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Abstract 15 

Pockets of susceptibility resulting from spatial or social heterogeneity in vaccine coverage can drive 16 

measles outbreaks, as cases imported into such pockets are likely to cause further transmission and lead 17 

to large transmission clusters. Characterising the dynamics of transmission is essential for identifying 18 

which individuals and regions might be most at risk. 19 

As data from detailed contact tracing investigations are not available in many settings, we combined 20 

age, location, genotype, and onset date of cases in order to probabilistically reconstruct the importation 21 

status and transmission clusters within a newly developed R package called o2geosocial.  22 

We compared our inferred cluster size distributions to 737 transmission clusters identified through 23 

detailed contact-tracing in the United States between 2001 and 2016. We were able to reconstruct the 24 

importation status of the cases and found good agreement between the inferred and reference clusters. 25 

The results were improved when the contact-tracing investigations were used to set the importation 26 

status before running the model. 27 

Spatial heterogeneity in vaccine coverage is difficult to measure directly. Our approach was able to 28 

highlight areas with potential for local transmission using a minimal number of variables and could be 29 

applied to assess the intensity of ongoing transmission in a region.   30 
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Introduction 31 

Establishing who infected whom during an outbreak can help inform the design and evaluation of 32 

control measures[1–5]. Transmission links can be reconstructed through contact tracing investigation, 33 

whereby cases are asked their movements and contacts during their infectious period. Given that 34 

contact-tracing investigations are not always carried out due to the logistical effort and cost involved, 35 

inference methods have been developed to use epidemiological data to estimate the probability that a 36 

transmission event occurred between any given pair of cases[6–12]. This makes it possible to establish 37 

probabilistic transmission trees that link all observed cases. 38 

Wallinga and Teunis first developed a likelihood-based estimation procedure to reconstruct 39 

probabilistic transmission trees from a given distribution of generation times and observed symptom 40 

onset dates of each case[2]. Since then, genomic, spatial or contact data have been used to supplement 41 

the timing of symptoms, which helped identify determinants of transmission, mixing behaviour, 42 

individual dispersion, evaluate control measures, anticipate future developments of outbreaks and study 43 

viral evolutionary patterns[5,8,9,13–17].  44 

As sequencing of pathogens has become more common, the use of such data to infer transmission trees 45 

has increased. Methods developed to add genetic distance to a Wallinga-Teunis algorithm, where cases 46 

with lower genetic distance are more likely to be grouped in the same transmission group, showed it 47 

substantially increased the accuracy of the reconstructed transmission trees[8,18–21].  48 

The utility of sequence data depends on the characteristics of the pathogen[22,23]. Based on N-450 49 

sequence data, eight measles genotypes have been detected since 2009[24,25]; these genotype 50 

designations are helpful in linking cases, as linked cases must be infected by virus of the same 51 

genotype[25]; however, the diversity of measles genotypes is decreasing[26]. It has been suggested that 52 

further sequencing the M-F non-coding region, or full genome sequencing, could help identify measles 53 

virus transmission trees, but so far, extended sequencing during measles outbreaks has been 54 

scarce[27,28]. In addition, the evolutionary rate of measles virus is very low[29], therefore, samples 55 
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from unrelated cases can be very close genetically and genetic sequences from measles cases are not 56 

usually indicative of direct transmission links[27,28]. 57 

As measles is highly infectious,  under-immunized communities (also called pockets of susceptibles) 58 

resulting from local heterogeneity in vaccine coverage can lead to large, long-lasting outbreaks[30–34]. 59 

Detecting these pockets of susceptibles can be challenging, as historical local values of coverage 60 

throughout a given country are rarely available. The size distribution of transmission trees resulting 61 

from each importation during outbreaks (otherwise known as the cluster size distribution) will depend 62 

both on individual factors (e.g. age of the imported case which might affect contact patterns) and 63 

community factors (e.g. the history of coverage in the area)[35,36]. The size of a cluster can therefore 64 

reflect the level of susceptibility of individuals directly and indirectly connected to the index case 65 

[37,38].  66 

Here we introduced a model combining age, location, genotype, and rash onset date of cases to 67 

reconstruct probabilistic transmission trees. We chose these features to make the model applicable to a 68 

wide range of settings as they are commonly reported and informative on transmission. We wrote the 69 

R package o2geosocial to conduct inference on individual-level data using this model. It is based on 70 

the package outbreaker2 and is designed for outbreaks with partial sampling of cases, or uninformative 71 

genetic sequences, such as measles outbreaks[9,39]. We used the likelihood of transmission links 72 

between different cases to estimate their importation status. We compared the inferred importation 73 

status and cluster size distribution to the transmission clusters identified via contact tracing during 74 

measles outbreaks in the United States between 2001 and 2016.  75 

Methods 76 

Presentation of the algorithm 77 

Likelihood function and parameter definition 78 

We used a probabilistic model to infer the individual contribution to the log-likelihood Li of every case 79 

included in the list of cases.  80 
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𝐿𝑖(𝑡𝑖 , j, 𝑡𝑗 , ) = log(𝑓(𝑡𝑖 − 𝑇𝑖)) + Lji(𝑡𝑖 , 𝑡𝑗 ,)      ( 1 ) 81 

