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Contact tracing is a central public health response to infectious disease outbreaks, 
especially in the early stages of an outbreak when specific treatments are limited. 
Importation of novel Coronavirus (COVID-19) from China and elsewhere into the United 
Kingdom highlights the need to understand the impact of contact tracing as a control 
measure. Using detailed survey information on social encounters coupled to predictive 
models, we investigate the likely efficacy of the current UK definition of a close contact 
(within 2 meters for 15 minutes or more) and the distribution of secondary cases that 
may go untraced. Taking recent estimates for COVID-19 transmission, we show that less 
than 1 in 5 cases will generate any subsequent untraced cases, although this comes at 
a high logistical burden with an average of 36.1 individuals (95th percentiles 0-182) traced 
per case. Changes to the definition of a close contact can reduce this burden, but with 
increased risk of untraced cases; we estimate that any definition where close contact 
requires more than 4 hours of contact is likely to lead to uncontrolled spread. 

  
Contact tracing is the main public health response to importations of rare or emerging infectious 
diseases, and was implemented in the UK during the ‘containment stage’ of the 2009 influenza 
pandemic (McLean et al 2010). In more recent years, contact tracing was also a valuable tool 
following  importation of Ebola virus disease into the UK in 2014 (Crook et al 2017) and the cases 
of monkeypox in the UK in 2018 (Vaughan et al 2018). In general, contact tracing is a highly effective 
and robust strategy given sufficient resources. The main advantages are that it can identify 
potentially infected individuals before severe symptoms emerge, and if conducted sufficiently quickly 
can prevent onward transmission from the secondary cases. Contact tracing has proved hugely 
successful in the treatment of sexually transmitted infections, where the definition of a contact is 
relatively straightforward,  where infection is often asymptomatic and where the time-scales of 
transmission are slow (Hogben et al 2016, Rönn et al 2017). In contrast, the use of contact tracing 
for novel invading pathogens has received less quantitative consideration, in part due to greater 
uncertainties over social contact structure (although see Ahmed et al 2018, Hoang et al 2019). 
Modelling studies have often focused on quantifying the importance of pre-symptomatic and pre-
tracing infectiousness, but are usually based on statistical distributions of contact networks (Fraser 
et al 2004, Kwok et al 2019). Here we leverage detailed social network data from the UK to model 
both transmission and the act of tracing, and identify the implications of contact tracing for 
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containment of a novel pathogen, using parameters for the novel Coronavirus (COVID-19) (Read et 
al 2020, Li et al 2020). 
  
We characterised contact patterns in the UK using a postal and online cross-sectional survey, which 
asked participants to report the number of social encounters with unique individuals during a given 
day, as well as the duration and typical frequency of those encounters (Danon et al 2012, 2013). In 
total, 5,802 respondents reported more than 50,000 encounters - one of the biggest studies of its 
kind to date. The encounter patterns of this study were in good qualitative agreement with other 
similar studies of social interactions (Mossong et al 2008, Isella et al 2010).  In this study, the daily 
encounter data was first extrapolated to generate a pattern of contacts over a 14 day period 
(replicating random encounters and increasing the total duration associated regular contacts), to act 
as the basis for transmission and contact tracing simulations. Using this extrapolated data, we can 
classify interactions into those which satisfy the definition of a close contact for the purpose of 
contact tracing. From our social encounter data we can also distinguish interactions with people who 
could be later identified and traced, from those with unidentifiable strangers (schematic figure 1). 
We assume that all contact of longer than 1 hour or repeated contacts can be identified and traced, 
whereas shorter meetings with people for the first time are strangers who are unidentifiable. The 
second element of the simulation is to determine who gets infected from a source case chosen 
representatively from the survey respondents. This transmission process is stochastic, accounting 
for both the time spent with each contact and the infectivity on each day (see Appendix).  Taken 
together these two predictions allow us to bound the efficacy of contact tracing. 
 
Heterogeneity in Behaviour 
One of the most notable features of human social contacts is the huge variability in the number and 
strength of contacts - which is reflected as variation in both the number of secondary cases and the 
number of individuals that match the contact-tracing definition (figure 2). Using preliminary estimates 
of COVID-19 transmission (average latent period 4 days, average effective infectious period 1.61 
days, R0=3.11 and assuming a simple SEIR formulation (Read et al 2020)) we compute the 
distribution of epidemiological, social and contact tracing characteristics across the population. 
Extrapolating the data from the social contact survey suggests that the average number of contacts 
over a 14 day period is 217, although the distribution is significantly over dispersed (with a median 
of 90 and around 3% of individuals having >1,000 total contacts). Of these total encounters, an 
average of 59 contacts (27%) meet the definition of a close-contact (in contact for >15 minutes, PHE 
2020) and of these close-contacts we predict an average of 36 (61%) to be individuals known to the 
infected case that can be traced. Therefore, simply considering social contacts, it is clear that there 
are very many short duration contacts which do not meet the definition of a close contact, and 
although unlikely to become infected may pose a risk due to their greater abundance. 
 
