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A novel coronavirus (SARS-CoV-2) first detected in Wuhan, China, has spread rapidly
since December 2019, causing over 45,000 PCR confirmed infections and more than 1,000
fatalities (as of Feb 12, 2020). Imported cases and small transmission clusters have been
reported globally. Early data suggest the virus transmits readily and a pandemic cannot
be ruled out. Data from routine diagnostics show a strong and consistent seasonal vari-
ation of the four endemic coronaviruses (229E, HKU1, NL63, OC43). We use these data
to explore the effect of seasonal variation in transmissibility on a potential SARS-CoV-2
pandemic. A model allowing for many subpopulations of different size with variable
parameters of SARS-CoV-2 spread shows how a pandemic could unfold in 2020-2022.
Simulations of different scenarios show that plausible parameters result in a peak in
temperate regions of the Northern Hemisphere in winter 2020/2021. A smaller range
of parameters suggests a peak in the first half of 2020 or two peaks of similar magni-
tude. Variation in transmission and migration rates can result in substantial variation
in prevalence between regions.
While the uncertainty in parameters is large, the scenarios we explore show that transient
reductions in the incidence rate might be due to a combination of seasonal variation and
infection control efforts but do not necessarily mean the epidemic is contained. Seasonal
forcing on SARS-CoV-2 should thus be taken into account in the further monitoring
of the global transmission. The likely aggregated effect of seasonal variation, infection
control measures, and transmission rate variation is a prolonged pandemic wave with
lower prevalence at any given time, thereby providing a window of opportunity for better
preparation of health care systems.

On Jan 30, 2020, the World Health Organisation
(WHO) declared the spread of a new coronavirus, SARS-
CoV-2 (Gorbalenya, 2020)), as a public health emer-
gency of international concern (WHO Emergency Com-
mittee, 2020b). The virus was first identified in pa-
tients with pneumonia in the city of Wuhan in the Hubei
province, China, in December 2019 (Liangjun et al.,
2020). The clinical presentation of the illness caused by
SARS-CoV-2, called COVID-19, appears to range from
mild or asymptomatic to severe and fatal respiratory ill-
ness (WHO Emergency Committee, 2020a), but the ex-
act spectrum of disease presentation is still unclear. The
potential for global spread, i.e. a pandemic, of SARS-
CoV-2 is currently not known, but the virus has spread
at an alarming rate in Wuhan, the epicenter of the out-
break. Furthermore, the virus has spread to all provinces
of China and small clusters of local spread have been re-
ported from several countries, e.g. Singapore, Germany,
and the UK (Rothe et al., 2020; Singapore Ministry of
Health, 2020; WHO Emergency Committee, 2020a).

The basic reproduction number (R0), which describes
the average number of new infections per infected SARS-
CoV-2 case, has been estimated to be around R0 = 2 . . . 3
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(2.2 with 90% high density interval 1.4–3.8 (Riou and Al-
thaus, 2020) or 2.7 with a 95% CrI of 2.47–2.86 (Wu et al.,
2020)) Higher estimates have also been reported (Yang
et al., 2020). Importantly, R0 is not a biological constant
for a pathogen, but is affected by factors such as environ-
mental conditions and the behaviour of infected individu-
als. One such environmental factor is climate which mod-
ulates transmissibility throughout the year. As a result,
many respiratory viruses show clear seasonal variation in
prevalence; the most well-known example being seasonal
influenza which peaks every winter in the temperate zone
of the Northern Hemisphere (Petrova and Russell, 2018).
A similar pattern is seen for the four seasonal human
coronaviruses: HKU1, NL63, OC43 and 229E (hereafter
collectively referred to as “seasonal CoVs”) (Al-Khannaq
et al., 2016; Friedman et al., 2018; Galanti et al., 2019;
Góes et al., 2019; Huang et al., 2017; Killerby et al.,
2018). These viruses cause respiratory infections which
usually are mild and primarily affect young children.

Previous influenza pandemics have swept the world in
multiple waves often but not always coinciding with win-
ter months in temperate climates (Amato-Gauci et al.,
2011; Taubenberger et al., 2019; Viboud et al., 2005,
2016). The 1968-1970 global influenza pandemic was
sparked by a new influenza A/H3N2 virus, with a diver-
gent hemagglutinin protein, which replaced the A/H2N2
virus circulating for 10 years previously (Viboud et al.,
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2005). The virus spread rapidly, but the viral dynam-
ics and mortality was not synchronized across countries.
While many experienced two more-severe flu seasons in
the winters of 1969 and 1970, the US had higher mortal-
ity in the first season, while European countries, Japan,
and Australia, had higher mortality in the second, and
Canada had roughly equal mortality in both (Viboud
et al., 2005).

