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Abstract 29 

Background: The outbreak of Severe Acute Respiratory Syndrome Coronavirus 30 

2 (SARS-COV-2) has caused more than 2.5 million cases of Corona Virus Disease 31 

(COVID-19) in the world so far, with that number continuing to grow. To control the 32 

spread of the disease, screening large numbers of suspected cases for appropriate 33 

quarantine and treatment is a priority. Pathogenic laboratory testing is the gold 34 

standard but is time-consuming with significant false negative results. Therefore, 35 

alternative diagnostic methods are urgently needed to combat the disease. Based 36 

on COVID-19 radiographical changes in CT images, we hypothesized that Artificial 37 

Intelligence’s deep learning methods might be able to extract COVID-19’s specific 38 

graphical features and provide a clinical diagnosis ahead of the pathogenic test, thus 39 

saving critical time for disease control. 40 

Methods and Findings: We collected 1,065 CT images of pathogen-confirmed 41 

COVID-19 cases (325 images) along with those previously diagnosed with typical 42 

viral pneumonia (740 images). We modified the Inception transfer-learning model to 43 

establish the algorithm, followed by internal and external validation. The internal 44 

validation achieved a total accuracy of 89.5% with specificity of 0.88 and sensitivity 45 

of 0.87. The external testing dataset showed a total accuracy of 79.3% with 46 

specificity of 0.83 and sensitivity of 0.67. In addition, in 54 COVID-19 images that 47 

first two nucleic acid test results were negative, 46 were predicted as COVID-19 48 

positive by the algorithm, with the accuracy of 85.2%. 49 

Conclusion: These results demonstrate the proof-of-principle for using 50 

artificial intelligence to extract radiological features for timely and accurate 51 
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COVID-19 diagnosis.   52 

Author summary 53 

To control the spread of the COVID-19, screening large numbers of suspected 54 

cases for appropriate quarantine and treatment measures is a priority. Pathogenic 55 

laboratory testing is the gold standard but is time-consuming with significant false 56 

negative results. Therefore, alternative diagnostic methods are urgently needed to 57 

combat the disease. We hypothesized that Artificial Intelligence’s deep learning 58 

methods might be able to extract COVID-19’s specific graphical features and 59 

provide a clinical diagnosis ahead of the pathogenic test, thus saving critical time. 60 

We collected 1,065 CT images of pathogen-confirmed COVID-19 cases along with 61 

those previously diagnosed with typical viral pneumonia. We modified the Inception 62 

transfer-learning model to establish the algorithm. The internal validation achieved 63 

a total accuracy of 89.5% with specificity of 0.88 and sensitivity of 0.87. The 64 

external testing dataset showed a total accuracy of 79.3% with specificity of 0.83 65 

and sensitivity of 0.67. In addition, in 54 COVID-19 images that first two nucleic 66 

acid test results were negative, 46 were predicted as COVID-19 positive by the 67 

algorithm, with the accuracy of 85.2%. Our study represents the first study to apply 68 

artificial intelligence to CT images for effectively screening for COVID-19. 69 

Keywords: COVID-19, Computed Tomography, Artificial Intelligence, Deep 70 

Learning, Diagnosis  71 
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Introduction 72 

The outbreak of atypical and person-to-person transmissible pneumonia 73 

caused by the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2, 74 

also known as 2019-nCov) has caused a global alarm. There have been more 75 

than 2.5 million confirmed cases of the Corona Virus Disease (COVID-19) in 76 

the world, as of April 23, 2020. About 16-21% of people with the virus in China 77 

have become severely ill with a 2-3% mortality rate. With the most recent 78 

estimated viral reproduction number (R0), the average number of other people 79 

that an infected individual will transmit the virus to in a completely non-immune 80 

population, stands at about 3.77 [1], indicating that a rapid spread of the 81 

disease is imminent. It is crucial to identify infected individuals as early as 82 

possible for quarantine and treatment procedures.  83 

The diagnosis of COVID-19 relies on the following criteria: clinical 84 

symptoms, epidemiological history and positive CT images, as well as positive 85 

pathogenic testing. The clinical characteristics of COVID-19 include respiratory 86 

