𝐿𝑆2 + 𝑏8 ∗ 𝑂𝑃𝐶|𝑃𝐿𝑆1 + 𝑏9 ∗616 𝑂𝑃𝐶|𝑃𝐿𝑆2 +  617 
 618 

     This model revealed no significant interactions effects between different biological factors. 619 

Therefore, we constructed a second model with no interaction terms, of the form: 620 

 621 𝑡𝑢𝑚𝑜𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  𝑏0 + 𝑏1 ∗ 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ + 𝑏2 ∗ 𝑂𝑃𝐶 + 𝑏3 ∗ 𝑃𝐿𝑆1 + 𝑏4 ∗ 𝑃𝐿𝑆2 +  
 622 

     After determining the percentage of explained variance in tumor frequency from these 623 

predictors, we explored the individual contribution of each variable by calculating the square of 624 

the partial correlation between that variable and tumor frequency. Significance of the explained 625 

variance was assessed by comparison to the distribution of explained variances between the 626 

variable and 10000 permuted, spatially contiguous, null models of tumor frequency. 627 
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Variance Value 

Intercept 3.2e-16 0.0499 6.37e-15 NA NA 

Nodal 

strength 

0.202 0.0543 3.72 7.86% 0.0010 

OPC 

distribution 

0.206 0.0566 3.64 7.58% 0.0040 

PLS1 

Loadings 

0.210 0.0594 3.54 7.17% 0.0052 

PLS2 

Loadings 

0.480 0.0577 8.32 29.9% 0 

      

Table 1. Results of multiple linear regression model predicting tumor frequency. 868 
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 898 
 899 

Figure 1. Non-random spatial distribution of gliomas. A. Tumor frequency map derived from 900 

lesion masks from 335 patients with high- and low- grade glioma. B. Glioma frequency by 901 

common anatomic subdivisions. C. Glioma frequency represented at a parcel-level. Internal 902 

replicability of glioma frequency tested by constructing two independent maps from even splits 903 

of the cohort, where the first comprised of ~34% low-grade gliomas and the other of ~11% low-904 

grade gliomas.  905 
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 924 
 925 

Figure 2. Gliomas localize to connector hubs of the brain. A. Violin plot comparing glioma 926 

frequency distributions across canonical subnetworks. B. Histogram comparing glioma 927 

frequency distribution across primary versus association cortex. C. Functional connectome 928 

calculated from resting state functional scans of over 4000 UK BioBank participants. Nodes in 929 

the network are organized according to their affiliation with different canonical subnetworks. D. 930 

Correlations between glioma frequency and hub measures calculated from the functional 931 

connectome. E. Visualization of glioma frequency and functional hub measures on the cortical 932 

surface. 933 
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 952 
Figure 3. Gliomas localize to brain regions enriched with stem-like cells. A. Visualization of 953 

the parcel masks representing the hippocampus and caudate superimposed on the mirrored tumor 954 

frequency map. B. Average tumor frequency across the hippocampus and caudate (represented as 955 

the dotted black line) compared to a distribution of average tumor frequency across 10000 sets of 956 

two randomly chosen parcels. C. Co-expression among genes within the OPC gene list compared 957 

to co-expression among 10000 identically-sized sets of genes. D. Correlation between OPC 958 

distribution across cortex and glioma frequency (ρ = 0.45; Pspin = 0.0001). E. Visualization of 959 

glioma frequency and OPC distribution on the cortical surface. 960 
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 980 
 981 

Figure 4. Transcriptomic correlates of glioma frequency. A. Alignment of AHBA sample 982 

locations to the tumor frequency map. B. Illustrative flowchart of the statistical analysis relating 983 

normative spatial gene expression patterns to glioma frequency. C. Gene ontology terms 984 

associated with two partial least squares components (PLS1 and PLS2) that related gene 985 

expression with glioma frequency. D. Median rank of 13 genes commonly altered in glioma 986 

compared to null distribution of median ranks. E. AHBA samples plotted by PLS1 loadings, 987 

PLS2 loadings, and cortex versus subcortex. F. Visualization of glioma frequency, PLS1 988 

loadings, and PLS2 loadings on the cortical surface. PLS loadings from samples were assigned to 989 

parcels via a nearest neighbor mapping.  990 
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 999 
 1000 