The 2009 pandemic H1N1 virus (A/H1N1pdm09) orig-
inated in March 2009 in Mexico and spread around the
globe within weeks. Only a few European countries saw
substantial circulation of H1N1pdm09 in the spring of
2009. Instead the virus showed low prevalence over the
summer and pronounced peaks in the following autumn
and winter in many countries (Amato-Gauci et al., 2011).
A/H1N1pdm09 has subsequently transitioned into a sea-
sonal pattern causing winter epidemics in temperate cli-
mates.

Here we use data on seasonal variation in prevalence of
seasonal CoVs in Sweden and model the impact of this
variation on the possible future spread of SARS-CoV-2
in the temperate zone of the Northern Hemisphere. We
also explore different scenarios of SARS-CoV-2 spread in
temperate and tropical regions and show how variation in
epidemiological parameters affects a potential pandemic
and the possibility of transitioning to an endemic state.

I. SEASONAL CORONAVIRUS PREVALENCE

Data on seasonal variation of HKU1, NL63, OC43
and 229E diagnoses in respiratory samples was obtained
from the routine molecular diagnostics at the Karolinska
University Hospital, Stockholm, Sweden. The labora-
tory provides diagnostic services to six of seven major
hospitals and approximately half of outpatient care in
the Stockholm county (2.2 million inhabitants). We ex-
tracted pseudonymized data on all analyses for the four
viruses between Jan 1, 2010 and Dec 31, 2019. The
dataset included a total of 52,158 patient samples with
190,257 diagnostic tests, of which 2,084 were positive for
any of the coronaviruses (229E = 319; NL63 = 499; OC43
= 604; HKU1 = 355; OC43/HKU1 = 307). Metadata
included information about date of sampling and age of
patient. In the period of Jan 1, 2010 to Nov 5, 2017, the
coronavirus diagnostic was done using in-house assays
(Tiveljung-Lindell et al., 2009). From Nov 6, 2017 to
Dec 31, 2019, samples were analysed using the commer-
cial kit Allplex Respiratory Panels (Seegene Inc., Seoul
(South Korea)). This commercial kit does not distinguish
between HKU1 and OC43, and for this reason positive
tests for these two viruses were combined for the entire
study period.

The fraction of tests that were positive for the four
seasonal CoVs showed a strong and consistent seasonal
variation, see Fig. 1. From December to April approx-

imately 2% of tests were positive, while less than 0.2%
of tests were positive between July to September, i.e. a
10-fold difference (Fig. 1, right). The strength of varia-
tion of the transmission rate through the year could be
of high relevance to the spread of SARS-CoV-2 in 2020
and following years.

II. BASIC MODEL

We consider simple SIR models (Kermack and McK-
endrick, 1991) of the form

d

dt
S = b(1− S)− β(t)SI

d

dt
I = −(ν + b+ e)I + β(t)SI + i

R = 1− S − I

(1)

where β(t) is the rate at which an infected individual in-
fects a susceptible one, ν is the recovery rate, b is the
population turn-over rate, e is the emigration rate, and
i is the influx of infected individuals. The population
turnover rate is immaterial for a pandemic scenario, but
important for our analysis of seasonal CoV, and should
be interpreted as the sum of the birth rate and the rate at
which previously immune individuals become susceptible
due to immune waning and escape. We review general
properties of such model in the Supplementary Materials.
Following previous work, we parameterize transmissibil-
ity as

β(t) = β0 (1 + ε cos(2π(t− θ))) (2)

where β0 is the average annual infection rate, ε is the am-
plitude of seasonal forcing which modulates transmissibil-
ity through the year, and θ is the time of peak transmis-
sibility (Chen and Epureanu, 2017; Dushoff et al., 2004).
For simulations of the pandemic, we will add an addi-
tional term to β(t) that accounts for infection control
measures in heavily affected areas, see Supplementary
Materials.

III. MODEL PARAMETERIZATION USING SEASONAL
COV OBSERVATIONS

Seasonal CoVs are endemic throughout the world and
we therefore expect that viruses are imported throughout
the year. We model this import as a constant influx
i. Furthermore, we assume that humans suffer from a
seasonal CoV infection on average every 10 years (b =
0.1/y), an R0 = 2.5, and a recovery rate (time between
infections) of 10 days.