symptoms, fever, cough, dyspna, and pneumonia [3-6]. However, these 87 

symptoms are nonspecific, as there are isolated cases where, for example, in 88 

an asymptomatic infected family a chest CT scan revealed pneumonia and the 89 

pathogenic test for the virus came back positive. Once someone is identified 90 

as a PUI (person under investigation), lower respiratory specimens, such as 91 

bronchoalveolar lavage, tracheal aspirate or sputum, will be collected for 92 

pathogenic testing. This laboratory technology is based on real-time RT-PCR 93 
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and sequencing of nucleic acid from the virus [7,8]. Since the beginning of the 94 

outbreak, the efficiency of nucleic acid testing has been dependent on several 95 

rate-limiting factors, including availability and quantity of the testing kits in the 96 

affected area. More importantly, the quality, stability and reproducibility of the 97 

detection kits are questionable. The impact of methodology, disease stages, 98 

specimen collection methods, nucleic acid extraction methods, and the 99 

amplification system are all determinant factors for the accuracy of test results. 100 

Conservative estimates of the detection rate of nucleic acid are low (between 101 

30-50%) [7,8,9], and tests need to be repeated several times in many cases 102 

before they can be confirmed.  103 

Radiological imaging is also a major diagnostic tool for COVID-19. The 104 

majority of COVID-19 cases have similar features on CT images including 105 

ground-glass opacities in the early stage and pulmonary consolidation in the 106 

late stage. There is also sometimes a rounded morphology and a peripheral 107 

lung distribution [6,10]. Although typical CT images may help early screening 108 

of suspected cases, the images of various viral pneumonias are similar and 109 

they overlap with other infectious and inflammatory lung diseases. Therefore, it 110 

is difficult for radiologists to distinguish COVID-19 from other viral pneumonias. 111 

Artificial Intelligence involving medical imaging deep-learning systems has 112 

been developed in image feature extraction, including shape and spatial 113 

relation features. Specifically, Convolutional Neural Network (CNN) has been 114 

proven in feature extraction and learning. CNN was used to enhance low-light 115 
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images from high-speed video endoscopy with the limited training data being 116 

just 55 videos [11]. Also, CNN has been applied to identify the nature of 117 

pulmonary nodules via CT images, the diagnosis of pediatric pneumonia via 118 

chest X-ray images, automated precising and labeling of polyps during 119 

colonoscopic videos, cystoscopic image recognition extraction from videos 120 

[12-15].  121 

There are a number of features for identifying viral pathogens on the basis 122 

of imaging patterns, which are associated with their specific pathogenesis [16]. 123 

The hallmarks of COVID-19 are bilateral distribution of patchy shadows and 124 

ground glass opacity in early stages. As the disease progresses, multiple 125 

ground glass and infiltrates in both lungs will appear [3]. Theses features are 126 

quite similar to typical viral pneumonia with only slight differences, which are 127 

difficult to be distinguished by radiologists. Based on this, we believed that 128 

CNN might help us identify unique features that might be difficult for visual 129 

recognition.  130 

Hence, the purpose of our study was to evaluate the diagnostic performance of 131 

a deep learning algorithm using CT images to screen for COVID-19 during the 132 

influenza season. To test this notion, we retrospectively enrolled 1,065 CT 133 

images of pathogen-confirmed COVID-19 cases along with previously 134 

diagnosed typical viral pneumonia. Our results reported below demonstrate 135 

the proof-of-principle using the deep learning method to extract radiological 136 

graphical features for COVID-19 diagnosis.  137 
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Methods and Materials 138 

Retrospective collection of datasets. 139 

We retrospectively collected CT images from 259 patients, in which the 140 

cohort includes 180 cases of typical viral pneumonia and the other 79 cases 141 

from three hospitals with confirmed nucleic acid testing of SARS-COV-2. In 142 

addition, we enrolled additional 15 COVID cases, in which first two nucleic acid 143 

tests were negative at initial diagnoses. Hospitals providing the images were 144 

Xi’an Jiaotong University First Affiliated Hospital (Center 1), Nanchang 145 

University First Hospital (Center 2) and Xi’an No.8 Hospital of Xi’an Medical 146 