𝐿𝑖 was computed from Lji(), the log-likelihood of case 𝑖 being infected by case 𝑗 as a function of 82 

infection times 𝑡𝑖 and 𝑡𝑗 and model parameters , and the timing of 𝑡𝑖, the date of infection of 𝑖, relative 83 

to the date of symptom onset 𝑇𝑖. We defined 𝑓(𝑡𝑖 − 𝑇𝑖) as the probability density of observing 𝑇𝑖 if 84 

case i was infected at time 𝑡𝑖 (i.e. f represents the distribution of incubation periods). The log-likelihood 85 

of transmission Lji was computed from five components reflecting the age group, genotype, location, 86 

and inferred date of infection of cases 𝑖 and 𝑗, and the generation time of the disease: 87 

Lji(𝑡𝑖 , 𝑡𝑗 ,) = log (𝑝(𝜅𝑗𝑖|𝜌) ∗ 𝑤
 (𝜅𝑗𝑖)(𝑡𝑖 − 𝑡𝑗) ∗ 𝑎

(𝜅𝑗𝑖)(𝛼𝑖, 𝛼𝑗) ∗ 𝐺(𝑔𝑖 , 𝑔𝜏𝑗) ∗ 𝑠
(𝜅𝑗𝑖)(𝑟𝑖, 𝑟𝑗| 𝑎, 𝑏)) ( 2 ) 88 

We allowed for missing generations between cases due to an unreported individual, and 𝜅𝑗𝑖 corresponds 89 

to the number of generations between 𝑖 and 𝑗. We calculated the temporal probability of transmission 90 

between 𝑖 and 𝑗 from the number of days between the dates of infection of the two cases 𝑡𝑖 and 𝑡𝑗 and 91 

the generation time of the disease 𝑤(t). This probability of infection was quantified by 𝑤𝑘(𝑡𝑖 − 𝑡𝑗, 𝜅𝑗𝑖), 92 

𝑤(𝜅) = ∏ 𝑤𝜅 , where Π is the convolution operator. We used an exponential distribution 𝑝(𝜅𝑗𝑖|𝜌) to 93 

quantify the probability of observing 𝜅𝑗𝑖 missing generation between 𝑖 and 𝑗 from the conditional report 94 

ratio 𝜌 which quantifies the probability of missing generation between two connected cases in a cluster. 95 

It does not correspond to the overall report ratio of an outbreak as entire missing clusters, or unreported 96 

cases infected after the last case or before the ancestor of a cluster are not included in 𝜌. The “ancestor” 97 

is the earliest identified case of a cluster. 98 

𝑎(𝛼𝑖 , 𝛼𝑗, 𝜅𝑗𝑖) was defined as the probability of transmission between age groups 𝛼𝑖 and 𝛼𝑗. This 99 

probability corresponds to the proportion of contacts to the age group 𝛼𝑖 that originated from 𝛼𝑗 and 100 

can be deduced from studies such as Polymod[36]. We defined 𝐺 (𝑔𝑖 , 𝑔𝜏𝑗) as the probability of 101 

observing the pathogen genotype 𝑔𝑖 in case 𝑖 in the tree 𝜏𝑗 containing case j. There can only be one 102 

measles virus genotype per transmission tree, or cases with unreported genotype.  103 
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𝐺 (𝑔𝑖 , 𝑔𝜏𝑗) =  

{
 

 
1 𝑖𝑓 𝑔𝑖 unknown
1 𝑖𝑓 𝑔𝜏𝑗  unknown

1 𝑖𝑓 𝑔𝑖  and 𝑔𝜏𝑗both known and 𝑔𝑖 = 𝑔𝜏𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 104 

𝑠(𝑟𝑖, 𝑟𝑗, 𝜅𝑖𝑗) was defined as the probability of connection from 𝑟𝑗 to 𝑟𝑖, counties of residency of 𝑖 and 𝑗. 105 