With these assumptions, we can solve the model and
compare the resulting trajectories to the seasonal vari-
ation in prevalence of seasonal CoVs, see Fig. 2. We
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FIG. 1 Seasonal variation in the fraction of positive CoV tests in Stockholm, Sweden. The left panel shows test
results between 2010 and 2019. The right panel shows aggregated data for all years. All CoVs show a marked decline in summer
and autumn, with HKU1/OC43 peaking January–December, and NL63 and 229E peaking in February–March.
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FIG. 2 Compatibility of SIR model trajectory with ob-
servations. The heatmap shows the inverse mean squared
deviation between the model trajectories and the observed
seasonal forcing in seasonal CoV prevalence. Model and ob-
servations are compatible (yellow shading) in a region of pa-
rameter values corresponding to low migration/weak season-
ality and second region at high migration/strong seasonality.

assess fit quality by calculating the squared deviation of
observed and predicted prevalence relative to their re-
spective mean values. Simulations of the model are com-
patible with observations in two separate regions of pa-
rameter space: If Northern Europe was very isolated with
less than 1 in 1,000 individuals returning with a seasonal
CoV infection from abroad, weak seasonality of around
ε = 0.15 would be sufficient to generate strong variation
through the year compatible with observations (Fig. 2,
bottom-left ridge). In this regime, prevalence is oscil-
lating intrinsically with a period that is commensurate

with annual seasonal oscillations giving rise to a reso-
nance phenomenon with annual or biennial patterns even
for weak seasonal forcing (Chen and Epureanu, 2017;
Dushoff et al., 2004).

If the rate of import of seasonal CoV infections is
higher, imports dampen the resonance and much stronger
seasonality, with values between ε = 0.3 and 0.7, is re-
quired to fit the observations (Fig. 2, top-right-and-center
ridge). In this regime, seasonal variation in transmissi-
bility modulates the size of micro-outbreaks triggered by
imported cases in a mostly immune population.

These two scenarios differ slightly in the time of year at
which peak transmissibility θ occurs: When transmission
is mostly local and seasonality is amplified by resonance,
θ needs to be around October–November to fit the data
with most cases in December–January. In the second sce-
nario with high connectivity, θ needs to be in December–
January coinciding with the peak in prevalence. Given
that most countries are highly connected, we focus here
on exploring the high-import and strong seasonal forcing
scenario. This scenario, with maximal β in mid-winter, is
also more compatible with climate variation around the
year.

IV. SCENARIOS FOR SARS-COV-2 PANDEMICS IN 2020
AND 2021

The analysis of seasonal CoV prevalence patterns al-
lowed us to constrain parameter ranges and explore dif-
ferent scenarios of SARS-CoV-2 spread around the globe,
in particular in temperate climates like Northern Europe.
Here we explore scenarios where temperate regions have
a seasonal forcing of between ε = 0.3 and 0.7 and migra-
tion rates of 0.01/year. Early estimates suggest an incu-
bation time of about 5 days (Backer et al., 2020) and an
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FIG. 3 Model predictions for SARS-CoV-2 case numbers in temperate zones for a pandemic scenario. The
left panel shows example trajectories assuming SARS-CoV-2 transmissibility peaks in November, January, or March. These
outbreaks in Northern Europe (‘NE’) are assumed to be seeded by the outbreak in Hubei (model trajectory shown as a
dashed line). Within the model, these cases are exported at rate of 0.01/year to temperate Northern Europe with an average
〈R0〉 = 1.8 and seasonal forcing of ε = 0.5. Corresponding graphs for different values of 〈R0〉 and the migration rate are shown
in Supplemental Fig. 3. The right panel shows the ratio of the first and second peak for a range of different combinations of R0

and θ. The yellow area corresponds to parameter combinations with essentially only an early peak similar to the yellow line on
the left. The blue/purple area shows parameter combinations for which a peak in late 2020 dominates, as with the purple line
on the left, while the central pink/orange band shows the combinations giving rise to two comparable peaks. These simulations
are for ε = 0.5. Similar results were obtained for ε = 0.3 and 0.7, see Supplementary Fig. 4.