College (Center 3). All CT images were de-identified before sending for 147 

analysis. This study is in compliance with the Institutional Review Board of 148 

each participating institutes. Informed consent was exempted by the IRB 149 

because of the retrospective nature of this study. 150 

Delineation of ROIs 151 

To establish a binary model for distinguishing COVID-19 and typical 152 

pneumonia, we drew the Region of Interest (ROI) as input images for the 153 

training cohort and validation cohorts. We sketched the ROI from CT images 154 

based on features of COVID-19, such as small patchy shadows and interstitial 155 

changes in the early stage, multiple ground glass and infiltrates in both lungs in 156 

the progression stage, and delineated the ROIs on the CT images of other 157 

typical viral pneumonia such as pseudocavity, enlarged lymphnodes and 158 

multifocal GGO as the control. The ROIs were divided into three cohorts: one 159 

training cohort (n=320 from Center 1), one internal validation cohort (n=455 160 
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from Center 1) and one external validation cohort (n=290 from Center 2 and 3). 161 

For a ROI, it is sized approximately from 395*223 to 636*533 pixels.  162 

Overview of the proposed architecture 163 

Our systematic pipeline for the prediction architecture is depicted in Fig 1. 164 

The architecture consists of three main processes: 1) Pre-processing of input 165 

images; 2) Feature extraction of ROI images and training; and 3) Classification 166 

with fully connected network and prediction of multiple classifiers. We built a 167 

transfer learning neural network based on the Inception network. The entire 168 

neural network can be roughly divided into two parts: the first part used a 169 

pre-trained inception network to convert image data into one-dimensional 170 

feature vectors, and the second part used a fully connected network and the 171 

main role is for classification prediction. ROI images from each case were 172 

preprocessed and inputted into the model for training. The number of various 173 

types of pictures in the training set is equal, with a total number of 320. The 174 

remaining CT pictures of each case were used for internal validation. The 175 

model training was iterated 15,000 times with a step size of 0.01.  176 

 177 

178 

Fig 1.  ROI images extraction and Deep Learning (DL) algorithm framework. 179 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.02.14.20023028doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.14.20023028


9 
 

ROI images were extracted by the CV model and then trained using a modified 180 

Inception network to extract features. The full connection layer then makes a 181 

classification and prediction. 182 

Image preprocessing and feature extraction 183 

Based on the signs of characteristic of pneumonia, ROI images were 184 

defined inflammatory lesions and extracted by our computer vision (CV) model 185 

following the steps. 1) Convert the image to grayscale. 2) Binarize grayscale. 186 

Because using the OSTU’s method directly may cause the threshold selection 187 

failure in the case of multi-peaks, the selection of the binarization threshold in 188 

this paper was based on the statistics of all pixel frequency histograms of the 189 

gray color values Vmin (80) and Vmax (200). The minimum frequency in the 190 

selection interval is threshold, and the interval of frequency statistics is five. 3) 191 

Background area filling. Using the flood filling method to expand the image by 192 

1 black pixel, and fill the black pixels near the border with white. 4) Reverse 193 

color, find all the contour areas of the image, and keep the two largest contour 194 

areas as the two lung areas. 5) Take the smallest bounding rectangle of the 195 

lung area as the ROI frame and crop the original image to obtain the ROI 196 

images. The delineated ROIs were obtained for classification model building.  197 

We modified the typical Inception network, and fine-tuned the modified 198 

Inception (M-Inception) model with pre-trained weights. During the training 199 

phase, the original Inception part was not trained, and we only trained the 200 

modified part. The architecture of M-Inception is shown in Table 1. The 201 
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difference between Inception and M-Inception in classification lies in the last 202 

fully-connected layers. We reduced the dimension of features before it was 203 

sent to the final classification layer. The training dataset made up of all those 204 

patches aforementioned. The Inception network is shown in Table 1. 205 

Table 1. The architecture of M-Inception 206 

Inception 

part 

Layer Patch size/stride or remarks 

conv 3×3/2 

conv 3×3/1 

conv padded 3×3/1 

pool 3×3/2 

onv 3×3/1 

conv 3×3/2 

conv 3×3/1 

Inception 3x, 5x, 2x 

pool 8x8 

linear logits 

softmax classifier 

Modified 

part 

Fc1 [
batchnorm

dropout(0.5)
512d Linear

] 

Fc2 [
batchnorm

dropout(0.5)
2d Linear

] 