We used a gravity model to quantify the connectivity of the different geographical units. In the simplest 106 

form of the gravity approach, the number of connections between two counties 𝑘 and 𝑙 is proportional 107 

to the product of the origin population 𝑚𝑘, the destination population 𝑚𝑙 and a function of the distance 108 

between 𝑘 and 𝑙 𝑑𝑘𝑙  : pkl  ∝  𝑓(𝑑𝑘𝑙,𝑎) ∗ mk
b ∗ ml

c, with 𝑎, 𝑏, and 𝑐 parameters adjusting for the impact 109 

of distance and population. From this definition, we deduced 𝑠(𝑘, 𝑙), the probability of transmission 110 

from an individual from region 𝑘 to another from region 𝑙: 111 

𝑠(𝑘, 𝑙) =  
𝑝𝑘𝑙
∑ 𝑝ℎ𝑙ℎ

=
𝑓(𝑑𝑘𝑙,𝑎) ∗ mk

b ∗ ml
c

∑  𝑓(𝑑ℎ𝑙,𝑎) ∗ mh
b ∗ ml

c
ℎ

=
𝑓(𝑑𝑘𝑙,𝑎) ∗  mk

b

∑  𝑓(𝑑ℎ𝑙,𝑎) ∗ mh
b

ℎ

 112 

Only the parameters 𝑎 and 𝑏 were required to compute the spatial probability of transmission. We used 113 

the exponential gravity model (𝑓(𝑑𝑘𝑙 , 𝑎) = 𝑒
−𝑎∗𝑑𝑘𝑙)[40]. This approach showed good performance at 114 

modelling short distance commuting, and was easy to parametrise[40–44].  115 

In order to compute the log-posterior densities of the proposed trees, we summed the individual log-116 

likelihoods and added log-priors on the report ratio 𝜌, which quantified the percentage of cases in the 117 

chains reported to the surveillance system; and the spatial parameters 𝑎 and 𝑏 (Table 1). 118 

Tree proposals 119 

We used a Metropolis Hastings algorithm with Markov chain Monte Carlo (MCMC) to sample from 120 

the posterior distribution of parameters and the transmission trees. To do this, we developed a set of 121 

proposal tree updates. These updates were accepted with acceptance probability as defined by the 122 

Metropolis-Hastings algorithm[45]. We used eight types of tree proposal to ensure good mixing. Each 123 

proposal conserved the overall number of trees, with a maximum of one unique genotype reported per 124 

tree.  125 
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Five of the proposals had already been implemented in the outbreaker2 package and were adapted to 126 

this setting: i) change the number of generations between two cases; ii) change the conditional report 127 

ratio 𝜌; iii) change the time of infection; iv) change the infector of a case (if the case is not the ancestor 128 

of a tree); v) swap infector-infectee (if none is the ancestor of a tree).  129 

We added two proposals to change 𝑎 and 𝑏, the spatial kernel parameters. For each proposal, the 130 

probability of transmission between every geographical unit was re calculated with the new values. 131 

Depending on the number of geographical units, this calculation considerably slowed down the 132 

algorithm. Therefore, when 𝑎 or 𝑏 were estimated, we limited the maximal number of missing 133 

generations to 1 (max (𝜅𝑗𝑖) = 2). Finally, the last proposal was designed to change the ancestor of the 134 

tree whilst conserving the overall number of trees (Figure 1).  135 

Inference of importation status and cluster 136 

Unrelated measles cases stemming from different importations and different regions can be part of the 137 

same dataset. Grouping cases and excluding unrealistic transmission links reduces the number of 138 

possible trees and speeds up the MCMC runs. To do so, we listed each case’s potential infectors using 139 

three criteria: i) The potential infectors must be of the same genotype as the case, or have unreported 140 

genotype, ii) The location of potential infectors must be less than 𝛾 km away from the case and iii) the 141 

potential infectors must have been reported later than 𝛿 days before the case. This threshold should be 142 

determined from the maximum plausible generation time of the disease. The spatial threshold 𝛾 should 143 

be defined according to the relevance of long-distance transmissions. Cases with no potential infector 144 

were considered as importations. Otherwise, they were grouped together with i) their potential infectors 145 

and ii) cases with common potential infectors. 146 

After grouping the cases, we estimated their importation status and the cluster size distribution using 147 

two runs of MCMC (Figure 2). The first run was shorter and aimed at removing the most unlikely 148 

connections among each group, as they can reflect unrealistic estimates for incubation periods or 149 

generation times and corrupt the estimation of the date of infection. We defined a reference threshold 𝜆, 150 

whereby if the individual value of log-likelihood Li was worse than 𝜆, then the connection between 𝑖 151 
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and their index was considered unlikely. In Outbreaker2, 𝜆 was a relative value, defined from a quantile 152 

of the individual log-likelihoods.  In o2geosocial, 𝜆 can be a relative value or an absolute value, chosen 153 

from the number of components of the likelihood. For each sample saved from the short run, we 154 

computed the number of unlikely connections n. If there was no iteration where all connections where 155 

better than 𝜆, min(n) new importations were added to the initial tree for the long run (Figure 2). 156 

Finally, we ran a long MCMC chain and obtained samples from the posterior distribution. After 157 

removing the burn-in period and thinning the chain, we deleted the unlikely transmission links in each 158 

iteration and identified transmission clusters. Therefore, unlike the previous versions of outbreaker2, 159 

the number of importations in each sample can vary and the individual probability of being an 160 

importation can be computed (Figure 2).  161 

Validation case study: measles outbreaks in the United States between 2001 and 2016 162 

