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Abstract 

The Apolipoprotein E (APOE) e4 allele is associated with reduced longevity and 

increased Coronary Heart disease (CHD) and Alzheimer’s disease, with e4e4 having markedly 

larger effect sizes than e3e4. The e2 longevity promoting variant is less studied. We conducted a 

phenome-wide association study of ApoE e2e3 and e2e2 with aging phenotypes, to assess their  

potential as targets for anti-aging interventions. Data were from 379,000 UK Biobank 

participants, aged 40 to 70 years. e2e3 (n=46,535) had mostly lower lipid-related biomarker 

levels including reduced total and LDL-cholesterol, and lower risks of CHD (Odds Ratio = 0.87, 

95% CI: 0.83 to 0.90) and hypertension (OR = 0.94, 95% CI: 0.92 to 0.97) versus e3e3. 

However, lipid changes in e2e2 (n=2,398) were more extreme, including a marked increase in 

tryglyceride levels (0.41 Standard Deviations, 95% CI: 0.37 to 0.45), with no associated changes 

in CHD risks. There were no associations with biomarkers of kidney function. The effects of 

both e2e2 and e2e3 were minimal on falls, muscle mass, grip strength or frailty. In conclusion, 

e2e3 has protective effects on some health outcomes, but the effects of  e2e2 are not similar, 

complicating the potential usefulness of e2 as a target for anti-aging intervention.  
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Introduction 

The APOE (Apolipoprotein E) gene has three major isoforms named APOE2, APOE3, 

and APOE4. These isoforms are coded by e2, e3, and e4 alleles, which are the haplotypes of the 

single nucleoide polymorphisms (SNPs), rs429358 and rs7412 on chromosome 19 (T-T, C-T, 

and C-C, respectively). e2 is associated with decreasing apolipoprotein E, followed by e3 and 

then e4. The allele-specific, isoform difference gives the variation in domain interaction, protein 

stability, and protein folding, which influence various pathologies [1][2], where APOE plays the 

role of shuttling cholesterol and other lipids between cells in the periphery and the central 

nervous system [3]. 

In European-ancestry populations, the frequencies of e2, e3, and e4 are approximately 

8%, 78%, and 13%, similarly in men and in women [4]. The majority of the population are e3e3 

homozygotes (63%), followed by e4e3 (19%) and then e2e3 (13%) [4]. While the e3 allele is the 

most abundant allele, e4 is the ancestral allele and e2 emerged after e3 [5]. The e2 allele is the 

youngest (8,000 years ago from east Asia) but under positive selection, expected to have strong 

evolutionary advantages [5].  

Previous studies have shown that the risk of Alzheimer’s disease in e4e4 homozygotes 

(OR = 14.9, 95% CI = 10.8 to 20.6) is more than double the risk of e4e3 (OR = 3.2, 95% CI = 

2.8 to 3.8) [6]. Assuming a similar pattern, we hypothesized that the effect of e2e2 is much 

stronger than that of e2e3 on aging phenotypes and we aimed to characterize individual 

genotypic effects. e2 has been associated with longevity and reduced risks of Alzheimer’s 

disease, dementia with Lewy bodies, and cardiovascular diseases (coronary artery disease, 

myocardial infarction (MI), ischemic stroke). e2 has also been associated with increased high-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2020. ; https://doi.org/10.1101/2020.02.12.20022459doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.12.20022459
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

density lipoprotein cholesterol (HDL), and decreased total cholesterol and low-density 

lipoprotein (LDL) cholesterol [1][3][7]. The association between e2 and longevity has been 

robustly replicated across studies [3][7][8][9] and may be partly attributed to negative 

associations with diseases and conditions. However, e2 has been linked to diseases including 

age-related macular degeneration (AMD) [10][11], renal disease [12], lipid metabolism disorders 

(type III hyperlipidemia, high triglycerides or hypertriglyceridemia), and cerebrovascular 

diseases (cerebral amyloid angiopathy that frequently causes lobar hemorrhagic stroke) [3].  All 

of these detrimental effects need to be considered to leverage the efficacy of e2-based 

therapeutics.  

In general, drug targets with genetic evidence support are more likely to succeed in 

human trials [13]. Moreover, associations between e2 and multiple aging traits including 

longevity suggest that if the underlying shared aging pathways were to be targeted, such an 

approach may delay the onset of multiple diseases, consistent with the geroscience hypothesis 

[14]. To characterize e2 in aging, we conducted a phenome-wide association study to associate 

ApoE genotypes to a variety of aging traits in UK Biobank, with the focus on e2e2 and e2e3. The 

UK Biobank is well-suited to this analysis as it includes thousands of e2e2s and e2e3s and a 

wealth of baseline measures plus updated mortality and disease diagnoses. 