 207 

Prediction. 208 
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After generating the features, the final step was to classify the pneumonia 209 

based on those features. Ensembling of classifiers was used to improve the 210 

classification accuracy. In this study, we adopted end-to-end learning to make 211 

the model convergence.  212 

Performance evaluation metrics. 213 

We compared the classification performance using Accuracy, Sensitivity, 214 

Specificity, Area Under Curve (AUC), Positive predictive value (PPV), Negative 215 

predictive value (NPV), F1 score and Youden Index. TP and TN represent the 216 

number of true positive or true negative samples. FP and FN mean the number 217 

of false positive or false negative samples. Sensitivity measures the ratio of 218 

positives that are correctly discriminated. Specificity measures the ratio of 219 

negatives that are correctly discriminated. AUC is an index to measure the 220 

performance of the classifier. NPV was used to evaluate the algorithm for 221 

screening, and PPV was the probability of getting a disease when the 222 

diagnostic index is positive. Youden Index was the determining exponent of the 223 

optimal bound. F1 score was a measure of the accuracy of a binary model. 224 

Additionally, performance was evaluated with F-measure (F1) to compare the 225 

similarity and diversity of performance. Kappa value measures the agreement 226 

between the CNN model prediction and the clinical report.  227 

228 
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Results 229 

Algorithm development. 230 

In order to develop a deep learning algorithm for the identification of viral 231 

pneumonia images, we initially enrolled 259 patients, in which the cohort 232 

includes 180 cases of typical viral pneumonia that were diagnosed previously 233 

before the COVID-19 outbreak. These patients are termed COVID-19 negative 234 

in the cohort. The other 79 cases were from the three hospitals with confirmed 235 

nucleic acid testing of SARS-COV-2, therefore termed COVID-19 positive. Two 236 

radiologists were asked to review the images and sketched 1,065 237 

representative images (740 for COVID-19 negative and 325 for COVID-19 238 

positive) for analysis (Fig 2 is shown as an example). These images were 239 

randomly divided into a training set and a validation set. The model training 240 

was iterated for 15,000 times with a step size of 0.01. The training loss curve is 241 

shown in Fig 3A.  320 images (160 images from COVID-19 negative and 160 242 

images from COVID-19 positive) were obtained to construct the model. To test 243 

the stability and generalization of the model, 455 images (COVID-19 ngegative 244 

360 images and COVID-19 positive 95 images) were obtained for internal 245 

validation from Center 1 and 290 images (COVID-19 negative 220 images and 246 

COVID-19 positive 70 images) were obtained from Center 2 and 3 for external 247 

validation. The model training was also iterated for 15,000 times with a step 248 

size of 0.01. The training loss curve is shown in Fig 3B. 249 
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 250 

Fig 2. An example of COVID-19 pneumonia features. The blue arrow points to 251 

ground-glass opacity, and the yellow arrow points to the pleural indentation 252 

sign. 253 

 254 
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  255 

Fig 3. Training loss curves of the models on internal (A) and external (B) 256 

validation. The loss curve tends to be stable after descending, indicating that 257 

the training process converges 258 

Deep learning performance. 259 

The deep learning algorithm yielded an AUC of 0.93 (95% CI, 0.90 to 0.96) 260 

on the internal validation and 0.81 (95% CI, 0.71 to 0.84) on the external 261 

validation based on the certain CT images (Fig 4). Using the maximized 262 

Youden index threshold probability, the sensitivity was 0.88 and 0.83, 263 
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specificity 0.87 and 0.67, the accuracy 89.5% and 79.3%, the negative 264 

prediction values 0.95 and 0.90, the Youden indexes 0.75 and 0.48, and the F1 265 

scores were 0.77 and 0.63 for the internal and external datasets, respectively 266 

(Table 2). The kappa values were 0.69 and 0.48 for internal and external 267 

validation in certain CT images, indicating that prediction of COVID-19 from 268 

the CNN model is a highly consistent with pathogenic testing results. We also 269 

performed an external validation based on each patient’s multiple images. The 270 

accuracy was 82.5%, the sensitivity 0.75, the specificity 0.86, the PPV 0.69, 271 

the NPV 0.89, and the kappa value was 0.59.  272 
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 273 