Data 163 

To evaluate the performance of the model, we inferred the transmission clusters from a dataset that also 164 

included information on whether measles cases were part of a cluster based on contact tracing 165 

investigations. Measles cases in the United States are reported by healthcare providers and clinical 166 

laboratories to their corresponding health department. Each case is investigated by local and state health 167 

departments classified according to standard case definitions[46], and linked into clusters 168 

epidemiologically (e.g., by establishing a direct contact or a shared location between cases, or when 169 

cases are part of a specific community where an outbreak is occurring). Cases are considered 170 

internationally imported if at least part of the exposure period (7–21 days before rash onset) occurred 171 

outside the United States and rash occurred within 21 days of entry into the United States, with no 172 

known exposure to measles in the United States during the exposure period.  173 

Confirmed measles cases are routinely reported by state health departments to the CDC. 2,098 measles 174 

cases were reported in the United States between January 2001 and December 2016. The number of 175 

annual cases did not exceed 700 cases during this time period (Figure 3, Supplement Figure S1). The 176 

importation status, 5-year age group, onset date, county, and state of residence were fully reported for 177 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 15, 2020. ; https://doi.org/10.1101/2020.02.13.20020891doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.13.20020891
http://creativecommons.org/licenses/by/4.0/


9 

 

2,077 cases. The 21 cases with missing data were discarded. 25% of the cases were classified as 178 

importations. 39% of the cases had their genotype reported. The dataset of 2,077 cases is referred to as 179 

“reference dataset” in the results section, and was used to evaluate the performance of the inference 180 

method.  181 

Among cases with complete data, 737 independent clusters, containing 1 to 380 cases, were 182 

reconstructed through contact tracing investigations. Not every identified case could be linked to an 183 

importation, and some transmission clusters contained multiple imported cases (e.g. when related 184 

individuals travel together to a foreign country and were infected there). Out of the 737 reference 185 

clusters, 38 had several cases classified as importations, 256 had none identified. 186 

Model and parameters 187 

The distributions and priors used in the studies are listed in Table 1. As no studies quantifying the 188 

probability of age-specific contacts have been carried out in the United States, we used the estimates 189 

from the POLYMOD study in the UK[36]. The incubation period and the generation time of measles 190 

were taken from previous studies [47–49]. We used the population centroid of each county to compute 191 

the distance matrix[50]. We used a beta distribution as the prior of the conditional report ratio[8]. The 192 

mean of the prior distribution was calculated using the number of clusters whose first case was not 193 

classified as an imported case, meaning the investigations were not able to trace back to the first case 194 

imported. As there was no prior information on the possible values of the spatial parameters, we used 195 

uniform distributions as priors for 𝑎 and 𝑏. 196 

For pre-clustering of cases, we set the temporal threshold 𝛿 to 30 days, which is above the 97.5% upper 197 

quantile of the generation time with a missing generation. We were interested in local transmission to 198 

describe the impact of an imported case on a community. But we only had information on the county 199 

of residency for each case. Counties are large geographical units: the average county land area is 200 

2,911km2 and the maximum values reach 50,000km2. Therefore, we set the spatial threshold 𝛾 to 100km 201 

to exclude long distance transmission, while still allowing for cross-county transmission.  202 
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Finally, we tested several relative and absolute importation thresholds 𝜆. Absolute values were 203 

calculated from a factor 𝑘, multiplied by the number of components in 𝐿𝑖, excluding the binary genetic 204 

component. Tested values were k = 0.05 (𝜆 =  −15) and k = 0.1 (𝜆 = −11). Connections were 205 

considered unlikely if the log-likelihood was worse than 𝜆. Relative values were quantiles of all 206 

recorded log-likelihoods in the sampled trees (Table 1).  207 

Using the contact tracing investigations, we considered three different initial distributions of the 208 

importation status. In scenario 1, there was no inference of the importation status of cases, and the first 209 

case of each epidemiological cluster was classified as importation (Ideal importation). In scenario 2: 210 

there was no inference of the importation status of cases, and all cases identified as importation in the 211 

contact tracing investigations were classified as importations (Epidemiological importation). Finally, in 212 

Scenario 3, the importation status of cases was inferred, using different thresholds 𝜆, and using no prior 213 

information on the importation status of cases or the importation status from the contact tracing 214 

investigations.  215 

In order to compare the inferred and reference clusters, we calculated for each case i) the proportion of 216 

the reference cluster correctly inferred (sensitivity) and ii) the proportion of the inferred cluster that was 217 

part of the reference cluster (precision). These values were calculated at every iteration, and the median 218 

values were used to evaluate the fit obtained with different values of 𝜆. We also used the inferred cluster 219 

size distribution to the reference data. The credibility intervals for each case are reported in the 220 