Figure 5. Multiple linear regression model relating connectomic, cellular, and 1001 

transcriptomic factors with glioma distribution. A. Schematic of the multiple linear 1002 

regression model. Intercept and error terms are not displayed. B. Fitted values and residuals of 1003 

glioma distribution model. C. Scatter plot of predicted versus observed tumor frequency values. 1004 

D. Percent of variance explained by each individual predictor of tumor frequency. These values 1005 

were calculated using the partial correlation coefficient between each measure and tumor 1006 

frequency.  1007 
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Supplementary Methods 1072 
 1073 

Spin Test Methodology 1074 

 1075 

     The “spin test” involves comparing the observed inter-parcel correlation between maps of two 1076 

measures with a distribution of the correlations calculated after one of these maps has been 1077 

spatially permuted in a way that preserves contiguity between brain regions. Spatial permutation 1078 

was accomplished by projecting the centroid coordinates for each parcel onto an inflation of the 1079 

pial surface as a sphere
1
, applying a random rotation to that sphere, and then projecting the new 1080 

coordinates back onto the pial surface and assigning them to the nearest centroid coordinates of 1081 

the original parcellation. The result is a shuffled parcellation where most parcels remain 1082 

contiguous.  1083 

    Past studies using the spin test have focused on comparisons between cortical brain maps. 1084 

However, subcortical regions were also of interest in this study. Subcortical regions cannot be 1085 

projected onto the inflated spherical pial surface, so an alternative approach was needed. We 1086 

incorporated the subcortex into our null models by shuffling the eight subcortical regions with 1087 

respect to one another, whereas the cortical regions were shuffled using the spin test. 1088 

    After each spin permutation, two correlations were calculated; one between measures 1089 

estimated from parcels in their original configuration and the other in its permuted configuration, 1090 

and vice versa. These two correlations were averaged to form one of the 10000 values forming a 1091 

null distribution to which the observed correlation was compared to determine statistical 1092 

significance, as the proportion of null correlations greater than the observed correlation (i.e. 1093 

Pspin).  1094 

 1095 

AHBA Preprocessing 1096 

 1097 

     Custom microarrays were used to measure the expression of all genes in the genome in 3702 1098 

brain sample locations across cortex, subcortex, and cerebellum 
2
. Pre-processing of these data 1099 

followed a similar pipeline to previous work from our group 
3,4

. Microarray probes were mapped 1100 

to genes using the genome assembly hg19 (UCSC GenomeBrowser; 1101 

http://sourceforge.net/projects/reannotator/) 
5
. In line with criteria from Richiardi and colleagues 1102 

6
, probes were matched to a gene only if there were less than three mismatches between the 1103 

probe and reference sequence. When a gene matched with multiple probes, the probe with the 1104 

highest average expression across samples was selected to represent the expression patterns of 1105 

that gene. A recent study demonstrated the effectiveness of this preprocessing step in increasing 1106 

the correspondence between microarray and RNA-seq expression 
7
.  In total, the expression 1107 

patterns of 20647 genes across each sample location were evaluated. Samples which were 1108 

collected from the brain stem and cerebellum were excluded from the analysis, leading to a final 1109 

number of 2748 samples. 1110 
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Supplementary Results 1118 
 1119 

Replication of main findings 1120 

 1121 

     To determine the robustness of the results, major findings were internally replicated by using 1122 

sub-cohorts of patients with varying proportions of high- and low-grade glioma (Group 1 and 1123 

Group 2). Similar to the connectomic results from the full cohort, glioma frequency derived from 1124 

Group 1 was associated with nodal strength (rho = 0.37; Pspin = 0.00025), betweenness centrality 1125 

(rho = 0.48; Pspin = 0.0002), and participation coefficient (rho = 0.34; Pspin = 0.0042), but not Z-1126 

score modularity (rho = 0.033; Pspin = 0.33), while glioma frequency derived from Group 2 was 1127 

associated with nodal strength (rho = 0.29; Pspin = 0.00033), betweenness centrality (rho = 0.51; 1128 

Pspin = 0.0002), and participation coefficient (rho = 0.25; Pspin = 0.027), but not Z-score 1129 

modularity (rho = 0.072; Pspin = 0.19). The association between OPC distribution and glioma 1130 

frequency was also internally replicated: Group 1: rho = 0.41; Pspin = 0.0005; Group 2: rho = 1131 

0.46; Pspin = 0.0001. Finally, PLS1 and PLS2 genes lists from the full cohort correlated with gene 1132 

lists from Group 1 at rho = 0.991 and rho = 0.989 respectively, and with Group 2 at rho = 0.992 1133 

and rho = 0.990. PLS1 and PLS2 gene lists from Group 1 and Group 2 correlated with one 1134 

another at rho = 0.967 and rho = 0.958. 1135 
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Parcel Names % Tumor 

Frequency 

Parcel Names (cont.) % Tumor 

Frequency 

(cont.) 