Fig 4. Receiver operating characteristic plots for COVID-19 identification for 274 

the deep learning (Inception) algorithm. (A) Internal Validation. (B) External 275 

Validation. 276 

 277 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.02.14.20023028doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.14.20023028


17 
 

Table 2. Deep learning Algorithm Performance 278 

Performance Metric Internal External 

AUC（95%CI） 0.93(0.86 to 0.94) 0.81(0.71 to 0.84) 

Accuracy, % 89.5 79.3 

Sensitivity 0.88 0.83 

Specificity 0.87 0.67 

PPV 0.71 0.55 

NPV 0.95 0.90 

Kappa 0.69 0.48 

Yoden index 0.75 0.50 

F1 scoreǂ  0.77 0.63 

 Measures the agreement between the CNN model prediction and the clinical 279 

diagnosis. ǂMeasures the accuracy of the CNN model. 280 

 281 

Comparison of AI with radiologist prediction. 282 

At the same time, we asked two skilled radiologists to assess the 745 283 

images for a prediction. Radiologist 1 achieved the accuracy of 55.8% with 284 

sensitivity of 0.71 and specificity of 0.51, and Radiologist 2 achieved a similar 285 

accuracy of 55.4% with sensitivity of 0.73 and specificity of 0.50 (Table 3). 286 

These results indicates that it is difficult for radiologists to make prediction of 287 

COVID-19 with eye recognition, further showing the advantage of the 288 

algorithm we developed. 289 

 290 

 291 

 292 
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Table 3. Performance metrics for the CNN model versus skilled 293 

radiologists. 294 

Performance 

Metric 

Internal 

External  

(Based on 

ROI) 

External 

(Based on 

patients) R1 R2 

Accuracy, % 89.5 79.3 82.5 55.8 55.4 

Sensitivity 0.88 0.83 0.75 0.71 0.73 

Specificity 0.87 0.67 0.86 0.51 0.5 

PPV 0.71 0.55 0.69 0.29 0.29 

NPV 0.95 0.90 0.89 0.86 0.86 

F1 score 0.77 0.63 0.72 0.41 0.42 

Kappa 0.69 0.48 0.59 0.15 0.15 

Yoden index 0.75 0.50 0.61 0.22 0.23 

 295 

Prediction of COVID-19 on CT images from pathogenic negative 296 

patients. 297 

Because high false negative results were frequently reported from nucleic 298 

acid testing, we aimed to test whether the algorithm could detect COVID-19 299 

when the pathogenic test came negative. To achieve this goal, we enrolled 300 

additional 15 COVID-19 cases, in which initial two nucleic acid tests came 301 

negative and for the third test they became positive. These CT results were 302 

taken on the same day of the nucleic acid tests (Fig 5). Interestingly, we found 303 

that, 46 out of the 54 images when nucleic acid test results were negative were 304 

predicted as COVID-19 positive by the algorithm, with the accuracy of 85.2%. 305 

These results indicate that the algorithm has high value serving as a screening 306 

method for COVID-19. 307 
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 308 

Fig 5. Representative images from a COVID-19 patient with two negatively 309 

reported nucleic acid tests at earlier stages and one final positively reported 310 

test at a later stage. On the left, only one inflammatory lesion (blue arrow) can 311 

be seen near diaphragm. In the middle, lesions (yellow arrows) were found in 312 

two levels of images. On the right, the images were taken on the ninth day 313 

after admission. The inflammation continued to progress, extending to both 314 

lungs (red arrows), and the nucleic acid test became positive. 315 

  316 
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Discussion 317 

Timely diagnosis and triaging of PUIs are crucial for the control of 318 

emerging infectious diseases such as the current COVID-19. Due to the 319 

limitation of nucleic acid -based laboratory testing, there is an urgent need to 320 