Supplement (Supplement Figure S2). 221 

Results 222 

We clustered 2,077 measles cases reported in the United States between January 2001 and December 223 

2016 using their onset date, age groups, location and genotype. Using the contact tracing investigations, 224 

we considered three different initial importation status distribution: i) only the ancestors of each 225 

epidemiological cluster (first case of each cluster) were importations (ideal importation), ii) all cases 226 

classified as importation in the contact tracing investigations were importations (epidemiological 227 

importation), iii) no prior information on importation status of cases. The importation status of the cases 228 
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was therefore not probabilistically inferred in scenario 1 and 2. The short preliminary run was 30,000 229 

iterations and 70,000 iterations. For each run, the trace of the posterior distribution shows the 230 

convergence of the algorithm (Supplement Figure S3). 231 

In scenario 1, we did not infer the importation status of cases. The inferred cluster size distribution 232 

matched the contact tracing investigations (Figure 4A); 98% of the reference singletons were also 233 

isolated in the inferred cluster. For 94% (95% Credibility Interval: 91-98%) of cases, the inferred cluster 234 

had a sensitivity and precision above 75%, meaning more than 75% of the cases in the inferred cluster 235 

were in the reference cluster, and more than 75% of the cases in the reference cluster were in the inferred 236 

cluster (Figure 4B). For 80% (78 – 93%) of cases, the inferred clusters were a perfect match with the 237 

reference clusters. The cluster size distribution stratified by state was similar to the contact tracing 238 

investigations (Supplement Figure S4). Therefore, when each ancestor was considered as an 239 

importation, the inferred clusters were very close to the reference ones.  240 

In scenario 2, we used the importation status distribution of cases reported in the contact tracing 241 

investigations (539 importations). Pre-clustering highlighted 165 cases with no potential infector, which 242 

were also classified as importations. We observed discrepancies between the inferred cluster size 243 

distribution and the reference one: Among the 704 cases inferred as importation, 61 (9%) were not 244 

importations in the reference cluster. Furthermore, 94 cases were the ancestor of a reference cluster and 245 

were not classified as importations in the inferred clusters (13%). The overall cluster size distribution 246 

matched the reference distribution, but 111 reference singletons were inferred as part of transmission 247 

clusters (Figure 4A, Supplement Figure S5). Although the precision of the inferred cluster was above 248 

75% for 93% (88-93%) of the cases, 31% (6-39%) had a sensitivity score below 0.5, meaning they were 249 

classified with less than half of their reference clusters (Figure 4C). The discrepancies observed in this 250 

scenario are due to inconsistencies between the importation status distribution and the clustering of 251 

cases in the contact tracing investigations, as reference clusters that gathered several importations were 252 

split into different inferred clusters in Scenario 2.  253 

In scenario 3, the importation status of cases was inferred from a threshold 𝜆. For each case 𝑖, if the log-254 

likelihood 𝐿𝑖 was worse than 𝜆, the connection between the case and its index was removed and the 255 
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case was considered imported. Firstly, using an absolute factor k = 0.05 (𝜆 =  −15), 586 (581-593) 256 

cases were classified as importations, 361 (355-369) of them were singletons. These numbers are much 257 

lower than the reference datasets that contains 737 clusters, and 539 singletons (Figure 5A, Supplement 258 

Figure S6). We observed very few misclassifications of importation status and singletons (15 (10-22) 259 

misclassified importations, 4 (0-14) misclassified singletons), and the cluster size distribution for 260 

clusters including two cases and more was very similar to the reference one. The precision of the 261 

reconstructed cluster was very high (above 75% for 88% (85-93%) of cases) (Figure 5B). Overall, the 262 

algorithm was not able to accurately identify importations and singletons as the threshold was too low 263 

to eliminate some unrealistic connections, but the inferred larger clusters matched their reference 264 

counterparts. 265 

We then observed the impact of increasing 𝜆 on the inferred cluster size distribution. Runs obtained 266 

using an absolute threshold with 𝑘 = 0.10 (𝜆 =  −11) and 95% relative threshold yielded very similar 267 

results. The number of cases inferred as importations was higher than in previous runs, while all 268 

remaining links showed good connection between cases. The number of importations was closer to the 269 

reference dataset, and the number of singletons was greater than the reference. Nevertheless, the 11% 270 

(10-12%) of the inferred importations was not classified as importation in the reference clusters. 271 