Thalamus-Proper 3.7 pericalcarine_part3 0.0 

Caudate 8.5 postcentral_part1 0.9 

Putamen 8.8 postcentral_part2 6.9 

Pallidum 6.5 postcentral_part3 1.6 

Hippocampus 9.0 postcentral_part4 2.6 

Amygdala 8.5 postcentral_part5 2.8 

Accumbens-area 4.9 postcentral_part6 1.8 

VentralDC 2.7 postcentral_part7 1.7 

bankssts_part1 8.0 postcentral_part8 1.9 

bankssts_part2 12.5 posteriorcingulate_part1 3.5 

caudalanteriorcingulate_part1 10.8 posteriorcingulate_part2 4.0 

caudalmiddlefrontal_part1 6.0 precentral_part1 1.3 

caudalmiddlefrontal_part2 6.1 precentral_part2 6.3 

caudalmiddlefrontal_part3 3.3 precentral_part3 1.1 

caudalmiddlefrontal_part4 4.3 precentral_part4 4.3 

cuneus_part1 0.1 precentral_part5 1.4 

cuneus_part2 1.5 precentral_part6 3.4 

cuneus_part3 0.3 precentral_part7 2.4 

entorhinal_part1 6.7 precentral_part8 2.5 

fusiform_part1 4.2 precentral_part9 3.5 

fusiform_part2 6.3 precuneus_part1 2.2 

fusiform_part3 1.0 precuneus_part2 3.9 

fusiform_part4 9.4 precuneus_part3 4.4 

fusiform_part5 3.4 precuneus_part4 2.1 

fusiform_part6 6.8 precuneus_part5 3.3 

inferiorparietal_part1 2.6 precuneus_part6 2.3 

inferiorparietal_part2 8.1 precuneus_part7 3.7 

inferiorparietal_part3 3.8 rostralanteriorcingulate_part1 7.5 

inferiorparietal_part4 6.4 rostralmiddlefrontal_part1 5.0 

inferiorparietal_part5 4.4 rostralmiddlefrontal_part2 5.3 

inferiorparietal_part6 4.2 rostralmiddlefrontal_part3 2.3 

inferiorparietal_part7 4.4 rostralmiddlefrontal_part4 5.9 

inferiorparietal_part8 3.3 rostralmiddlefrontal_part5 3.6 

inferiorparietal_part9 3.6 rostralmiddlefrontal_part6 6.0 

inferiortemporal_part1 5.2 rostralmiddlefrontal_part7 4.6 

inferiortemporal_part2 3.5 rostralmiddlefrontal_part8 7.3 

inferiortemporal_part3 8.4 rostralmiddlefrontal_part9 5.1 

inferiortemporal_part4 7.7 rostralmiddlefrontal_part10 5.5 

inferiortemporal_part5 4.3 rostralmiddlefrontal_part11 5.4 

inferiortemporal_part6 5.9 superiorfrontal_part1 1.5 

isthmuscingulate_part1 2.7 superiorfrontal_part2 2.9 

isthmuscingulate_part2 4.3 superiorfrontal_part3 3.1 
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lateraloccipital_part1 1.4 superiorfrontal_part4 4.0 