look for fast alternative methods that can be used by front-line health care 321 

personals for quickly and accurately diagnosing the disease. In the present 322 

study, we have developed an AI program by analyzing representative CT 323 

images using a deep learning method. This is a retrospective, multicohort, 324 

diagnostic study using our modified Inception migration neuro network, which 325 

has achieved an overall 89.5% accuracy. Moreover, the high performance of 326 

the deep learning model we developed in this study was tested using external 327 

samples with 79.3% accuracy. More importantly, as a screening method, our 328 

model achieved a relative high sensitivity, 0.88 and 0.83 on internal and 329 

external certain CT images datasets, respectively. Furthermore, the model 330 

achieved a better profomance on a certain people, the accuracy up to 82.5%. 331 

Of note, our model was used to distinguish between COVID-19 and other 332 

typical viral penumonia, both of which have quite similar radiologic 333 

characteristics. During current COVID-19 global pandemics, the CNN model 334 

can potentially serve as a powerful tool for COVID-19 screening.  335 

It is important to note that our model aims to distinguish between 336 

COVID-19 and other typical viral pneumonia, both of which have similar 337 

radiologic characteristics. We compared the performance of our model with 338 
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that of two skilled radiologists, and our model has shown much higher 339 

accuracy and sensitivity. These findings have demonstrated the 340 

proof-of-principle that deep learning can extract CT image features of 341 

COVID-19 for diagnostic purposes. Using the supercomputer system, the time 342 

for each case takes only about 10 seconds, and it can be performed remotely 343 

via a shared public platform. Therefore, further developing this system can 344 

significantly shorten the diagnosis time for disease control. Our study 345 

represents the first study to apply artificial intelligence technologies to CT 346 

images for effectively screening for COVID-19. 347 

The gold standard for COVID-19 diagnosis has been nucleic acid based 348 

detection for the existence of specific sequences of the SARS-COV-2 gene. 349 

While we still value the importance of nucleic acid detection in the diagnosis of 350 

SARS-COV-2 infection, we must also note that the high number of false 351 

negatives due to several factors such as methodological disadvantages, 352 

disease stages, and methods for specimen collection might delay diagnosis 353 

and disease control. Recent data have suggested that the accuracy of nucleic 354 

acid testing is only about 30-50% [6,7,8]. Using CT imaging feature extraction, 355 

we are able to achieve above 89.5% accuracy, significantly outplaying nucleic 356 

acid testing. More interestingly, testing CT images from COVID-19 patients 357 

when initial pathogenic testing came negative, our model has achieved the 358 

accuracy of 85.2% for correctly predicting COVID-19. According to a study 359 

authored by Xia L et al, 75% patients with negative RT-PCR results had 360 
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positive CT findings [17]. The study recommended that chest CT as a primary 361 

tool for the current COVID-19 detection in epidemic areas.  362 

Deep learning methods have been used to solve data-rich biology and 363 

medicine. A large number of labeled data is required for training [18]. Although 364 

we are satisfied with the initial results, we believe that with more CT images 365 

included in the training, we will achieve higher accuracy. Therefore, further 366 

optimizing and testing this system is warranted. To achieve this, we have 367 

generated a webpage that licensed healthcare personnel can access to upload 368 

CT images for testing and validation. The webpage information is as following: 369 

https://ai.nscc-tj.cn/thai/deploy/public/pneumonia_ct.  370 

There are some limitations to our study. Although DL has been used to 371 

represent and learn predictable relationships in many diverse forms of data, 372 

and it holds promise for applications in precision medicine, many factors such 373 

as low signal to noise and complex data integration have challenged the DL 374 

efficacy [19]. CT images represent a difficult classification task due to the 375 

relatively large number of variable objects, specifically the imaged areas 376 

outside the lungs that are irrelevant to the diagnosis of pneumonia [12]. In 377 

addition, the training data set is relatively small. The performance of this 378 

system is expected to increase when the training volume is increased. It 379 

should also be noted that, the features of the CT images we analyzed were 380 

from patients with severe lung lesions at later stages of disease development. 381 

Although we have enrolled 15 cases of COVID patients for assessing the value 382 
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of the algorithm for early diagnosis, larger numbers of database to associate 383 

this with the disease progress and all pathologic stages of COVID-19 is 384 

necessary to optimize the diagnostic system. 385 

In future, we intend to link hierarchical features of CT images to features of 386 

other factors such as genetic, epidemiological and clinical information for 387 

multi-modeling analysis for an enhanced diagnosis. The artificial intelligence 388 

system developed in our study should significantly contribute to COVID-19 389 

disease control by reducing the number of PUIs for timely quarantine and 390 

treatment. 391 

  392 
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