Furthermore, the number of two-case chains was overestimated, and bigger clusters were likely to be 272 

split because of the removal of weaker connections. Therefore, increasing 𝜆 did not improve the cluster 273 

size distribution, as many importations in the reference clusters were not identified and the number of 274 

mismatches increased (Supplement Figures S7). 275 

Finally, we combined prior information and inference of importation status. Cases considered as 276 

importations in the contact tracing investigations were set as importations, and we inferred the 277 

importation status of the remaining cases. We used a low threshold, to remove the least likely 278 

transmission links (𝑘 = 0.05). Including prior information led to some misclassification of importation 279 

status due to the inconsistencies between the epidemiological importation status and the reference 280 

clusters. As in scenario 2, some cases were classified with only part of their reference clusters because 281 

clusters with several importations were split into different clusters. Indeed, the sensitivity score of 34% 282 
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(7-51%) of cases was below 0.5. Nevertheless, the cluster size distribution observed in the simulation 283 

was the closest to the reference clusters. There were 725 (719-731) clusters, 89% of importations were 284 

also ancestors of reference clusters and the number of singletons matched the reference clusters (Figure 285 

5A-C). The inferred clusters of 88% (86-94%) of the cases had a precision score of 1, showing they 286 

were clustered without any false positives. Despite discrepancies in several states (Massachusetts, 287 

Ohio), the cluster size distribution stratified by state showed good agreement with the reference clusters 288 

(Supplement Figures S8).  289 

The conditional report ratio in the transmission chains 𝜌 and the spatial parameters 𝑎 and 𝑏 was 290 

estimated in each scenario. The parameter estimates did not depend on the prior importation status 291 

distribution or the value of 𝜆. 𝜌 was consistently estimated above 90%, showing a low number of 292 

missing generations between cases (Supplement Figure S9). This number is not representative of the 293 

overall report ratio, which is usually much lower[51], and does not take into account missing 294 

importations in singletons and chains. High values of 𝜌 show that the reported cases can be connected 295 

without missing generations. 296 

There was little variation in the estimates of the spatial parameters between the different scenarios. The 297 

population parameter 𝑎 was estimated between 0.6 and 1 for every scenario, and the distance parameter 298 

b was between 0.08 and 0.12. In every scenario, more than 80% of the inferred transmission were 299 

between cases distant of less than 10km, and few long-distance transmissions were recorded (50-300 

100km), hence although most of the reconstructed connections were between cases from the same 301 

county, the algorithm was able to identify clusters spreading over several counties or states (Supplement 302 

Figure  S10).  303 

We highlighted the added value of including the spatial distance between cases in the likelihood by 304 

comparing the cluster size distribution inferred by selecting certain components of 𝐿𝑖 (Supplement 305 

Figure S11). The credibility intervals were much wider when the distance between cases is not part of 306 

the likelihood, and the number of chains containing 2 to 10 cases was over estimated. The important 307 

impact of the spatial component of likelihood was also due to the widespread American territory, and 308 

could be lower in a different setting.  309 
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We used the ratio of the number of importations over the number of subsequent cases per state to 310 

evaluate the intensity of transmission in each state between 2001 and 2016 (Figure 6). The maps 311 

obtained in the scenario 1 (ideal scenario) or in scenario 3 (estimation of importation, with 312 

epidemiological importations and 𝑘 = 0.05) were very similar. We only observed minor differences, 313 

for example in South Dakota and in Massachusetts, where the ratios were higher in scenario 3. The 314 

highest ratio (31.8 in scenario 1) was observed in Ohio, and is mostly due to a 383 case outbreak in 315 

2014[32]. We observed major differences between the incidence map (Figure 3A) and the ratio per 316 

state. Indeed, although 403 cases were reported in California (highest number in the US), importations 317 

caused on average 1.32 subsequent cases in scenario 1 (1.60 in scenario 3), showing a high proportion 318 

of reported cases were inferred as importations.  319 

Similarly, we used the inferred transmission chain to compute the inferred reproduction number in each 320 

state. According to the model, about 60% cases did not cause future transmission, and about 5% caused 321 

more than 5 subsequent cases (Supplement Figure S12). These numbers were consistent in each run. 322 

The geographical distribution of reproduction number was very similar to the importation - subsequent 323 

cases ratio (Supplement Figure S13). 324 

Discussion 325 

We developed the R package o2geosocial to classify measles cases into transmission clusters and 326 

estimate their importation status using routinely collected surveillance data (genotype, age, onset date 327 

and location of the cases). As recently observed during the 2018-2019 measles outbreak in New York, 328 

delays in childhood vaccination, local susceptibility, and increased contacts can lead to large outbreaks 329 

following importations[52,53]. Therefore, we were interested in highlighting the effect of imported 330 

cases on communities and we focused on short distance transmission to identify areas where they 331 

repeatedly caused subsequent transmission chains. Although this is not predictive of future 332 

transmission, it highlights communities with potential for large transmission clusters.  333 