Results 

Of 39,703 unrelated, European-descent participants (Table 1), 54% were women (n = 

204,726). The mean age at recruitment was 56.7 years (SD = 8.0). Participants were followed to 

death or the last update of survival (Feb 15, 2018), with the mean follow-up time of 9.4 years 

(SD = 1.2). During follow-up, 15,439 participants died and the mean age at death was 67.3 years 
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(SD = 7.0). The APOE genotype distribution was similar to that in the general white population. 

2,398 participants were e2e2 homozygotes and the sample size of e2e3 was 46,525. e1e2 and 

e1e4 (n=18 in total) were too few to study; thus, were excluded from analyses. A summary of 

studied aging associated biomarkers, diagnoses, plus chronic pain, functional measures and 

frailty  (here termed ‘aging traits’) for separate ApoE genotypes is provided in Supplementary 

Table S1. 

Table 1 Included Participant Characteristics 

Variable Mean ± SD or Frequency (%) 
Sex (=female) 204,736 (54%) 
Age at recruitment (years) 56.7 ± 8.0 
Follow-up time (years) 9.4 ± 1.2 
Death status at Feb, 2018 
(=dead) 

15,439 (4.1%) 
    Age at Death 67.3 ± 7.0 
APOE genotype  
    e1e2 3 (<0.01%) 
    e1e4 15 (<0.01%) 
    e2e2 2,398   (0.63%) 
    e2e3 46,535 (12.26%) 
    e2e4 9,490   (2.50%) 
    e3e3 222,225 (58.53%) 
    e3e4 90,016 (23.71%) 
    e4e4 9,021   (2.38%) 
 

The focus of this study is on e2e3 and e2e2; however, all the associations between ApoE 

genotypes and aging traits including those with e4 genotypes are presented in Supplementary 

Table S2.  

Biomarkers 

In Figure 1, we highlight the asociations with biomarkers that reached the Bonferroni-

adjusted significance level of 5% and showed a 0.1 SD or larger mean difference between e2e2 
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or e2e3 and e3e3. Compared to e3e3, e2e2 tended to be more associated than e2e3 with 

biomarkers associated with CHD. Both had lower mean total cholesterol (-0.78 SD in e2e2 

versus -0.33 SD in e2e3), LDL cholesterol (-1.12 SD in e2e2 versus -0.43 SD in e2e3), 

lipoprotein A (-0.40 SD in e2e2 versus -0.10 SD in e2e3), and apolioprotein B (-1.99 SD in e2e2 

versus -0.56 SD in e2e3), plus higher apolioprotein A1 (0.13 SD in e2e2 versus 0.11 SD in 

e2e3), all associated with lower risks of CHD. e2e2 and e2e3, however, had higher mean 

triglycerides (0.41 SD in e2e2 versus 0.11 SD in e2e3), which is associated with higher risks of 

CHD. 

e2e2 and e2e3 were associated with lower albumin and higher direct bilirubin and 

alkaline phosphatase, but the effect of e2e3 was not as striking as that of e2e2, e.g., 0.22 SD 

lower in e2e2 versus 0.06 SD lower in e2e3 compared to e3e3 for direct bilirubin. Additionally, 

the mean vitamin level of e2e2 was higher than that of e3e3 by 0.1 SD. e3e3 and other ApoE 

genotypes shared similar vitamin D levels. 

There were also associations with various hematology measures (Figure 2 and 

Supplementary Table S2), including on reticculocyte numbers, with e2e2 being associated with  

much larger effects than of e2e3.  

Disease Outcomes 

The results for diseases with ≥78% power to detect odds ratios approximately 1.2 and 

1.22 comparing e2e3, and e2e2 to e3e3 are presented in Figure 3. CHD and hypertension were 

the two significant diseases at the 5% Bonferroni-adjusted level. All the disease association 

results can be found in Supplementary Table S2. Interestingly, e4 was not associated with 

hypertension, where e2e3 had a lower risk of hypertension than e3e3 (OR = 0.94, 95% CI: 0.92 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2020. ; https://doi.org/10.1101/2020.02.12.20022459doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.12.20022459
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

to 0.97) but the protective effect was reduced in e2e2 (OR = 1.01, 95% CI: 0.92 to 1.10). 

Similarly, e2e3 heterozygotes were protected from CHD but the association was not seen with 

e2e2: the odds ratio for CHD was 0.87 (95% CI: 0.83 to 0.90) comparing e2e3 to e3e3 and was 

1.04 (95% CI: 0.90 to 1.19) comparing e2e2 to e3e3.  

We found no associations between e2e3 or e2e2 and renal failure or two kidney function 

biomarkers, creatinine and cystatin (Supplementary Table S2). Similarly, e2e3 or e2e2 was not 

associated with AMD and dementia.  