average serial interval of 7-8 days (Wu et al., 2020), sug-
gesting rapid transmission once symptoms set in. Our
model does not differentiate between symptomatic and
asymptomatic cases. Furthermore, the model does not
account for the incubation time and therefore generates
too many early transmissions. We therefore use a slightly
lower recovery rate of ν = 0.1/day. To match the R0 es-
timates for the early outbreak with our parameterization
of transmissibility in Eq. 2 we need to account for the
fact that December/January are winter months in Hubei
and peak transmissibility in Hubei likely corresponds to
θ ≈ 0 (0 being the beginning of the year, so a θ in De-
cember/January). An R0 ≈ 2.5 in winter in Hubei and
a seasonal forcing of ε = 0.4 implies an annual average
〈R0〉 = β0/ν = 1.8. This reasoning leads to our pa-
rameter choice of β0 = 65/year, ν = 36/year, θ = 0.
We assume the outbreak started at t = 2019.8 in Hubei
with one infected individual and use N = 6 × 107 as
population size. To incorporate infection control mea-
sures, transmissibility is reduced by 50% once prevalence
reached 3% (third order Hill-function, see Supplemental
Material). Introductions to a location like Northern Eu-
rope with ε = 0.5 (i.e. slightly stronger seasonal forcing
then Hubei) are assumed to happen at a rate of 0.01 per
year for each infected individual elsewhere. The simula-
tion of the SIR model in different regions is deterministic,
but migration is implemented stochastically by Poisson
resampling of the average number of migrating individu-
als. Fig. 3 shows simulated trajectories of SARS-CoV-2

prevalence in the temperate Northern Hemisphere assum-
ing the outbreak started in Hubei early December 2019.
Depending whether the peak transmissibility of SARS-
CoV-2 in the northern temperate zone is in November,
January, or March, the simulation predicts a main peak
in the first half of 2020, a main peak in winter 2020/2021,
or two similarly sized peaks.

To explore possible scenarios more systematically, we
ran such simulations for a range of values for R0 and
peak transmissibility θ and recorded whether we observe
and early peak, a late peak, or a two peaks. The right
panel of Fig. 3 shows the ratio of the height of these
peaks for different values. Rapid growth (high R0) and
late transmission peaks result in a large peak in the first
half 2020, while lower R0 and transmission peaks in early
winter favor a large secondary peak. These two scenarios
are separated by a band of parameter values that give
rise to two pandemic waves in the winters of 2020 and
2021 in the Northern Hemisphere.

The uncertainty in parameter values and the poten-
tial impact of infection control measures imply that all
scenarios are plausible and should be considered when
developing pandemic prevention and containment strate-
gies.
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V. GLOBAL PROJECTIONS

Outbreaks grow exponentially within well-mixed com-
munities, and at a certain rate the virus will be carried to
other regions and potentially seed new outbreaks. Such
export to new locations is initially unlikely, but becomes
next to certain once the outbreak size exceeds the in-
verse probability that a given individual migrates while
infected.

Every location has a different socio-economic profile
such that the growth rate of the epidemic (and hence
R0) might differ. The superposition of many such sub-
populations with a range of 〈R0〉 values and seasonal
variation in transmission will result in dynamics that
are qualitatively different from a single population SIR
model. In particular, such variation result in a pandemic
spread out over 2 years before the virus possibly becomes
endemic.

Fig. 4 shows the result of such a simulation of 1,000
populations. Populations were divided between northern
temperate (50%), southern temperate (10%), and tropi-
cal (40%) and assigned parameters as follows:

• 〈R0〉 was drawn from a normal distribution with
mean 1.8 (see Supplementary Fig. 5 for 〈R0〉 = 1.4
and 2.7) and standard deviation 0.5.

• Seasonal forcing ε was drawn from a uniform distri-
bution between 0.25 and 0.75 for temperate regions,
between 0 and 0.2 for tropical regions.

• Peak transmissibility θ of temperate regions was
drawn from normal distributions with standard de-
viation 0.1 and peak at 0 for northern regions and
0.5 for southern regions. θ for tropical regions was
chosen uniformly from between 0 and 1.

• Population sizes were drawn from a log-normal dis-
tribution with σ = 1 and a mean such that all pop-
ulations sum to 7.6 billion.

• Migration rates were sampled from a log-normal
distribution with σ = 1 and a mean of 0.01.

For Hubei, we use the same parameters as described in
section IV.