Given that the risk of infection increases with duration of contact, the distribution of cases effectively 
represents a biased sample of all contacts. As expected, given the model assumptions, the expected 
number of total secondary cases agrees with the assumed R0 (mean=3.11, median=2, and 95th 
percentiles 0-10). Given that these cases are most likely to be those contacts of the longest duration, 
we predict that 95% of cases match the definition of a close contact. However, not all of these 
contacts will be identifiable; assuming that all repeated contacts and contact of longer than 1 hour 
can be traced, we predict that 93% of all cases meet the definition and can be identified. However, 
because of the extreme heterogeneity in contacts between individuals and the stochastic nature of 
transmission, we would still expect 15% of all primary cases to generate at least one secondary 
case that cannot be identified. Aggregating across all individuals and under the optimistic 
assumption that all the contact tracing can be performed rapidly, we expect contact tracing to reduce 
the basic reproductive ratio from 3.11 to 0.21 - enabling the outbreak to be contained (figure 2). 
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Rapid and effective contact tracing can therefore be highly effective in the early control of COVID-
19, but places substantial demands on the local public-health authorities. Each new case requires 
an average of 36 individuals to be traced, with 8.7% of cases having more than 100 close traceable 
contacts (figure 2). We therefore consider the implications of changing the definition of a close 
contact. Clearly a more strict definition of a close contact (requiring more contact time) reduces the 
burden on the health services as fewer contacts need to be traced, but also increases the risk of 
cases being missed. Figure 3 provides a quantitative assessment of changes to the close contact 
definition. Definitions requiring more than four hours of contact, are unlikely to control an outbreak 
as the expected number of untraced secondly cases is greater than one. This therefore places a 
strict bound on level of contact tracing required. The added benefit from definitions shorter than 1 
hour has relatively little impact on the mean number of untraced cases (figure 3b), but does reduce 
the probability that some untraced contacts occur. 
 
Throughout we have used a value of R0 that represents a population-level average once the local 
infection has become established. However, the first invasion into any new population or social 
setting generally has a larger expected number of secondary cases. The first invader enters a 
completely susceptible population; moreover all their close contacts (eg family members) are 
susceptible. In contrast, due to clustering of contacts, most secondary cases will be in a landscape 
with a depleted number of susceptibles -  as close contacts such as family members will already 
have been exposed to the primary case. This susceptible depletion in the local social network may 
help to explain the change in Rt over time reported for COVID-19 (Yang et al 2020). We therefore 
consider the impact of different values of the initial reproductive ratio (figure 4), which could capture 
this social aspect, or could represent heterogeneity between individuals in the amount of virus shed, 
or could inform about innate differences in behaviour between China and the UK. Given the strong 
biasing of transmission towards long-duration contacts, the impact of varying initial reproductive ratio 
is less extreme than might be expected; it is only for the highest values of initial reproductive ratio 
simulated (>9.8) that contact tracing fails to find more than one case such that infection can escape. 
 
Conclusions  
Mathematical models have an important role to play in preparedness for novel infectious diseases, 
allowing policy makers to plan for potential public health scenarios before they arise. However, in 
such scenarios reliable data is often limited, so predictions of long term dynamics are generally 
associated with wide confidence intervals. In contrast, while short term predictions are subject to 
greater stochasticity, the distribution of possible behaviours can be readily captured. Here we have 
investigated contact tracing of a close-contact pathogen, using 2019 novel coronavirus (COVID-19) 
as the example, and considered the efficacy of contact tracing as a control measure. This work 
brings together a detailed survey of social encounters together with bespoke mathematical 
modelling of the transmission and tracing processes. Given the huge heterogeneties present in 
social encounters (both in terms of duration and number) mathematical models are vital to  interpret 
the interplay between a low number of high risk encounters (e.g., household members) and the high 
number of low-risk less-identifiable encounters (e.g., commuters or retail customers). 
  