lateraloccipital_part2 4.7 superiorfrontal_part5 2.4 

lateraloccipital_part3 3.2 superiorfrontal_part6 6.6 

lateraloccipital_part4 0.3 superiorfrontal_part7 3.0 

lateraloccipital_part5 0.8 superiorfrontal_part8 7.9 

lateraloccipital_part6 2.7 superiorfrontal_part9 4.5 

lateraloccipital_part7 1.2 superiorfrontal_part10 5.2 

lateraloccipital_part8 0.3 superiorfrontal_part11 4.8 

lateraloccipital_part9 0.8 superiorfrontal_part12 6.1 

lateralorbitofrontal_part1 3.3 superiorfrontal_part13 6.1 

lateralorbitofrontal_part2 3.7 superiorparietal_part1 2.7 

lateralorbitofrontal_part3 5.0 superiorparietal_part2 3.3 

lateralorbitofrontal_part4 3.3 superiorparietal_part3 5.7 

lateralorbitofrontal_part5 6.6 superiorparietal_part4 2.8 

lingual_part1 2.5 superiorparietal_part5 0.7 

lingual_part2 0.0 superiorparietal_part6 1.7 

lingual_part3 2.1 superiorparietal_part7 5.4 

lingual_part4 0.0 superiorparietal_part8 3.5 

lingual_part5 1.4 superiorparietal_part9 9.1 

lingual_part6 0.1 superiorparietal_part10 6.3 

medialorbitofrontal_part1 2.7 superiortemporal_part1 6.9 

medialorbitofrontal_part2 3.8 superiortemporal_part2 7.1 

medialorbitofrontal_part3 2.3 superiortemporal_part3 6.2 

medialorbitofrontal_part4 4.1 superiortemporal_part4 8.5 

middletemporal_part1 4.1 superiortemporal_part5 9.4 

middletemporal_part2 5.1 superiortemporal_part6 12.5 

middletemporal_part3 6.5 superiortemporal_part7 13.0 

middletemporal_part4 10.9 supramarginal_part1 9.4 

middletemporal_part5 8.4 supramarginal_part2 6.0 

middletemporal_part6 9.0 supramarginal_part3 5.9 

parahippocampal_part1 7.1 supramarginal_part4 1.8 

paracentral_part1 0.7 supramarginal_part5 3.2 

paracentral_part2 3.4 supramarginal_part6 2.4 

paracentral_part3 0.9 supramarginal_part7 2.9 

parsopercularis_part1 3.6 frontalpole_part1 1.4 

parsopercularis_part2 7.1 temporalpole_part1 4.5 

parsopercularis_part3 7.1 transversetemporal_part1 12.5 

parsorbitalis_part1 2.9 insula_part1 11.7 

parstriangularis_part1 3.6 insula_part2 10.0 

parstriangularis_part2 6.8 insula_part3 11.5 

pericalcarine_part1 0.2 insula_part4 12.7 

pericalcarine_part2 1.3   

 1164 

Supplementary Table 1. Tumor frequency percentage values at each parcel. 1165 

 1166 
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Glioma-related genes  

IDH1  TP53 

IDH2 NF1 

TERT MDM2 

ATRX PIK3CA 

EGFR FUBP1 

CDKN2A NOTCH1 

CDKN2B PDGFRA1 

PTEN RIS 

RIK PI3K 

 1167 

Table 2. List of glioma-related genes tested for enrichment among transcriptomic correlates 1168 

of glioma distribution. These genes were selected from a recent review of molecular genetic 1169 

markers of adult glioma subtypes
8
. 1170 
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 1188 
Supplementary Figure 1. Raw lesion overlap map. Colors indicate the number of lesions (out of 1189 

a total of 335) overlapping with the associated voxel.  1190 
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 1197 
Supplementary Figure 2. Rank correlations between nodal strength and other graph 1198 

theoretical metrics of hubness. Graph theoretical metrics with a correlation higher than the 1199 

dotted line (rho=0.95) were screened from further analyses. While this threshold was arbitrary, 1200 

the same measures would be screened across a variety of similar thresholds. 1201 
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 1218 
 1219 

Supplementary Figure 3. PLS regression analyses relating gene expression with glioma 1220 

frequency. A. Scree plot demonstrating percentage of variance explained by each subsequent 1221 

PLS component. B. Percentage of variance explained across 1000 null models where the 1222 

mapping of glioma frequency to gene expression is randomized, compared to the percent 1223 

explained variance in the observed model, indicated by the dotted line. C. Distribution of 1224 

bootstrapped Z statistics for each gene, corresponding to PLS1 and PLS2. Positive and negative 1225 

Bonferroni-corrected significance thresholds are indicated by the dotted lines. These thresholds 1226 

were not applied to the PLS gene lists. 1227 
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