Chronic Pain, Cognitive Function, Physical Measures and Mortality 

e2e3 or e2e2 was not significantly associated with chronic pain, cognitive measures, and 

physical measures except body mass index (BMI). The mean BMI was 0.07 SD (95% CI: 0.03 to 

0.11) higher in e2e2 than in e3e3 (Figure 4), oppositely associated with e4 (Supplementary Table 

S2). The hazard ratio of death during follow-up in participants comparing e2e3 to e3e3 was 0.96 

(95% CI: 0.91 to 1.01) and that comparing e2e2 to e3e3 was 1.06 (95% CI: 0.87, 1.30) (Figure 

5). 

Discussion 

Analyses of APOE e2 have reported encouraging findings of associations with longevity, 

in studies of parents and in centenarians [26][27]. However, there has been little data on the 

effects of APOE e2e2 and e2e3 seperately, perhaps because the e2e2 type is relatively rare. In 

this large cohort analysis, we conducted a phenome-wide association study to test associations of 

the APOE genotypes with a wide range of aging relavant traits. As APOE effects could constitute 

potential treatment targets in aging, understanding their impacts on the various aspects of aging 

is important, including whether e2e2 has a more powerful anti-aging effect than e2e3. We found 
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marked reductions in total and LDL cholesterol and reductions in CHD risk in e2e3 only. 

However, associations for e2e2 included a marked increase in triglyceride levels and an increase 

in BMI, with no association with CHD. We also found minimal associations for both e2e3 and 

e2e2 with the studied aging outcomes, with only a small effect on Rockwood frailty (i.e., 49-item 

frailty) counts. The association with participant mortality in e2e3 trended in the protective 

direction but did not reach statistical significance, likely due to the limited follow-up thus far.   

e2e2 had much lower apolipoprotein B, LDL cholesterol, total cholesterol, and 

lipoprotein A, and reticulocyte counts but higher apolipoprotein A1 and markedly higher 

triglycerides levels than e3e3. A similar pattern was found in e2e3 but the effect sizes were 

mostly much smaller. Several of these lipid changes are linked to CHD risk. The associations 

between CHD and LDL cholesterol, lipoprotein A, triglycerides, and reticulocyte count are likely 

to be causal based on the Mendelian randomization results [28][29][30], in which genetic 

variants associated with each risk factor were used to estimate associations with CHD to 

minimize confounding and avoid reverse causation. While the lower total and LDL-cholsterol 

are associated with lower CHD risk, the opposite is true for the triglyceride findings, especially 

the markedly higher triglyceride levels seen in e2e2, perhaps explaining the discordance in 

findings of e2e3 and e2e2 for CHD. The 95% confidence intervals for ORs of CHD comparing 

e2e2, and e2e3 to e3e3 indicate that the two ORs are quite different despite a minimal overlap: 

e2e3 is protective for CHD (OR = 0.87, 95% CI: 0.83 to 0.90) but there was no association 

between e2e2 and CHD (OR = 1.04, 95% CI: 0.90 to 1.19), with the point estiamte trending in 

the opposite direction and the confidence intervals exluding a larger protective effect on CHD 

than seen in e2e3. Similarly, only e2e3 is protective for hypertension, but the confidence interval 
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for the e2e2 estimate was wide and mostly right to that of e2e3, suggesting a less protective 

effect. 

The hazard ratio for participant death in this relatively young cohort was 0.96 (95% CI: 

0.91 to 1.01) comparing e2e3 to e3e3, i.e., trending toward lower mortality but not reaching 

statistical significance. The association between e2e2 and motality was inconclusive due to a 

small sample size. A meta-analysis combing four European longevity cohorts [31] showed that 

e2e3 was associated with increased extreme longevity (top 1% survival in the 1900 US birth 

cohort) (OR = 1.34, 95% CI: 1.21 to 1.47) and the odds ratio comparing e2e2 to e3e3 was 1.26 

(95% CI: 0.80 to 1.99). Also, the e2 determined allele of rs7412 was increasingly associated with 

parental extreme longevity [26], which implies the association between e2 and extreme longevity 

in parents as parents of participants with any e2 allele are more likely to have e2 alleles than 

parents of e3e3 participants. However, the association between e2e3 or e2e2 in partipants and 

parental lifespan or longevity doesn’t imply the same association in parents. Most parents of 

e2e2 particippants are likely e2e3 heterozygotes and several parental mating combiations can 

lead to e2e3 offspring. Parental lifespan and longevity outcomes therefore were not included as 

the main purpose of this study is to separate e2e2 and e2e3 associations with aging traits. 