We compared the inferred transmission clusters to the contact tracing investigations of 2,077 confirmed 334 

measles cases reported in the United States between 2001 and 2016.  We were able to produce reliable 335 
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estimates of known transmission clusters using epidemiological features with only few 336 

misclassifications. Estimating the importation status of cases without prior knowledge was challenging 337 

and caused uncertainty on the results. We tested different threshold 𝜆 to eliminate unlikely 338 

transmissions, and we were able to identify most of the imported cases. Nevertheless, if several cases 339 

were imported in the same region at a similar time, we could not find all of them without discarding 340 

valid transmission events, and increasing the number of false positives. When we used the importation 341 

status as defined in the contact tracing investigations without probabilistic inference (scenario 1 and 2), 342 

the reconstructed clusters were similar to the reference ones. Results were also conclusive when we 343 

combined prior information and importation inference. The reconstruction of transmission greatly 344 

depends on the epidemiological investigations to identify measles importations in a community.  345 

We used the genotype to censor connections between cases when it was reported, as there can be only 346 

one reported genotype per transmission cluster.  Using a simulated dataset (toy_outbreak_long in 347 

o2geosocial), we explored the impact of increasing the proportion of genotyped cases on clustering and 348 

observed it could help identify the number of concurrent transmission trees when multiple genotypes 349 

are co-circulating. Moreover, we introduced a spatial component to the likelihood of connection 350 

between cases using an exponential gravity model. Previous studies showed this model was able to 351 

capture short distance dynamics better than other gravity models, and was easy to parametrise. 352 

Introducing the spatial component greatly improved the precision and the sensitivity of the 353 

reconstructed clusters (Supplement Figure S11), and the parameter estimates were robust in the different 354 

scenarios. 355 

The final results on the clustering of the 2,077 cases using o2geosocial were obtained in 7 hours for 356 

each run of 100,000 iterations on a standard desktop computer (Intel Core i7, 3.20 GHz 6 cores), which 357 

is much faster than previous implementations of outbreaker and outbreaker2. With the addition of the 358 

pre-clustering step, whereby we reduced the number of potential infectors for each case, the algorithm 359 

ran faster. For smaller chains (50,000 iterations), 4 hours were needed to estimate the importation status 360 

and cluster the cases. The code for the package and the analysis developed in this project is shared on 361 

Github (https://github.com/alxsrobert/o2geosocial and alxsrobert/datapaperMO), with an illustrative 362 
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toy dataset, and can be used to analyse recent outbreaks where contact-tracing investigations were not 363 

carried out. 364 

Although the results obtained are promising, it should be noted that the dynamics of measles 365 

transmission in the United States are likely to be very specific to this location. Indeed, there were less 366 

than 700 annual cases between 2001 and 2016.  These cases were scattered across a large area, which 367 

made the pre-clustering of cases very efficient as we focused on short-distance transmission. In smaller 368 

or more endemic settings, the number of potential infectors per cases after the pre-clustering step might 369 

be higher, which would increase the running time.  370 

Furthermore, as the location of each case was deduced from the population centroid of counties, we 371 

assumed that the distance between cases from the same county was effectively zero. American counties 372 

are large and widespread geographical units that can include more than 1 million individuals. For future 373 

use of o2geosocial, more accurate information on the location of cases could improve cluster inference 374 

by identifying multiple importations in a given county. Because cases are reported by the state of 375 

residency, we had to ignore that cases may have been out of the reported county or state during their 376 

incubation and infectious period, which has been seen during some outbreaks, such as the 2015 “Disney 377 

outbreak” in California[54].  378 

We did not include prior information on the local susceptibility of the different areas affected in 379 

o2geosocial, and these could be estimated using historical values of local coverage. However,  protocols 380 

to estimate local vaccination coverage can differ in time and space and be difficult to compare, or 381 

unavailable at the local level. Furthermore, these estimates are cross-sectional in nature, and might not 382 

take into account catch-up vaccination campaigns, or immunity induced by previous outbreaks. Local 383 

seroprevalence surveys could identify pockets of susceptibles, but they have not been carried out on a 384 

subnational scale in most countries[55]. 385 

There has been no national quantitative analysis of age-specific contact patterns carried out in the United 386 

States, so we relied on a  contact matrix between age-groups available for Great Britain from the 387 

POLYMOD study[36]. Nevertheless, little variation in the contact rates between age groups has been 388 
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observed between European countries, and a previous projection of the social contact matrix in the 389 

United States yielded similar results[56]. POLYMOD data was probably the most reliable source of 390 

information we could use to deduce an estimate of the contact matrix in the United States. 391 

Conclusions 392 

Heterogeneity in immunity can cause large outbreaks in countries with high national vaccine coverage, 393 

and identifying potential foyers of transmission in post-elimination settings is key for outbreak 394 

prevention and control. We have presented a method for estimating the cluster size distribution of past 395 

measles outbreaks from routinely collected surveillance data. We found that adding prior knowledge 396 

on the importation status of cases improved the inference of the transmission clusters. Although the 397 

method was able to identify a proportion of importations, epidemiological investigations on the history 398 

of travel and exposure reduced uncertainty on the clustering of cases. We believe these investigations 399 

are needed to produce reliable estimates of past transmission clusters. In lieu of the importation status, 400 

if multiple genotypes are co-circulating, increasing the proportion of genotyped cases could help discard 401 

potential connections and find imported cases. Even with limited information, this method was able to 402 

infer probabilistic transmission clusters in a fast and efficient way. 403 
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 415 