The variation in R0 and migration rate result in a
super-position of fast and slow epidemics seeded at dif-
ferent times. The initial phase is dominated by fast epi-
demics driving rapid dispersal, in particular in the trop-
ics, while slow epidemics dominate later in 2020 and
2021. With the parameter setting used in Fig. 4, the
Northern temperate regions see most circulation in win-
ter 2020/2021. In accordance with Fig. 3, this peak shifts
more towards early 2020 for higher R0, see Supplemen-
tary Fig. 5.

After several years, SARS-CoV-2 could become a sea-
sonal CoV with characteristic winter outbreaks as shown

in Fig. 1. Such a scenario is demonstrated in Fig. 5 where
a simulation similar to the one shown in Fig. 4 is run for
12 years, with the added assumption that after infection
an individual become susceptible to SARS-CoV-2 again
at a rate of 0.1 per year as we assumed for seasonal CoV
above. After a pronounced low in 2020-2024, prevalence
recovers and settles into a seasonal pattern, similar to
that of the four existing seasonal CoVs.

VI. DISCUSSION

We report on the possible influence of seasonal varia-
tion on the spread of SARS-CoV-2 in the Northern Hemi-
sphere, should the current outbreak progress to a pan-
demic. We find that seasonal variation in transmissibility
has the potential to modulate the spread of SARS-CoV-
2 with a wide range of possible outcomes that need to
be taken into account when interpreting case counts and
projecting the outbreak dynamics. The onset of spring
and summer could, for example, give the impression that
SARS-CoV-2 has been successfully contained, only for
infections to increase again in 2020-2021 winter season.
Even in Hubei virus circulation might decrease due to
arrival of spring and summer but might increase again
towards the end of the year. Whether a pandemic in
the temperate regions of the Northern Hemisphere would
peak early in 2020, late in 2020, or show multiple waves
as H1N1pdm did in 2009, depends on the timing of peak
transmissibility and the rate of spread (R0 and serial in-
terval).

This study is meant as an exploration of how such a
pandemic could unfold, not as a prediction of any partic-
ular scenario. The results we present are critically depen-
dent on the assumptions i) that the outbreak will develop
into a pandemic, ii) that the transmissibility of SARS-
CoV-2 shows seasonal variability of sufficient strength
(range ε = 0.3 to 0.7), and iii) that parameters like R0

estimated from the early phase of the outbreak are com-
parable in other populations.

These assumptions are not implausible but not certain:
cases of SARS-CoV-2 has been detected in 24 countries
apart from China (WHO Emergency Committee, 2020a),
and mild or asymptomatic cases make detection and thus
prevention of spread by isolation challenging, e.g. airport
screening as a preventive measure is unlikely to prevent
spread and local seeding (Quilty et al., 2020). Person-to-
person transmission of the virus has been documented in
several countries outside of China. It is likely that not all
exported cases have been detected, and some may have
seeded outbreaks outside of China that have yet to be
detected. It is estimated that if SARS-CoV-2 continues
to spread in China, and particularly if the areas of Beijing
and Shanghai are affected, the risk of importation of cases
to Europe increases (Pullano et al., 2020).

The seasonal CoVs show a strong and consistent sea-
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FIG. 5 Transition to an endemic seasonal virus. If pre-
viously infected individuals can be reinfected after some time,
as for example by seasonal influenza virus, SARS-CoV-2 could
develop into a seasonal CoV that returns every winter. This
would typically happen at much lower prevalence than peak
pandemic levels. This graph assumes reinfection on average
every 10 years.

sonal variation, and modeling suggests that this requires
strong variation in transmissibility throughout the year.
It should be noted, however, that SARS-CoV-2 does
seem to transmit in tropical climates like Singapore, and
so winter is not a necessary condition of SARS-CoV-2
spread. Precise values for the underlying model parame-
ters and the effect of infection control measures are cur-
rently unavailable. For this reason we explored a range of

parameter values to assess the robustness of the results
to model assumptions.

The simulations presented here are scenarios that
emerge from simplified abstract models, but they never-
theless demonstrate that a wide variety of outcomes are
compatible within the limits of the current knowledge
about the outbreak. The implications of our work are
that: 1) reductions in prevalence need not be attributable
to successful interventions, but could be due to seasonal
variation in transmissibility, 2) sub-population dynamics
can differ greatly, meaning that case count trajectories
in one country should be used cautiously to inform pro-
jections in a second country, even in the same climate
zone, 3) seasonal variation might slow down a pandemic
and thereby provide a window of opportunity for better
preparation of health care systems world-wide by scal-
ing up capacity for care and diagnostics, and potentially
through rapid development of antivirals and vaccine, and
4) after several years SARS-CoV-2 could develop into an
endemic seasonal CoV similar to the transition of the
2009 A/H1N1 pandemic influenza virus into a seasonal
influenza virus.