The UK currently defines a close contact as 15 minutes within 2 meters over two weeks before 
detection (PHE 2020). Under this definition, there are unlikely to be many untraced secondary cases, 
although the burden of tracing could be large. Relaxing the definition of a contact (such that longer 
contact durations are needed) lessens this burden but at the greater risk of undetected cases (Figure 
3). Surprisingly, small changes to the reproductive ratio, within the bounds estimated from early data 
(Figure 4) or even changes to the distribution of infectivity, are predicted to have a relatively modest 
impact of the success of contact tracing illustrating the robustness of this control measure. 
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Our model has addressed the simple and optimistic question of whether contact tracing is sufficient 
to identify secondary infections. The public health implications of this tracing are more complex, and 
depend on the relative timing of events and the treatment of identified contacts. For contact tracing 
to be an effective public health measure requires secondary cases to be discovered before they 
become infectious; hence the time from the primary case becoming infectious to the tracing of their 
contacts needs to be shorter than the incubation period. Longer time scales would allow tertiary 
cases to be infected and would snowball the tracing process. In addition, those contacts that are 
traced either need to be effectively screened for infection and quarantined or otherwise isolated so 
that they do not pose a risk to others. Therefore, while contact tracing has the potential to control 
COVID-19 (and other close-contact pathogens) the ultimate success relies on the speed and 
efficacy with which suspect contacts can be contained. 
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FIGURE 1 
a) Cartoon example of the encounters made during a day by an infectious index case (central figure) 
with contacts positioned by their total contact duration. Here, the definition of a contact is someone 
with whom the index case encountered for 15 minutes or longer. Some contacts will be identifiable 
(green), while others will be unidentifiable (orange). A definition of contact that is too restrictive and 
inappropriate for the infection means some encounters may fail to meet the definition yet may be at 
risk of infection; these excluded contacts could be identifiable (light grey) or unidentifiable (orange). 
(b) Examples of ego- centric networks collected by the survey. The participant (ego) is the blue 
central triangle; circles represent individual contacts, squares represent groups of contacts (size of 
group indicated). Colours represent social settings of encounters (red=home, cyan=work/school, 
yellow=travel, pink=other). Larger symbol sizes represent longer contact durations, while a closer 
proximity to the ego indicates the contact is more frequently encountered. 
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FIGURE 2 Distributions associated with transmission and contact tracing. (a) Relative infectivity over 
time based on an SEIR model with latent period 4, infectious period 1.61, R0=3.11. (b) Frequency 
distribution of the number contacts using colours from Figure 1a: white is all contacts; blue are those 
matching the >15 minute definition of a close contact; green are those matching the definition that 
are also identifiable. (c) Frequency distribution of the number of cases, again using colours from 
Figure 1a: red is all secondary cases; grey and orange are those that are not traced either through 
failing to meet the definition or because they are unidentified; orange are all secondary cases that 
are unidentifiable. 
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FIGURE 3. Impact of different assumptions for the definition of a close-contact. (a) the total number 
of contacts traced (b)  the number of secondary contacts that are not traced (c) the probability that 
at least one secondary case is not traced. For (a) and (b) the crosses mark the mean value, boxes 
contain the 50th percentiles while bars contact the 95th percentiles, colours correspond to those in 
Figure 1a - distributions are across all respondents to the survey and across stochastic realisations. 
(Based on an SEIR model with latent period 4, infectious period 1.61, R0=3.11). 
 

 
 
  

5m 10m 15m 30m 45m 60m 2h 3h 4h 6h 8h
0

50

100

150

200

250

300

To
ta

l C
on

ta
ct

s 
Tr

ac
ed

5m 10m 15m 30m 45m 60m 2h 3h 4h 6h 8h
0

0.5

1

2

3

5

10

C
as

es
 N

ot
 T

ra
ce

d

5m 10m 15m 30m 45m 60m 2h 3h 4h 6h 8h
Time to be a Close Contact

0

0.1

0.2

0.3

0.4

0.5

Pr
ob

 a
t l

ea
st

 o
ne

 U
nt

ra
ce

d 
C

as
e

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 17, 2020. ; https://doi.org/10.1101/2020.02.14.20023036doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.14.20023036
http://creativecommons.org/licenses/by-nc-nd/4.0/


FIGURE 4. Impact of different values for the initial reproduction number of the primary case; 
changing this does not affect the the number of contacts traced (a)  the number of secondary 
contacts that are not traced (b) the probability that at least one secondary case is not traced. For (a) 
the crosses mark the mean value, boxes contain the 50th percentiles while bars contact the 95th 
percentiles, colours correspond to those in Figure 1a  - distributions are across all respondents to 
the survey and across stochastic realisations. (Based on an SEIR model with latent period 4, 
infectious period 1.61, R0=3.11). 
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APPENDIX 
 
From the contact tracing data, we extrapolate to the estimate the duration of contact 𝑇",$% , between 
individual i (the respondent) and individual j (the contact) on day d. 
We then define a close contact of i as all contacts j: 

	𝑗	| 	 𝑇",$
% > 𝑇	

$∈+

 

where in the UK, we have defined the total contact time T as 15 minutes over a duration D of two 
weeks before detection and isolation of individual i (PHE 2020). 
 
The probability of transmission to individual j from individual i is then calculated as: 

Prob infection	𝑖	 → 	𝑗 = 	1 − exp −	 	𝜏$	𝑇",$
%

$∈+

 

Where 𝜏$ is an estimate of the transmission rate from individual i on day d. 
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