Figure legends 416 

 417 

Figure 1: Example of the change of ancestors. Panel A represent the initial tree, B is the new tree proposed after 418 
the movement. Initially, there are two ancestors (cases 1 and 2) in a group of 9 cases. 3 and 7 have different 419 

genotypes and cannot be part of the same tree, the genotypes of the other cases are not reported. The date of 420 
infection is in increasing order (1 is the first case, 9 is the last). Therefore, 1 is the only potential infector for 2. 421 

One new ancestor was randomly drawn to conserve the number of trees. In this example, 7 is the new ancestor 422 
(6 was the only other possibility). The ratio of the posterior densities of A and B were then used to determine 423 

whether to accept or reject the proposal, according to the Metropolis-Hastings algorithm. This movement ensures 424 
good mixing of the potential ancestors of the transmission clusters. 425 
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 426 

Figure 2: Estimating importation status and cluster size distributions in two MCMC runs. Step 1: Initial tree obtained 427 
after pre-clustering, with the minimum number of importations (here 2, as there are two reported genotypes). Step 428 
2: Samples from the first short run, with red line showing connection worse than the arbitrary threshold 𝜆. Step 3: 429 
Initial tree for the final run, with 1 more importation than in step 1, which corresponds to the minimum number of 430 
unlikely transmissions at step 2. Step 4: Samples from the long run. Step 5: Final trees used to compute cluster 431 
size distribution and importation status of each case. Case 7 is an importation in one third of the final samples, 432 
whereas case 3 is an importation in all of them.  433 
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 434 

Figure 3: Panel A: number of cases per state and Panel B: Annual number of cases reported in the United States 435 
between 2001 and 2016. Alaska and Hawaii are not shown on Panel A. 436 

 437 

 438 
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 439 

Figure 4:  Description of transmission clusters inferred using prior knowledge on importation status of cases. Panel 440 
A: Cluster size distribution for the scenario 1 and 2 (grey and dark grey), compared to the reference clusters 441 
(lighgrey). Arrows represent the 95% credibility intervals of each estimate. Only clusters containing at least 2 cases 442 
are represented. Insert: Number of importations and number of isolated cases (singletons) in scenario 1 and 2, and 443 
in the reference clusters. For each scenario, the horizontal dark line represents the number of importations that are 444 
also importations in the reference clusters, same for singletons. Panel B: Heatmap representing the precision and 445 
sensitivity of the clusters for each case in scenario 1, cases are classified in a category depending on the proportion 446 
of their reference cluster that were inferred in the same cluster (x-axis) and the proportion of mismatches in the 447 
inferred cluster. Panel C: Same for scenario 2. 448 

 449 
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 450 

Figure 5: Description of transmission clusters generated with inferred importation status of cases. Panel A: Cluster 451 
size distribution for different value of threshold in the scenario 3 (sorted by shades of grey), compared to the 452 
reference clusters (lighgrey). Arrows represent the 95% credibility intervals of each estimate. Only clusters 453 
containing at least 2 cases are represented. Insert: Number of importations and number of isolated cases 454 
(singletons). For each scenario, the horizontal dark line represents the number of importation that are also 455 
importations in the reference clusters, same for singletons. Panel B: Heatmap representing the precision and 456 
sensitivity of the clusters for each case in scenario 3, with a 5% relative threshold, cases are classified in a category 457 
depending on the proportion of their reference cluster that were inferred in the same cluster.  Panel C: Same when 458 
importation status is taken from the contact tracing investigations and inferred using a 5% relative threshold. 459 
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 460 

Figure 6:Ratio of the number of importations over the number of subsequent cases in each state in A/ Scenario 1 461 
(Ideal importations) and B/ Scenario 3 with epidemiological importations and 𝑘 = 0.05. Grey states represent states 462 
that did not report any case.  463 

Tables 464 

Table 1: Values of parameters used to cluster cases declared in the United States 465 

Parameter Symbol Distribution 

Incubation period 𝑓(𝑡) 
Gamma,  

mean = 11.5, sd = 2.24 

Generation time 𝑤(𝑡) 
Normal, 

Mean = 11.7, sd = 2.0 

Conditional report ratio 𝜌 
Prior: Beta distribution, 

Mean = 0.65, sd = 0.15 

Spatial parameter 1 𝑎 Prior: Uniform distribution 

Spatial parameter 2 𝑏 Prior: Uniform distribution 

Spatial pre clustering  𝛾 Fixed: 100 km  

Temporal pre clustering 𝛿 Fixed: 30 days 

Importation threshold 𝜆 

Absolute: 

• 5 ∗ log 0.05 

• 5 ∗ log 0.1 

Relative: 

• 5%  

 466 

 467 
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