The overall impact of a potential SARS-CoV-2 pan-
demic depends critically on the case fatality ratio (CFR),
which we have not modelled here. At present, uncer-
tainty in the CFR is high due to likely over-representation
of severe cases in the statistics and a delay between diag-
nosis and recovery/death (Battegay et al., 2020). Even
with this unknown, seasonal variation in transmissibil-
ity of SARS-CoV-2 and underlying differences in migra-
tion, introduction times, and attack rate should thus
be taken into account when monitoring and projecting
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global transmission, planning further surveillance of the
epidemic, and developing pandemic prevention and con-
tainment strategies.

VII. CODE AND DATA AVAILABILITY

All relevant data and script that generate the graphs
are available in a dedicated github repository at github.
com/neherlab/CoV_seasonality.
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SUPPLEMENTARY INFORMATION

The SIR model introduced in equations 1 describes the
fraction of susceptible S(t) and infected individuals I(t)
in a population. The fraction of recovered individuals R
is R = 1 − S − I. A simplified scheme of the model is
presented in figure 1 with constant transmissibility (ε = 0
in equation 2) and without emigration/influx (e = 0 and
i = 0). The simplified system has a steady state

S0 =
ν + b

β
=

1

R0

I0 =
b(R0 − 1)

β

(3)

This steady state exists when the parameter R0 > 1. For
cases where R0 < 1 the epidemic dies out as each infected
person generate less than one subsequent infection.

Figure S 1 Illustration of the SIR model used with its param-
eters.

For our analysis of seasonal CoVs, it is instructive to
study the stability of this steady state and show that the
quantities [S, I] tend to show damped oscillations around
the fixed points in Eq. 3 with a period

T =
4π√

4b(ν(R0 − 1)− b)−R2
0b

2
(4)

This behavior is intrinsic to the system and holds when-
ever transmissibility is constant.

SIR models can show resonance phenomena when the
period is about one or two years (Chen and Epureanu,
2017; Dushoff et al., 2004). Resonance is less likely when
the period is much longer than the the period of annual
forcing. Fig. 2 shows the intrinsic period for the param-
eter range considered. In the center of the graph the
intrinsic period is around 3 years, suggesting that reso-
nance is not strong.

In a fully susceptible population, the number of in-
fected individuals initially grows as I(t) ∼ e(β−ν−b)t =
e(R0−1)t/(ν+b). The doubling time is τ2 = (ν +
b) log(2)/(R0 − 1). Since b � ν, we can safely neglect
b in the early phase of the pandemic, but it is important
when interpreting endemic seasonal CoV data.
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Figure S 2 Length of the intrinsic period of the SIR model
for β and ν values in the range explored in this paper. The
duration of immunity is assumed to be 10 years. The dark
blue region corresponds to R0 < 1.

Migration between subpopulations

The term i and e in equation 1 represent the influx
and emigration in a population which we model as an
exchange of infected individuals while ignoring the mi-
gration of susceptible or recovered individuals. Such mi-
gration is operating in Figures 3, 4 and 5. A proportion
e of the infected people are removed due to emigration
while an influx i is added. The influx i of each popula-
tion is computed as the product of the total number of
infected people in all population, the migration rate of
the population in question, and its size. In that sense,
the infected persons form a global “reservoir” from which
each population takes its influx.

Effect of infection control measures

The SIR model as formulated in Eq. 1 accounts for sea-
sonality but otherwise assumes the transmission dynam-
ics is constant. In reality, individuals change their behav-
ior when they are aware of a contagious disease. This in
particularly true for the current SARS-CoV-2 outbreak
where tens of millions of people are under quarantine
measures and travel restrictions. In order to account for
such behavioral changes, we add a factor H to equation
1 that modulates transmission:

d

dt
I = −(ν + b+ e)I + (1−H)βSI + i (5)

where H = c · I3

(K3+I3) with c the containment value. The

term H is a Hill function of order 3 and inflection point
K. We use this to model a decrease in the rate of new in-
fection smoothly decrease by a factor c. We used c = 0.5
and K = 0.03, implying that once a disease is at a preva-
lence of 3%, containment measures reduce transmission
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by 50%. The effect of prevention and control is difficult to assess at present and will certainly vary in time and
space.
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