While associations between e2 and renal disease were previously reported, e2e3 or e2e2 

was not associatied with renal failure and two kidney function biomarkers, creatinine and 

cystatin (Supplementary Table S2). Similarly, e2e3 or e2e2 was not associated with AMD or 

dementia. It should be cautioned that the two conditions were rare in the UK Biobank and were 

underpowered to detect odds ratios ≤ 1.2 (Supplementary Table S1). With a longer follow-up, 

more cases may be available to retest the associations.  However, we did find associations 
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betetween e4 and dementia, where the ORs comparing e3e4, and e4e4 to e3e3 were 2.49 (95% 

CI: 2.24 to 2.78) and 7.77 (95% CI: 6.61 to 9.13), respectively. 

The limitations of this study include UK Biobank selection biases, which may impact the 

ApoE genotype and aging trait association if the selection into the study is substantially 

associated with the aging trait [32]: such biases are likely to be modest given that ages at 

recriutment were 40 to 70 years old. Additionally, the presence or absence of disease was 

determined based on participant-reported doctor diagnoses and records during hospitalization, 

and the absence of primary care data in this analysis means that disease diagnoses are likely to be 

underestimated. Also, some participants were not old enough to develop late-onset diseases. As 

the sensitivity is not 100 percent, the odds ratio estimates are likely to be generally biased 

towards the null [33].  

In conclusion, APOE e2e3 was associated with reduced total and LDL cholesterol, and 

reduced risks of CHD and hypertension. e2e3 associations with aging measures such as frailty 

were modest. However, associations with e2e2 included increased triglyceride levels, increased 

BMI and no associations with CHD or aging measures. Overall, our results support that e2 is a 

potential anti-aging target but any intervention needs to take account our findings that e2e3 is 

likely more favorable than e2e2 for health outcomes in older groups.  

Methods 

UK Biobank recruited over 500,000 participants aged 40-70 years from 2006 to 2010. A 

wide range of genetic and phenotypic data were collected at recruitment (baseline) and mortality 

and disease diagnoses were updated through linkages to death certificates, cancer registry and 

hospital admission records [15][16].  
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The DNA from blood samples was genotyped using Affymetrix UK BiLEVE Axiom 

array for the first ~50,000 participants and Affymetrix UK Biobank Axiom array for the rest of 

the cohort - the two arrays sharing over 95% marker content [16]. The two ApoE isoform coding 

SNPs, rs429358 and rs7412, on chromosome 19, were actually genotyped and the participant 

genotypes at these two locations were used to determine ApoE genotypes. 

Included Samples 

To avoid genetic confounding, we analyzed European-descent participants (n=451,367, 

~90% of the cohort), identified using genetic principal components analysis in detail in 

Thompson et al. [17]. One in third-degree or closer pairs were removed, leaving a total of 

379,703, where the relatedness was determined based on pairwise kinship coefficients, calculated 

using genome-wide SNP data by the KING software [18].  

Aging-Related Outcomes 

We classified aging-related outcomes into five categories: 1) biomarkers, 2) diseases and 

chronic pain, 3) mortality, 4) cognitive function, and 5) physical measures. Survival data were 

updated to Feb 15, 2018 and disease diagnoses to March 31, 2017. Others were surveyed or 

measured at recruitment/baseline. 

Biomarkers 

A panel of biomarkers from blood samples were collected including hematological 

measures (e.g., white blood count, red blood cell count, and hemoglobin concentration), 

prognostic biomarkers (e.g., lipids for vascular disease, sex hormones for cancer), diagnostic 

biomarkers (e.g., HbA1c for diabetes and rheumatoid factor for arthritis), and biomarkers to 

characterize phenotypes that are not well assessed (e.g., biomarkers for renal and liver function). 
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The full lists including technical details can be downloaded from the links [19][20]. Each was 

transformed by the rank-based inverse normal transformation, followed by the z-transformation 

to correct distribution skewness and to unify the scale across traits. 

Diseases and chronic pain 

Disease diagnoses were either self-reported at the baseline assessment and verified by a 

trained nurse during the verbal interview, or from the hospital admission data (HES, hospital 

episode statistics, covering the period 1996 to March 31, 2017) or the cancer registry. We 

combined prevalent and incident cases for the analysis of APOE genotype associations with 

likelihood of disease. A complete list of International Classification of Disease tenth revision 

(ICD-10) diagnosis codes used is included in Supplementary Table S3. 

Depression and chronic pain at baseline were assessed by survey questions to identify 

those with a localized pain for 3 months or longer (knee pain 3+ months, back pain 3+ months, 

and hip pain 3+ months) and those with depressed mood for several days or more in the past two 

weeks. Additionally, we derived a 49-item frailty index [21] mostly based on diseases and pains 

considering 60 and older only (not sensible to the middle aged). 

Mortality 

The death status was determined using the death certificate data, where age at death was 

calculated by date of death minus date of birth in years. For analytical purpose, we also 

calculated the survival time to the last follow up, which was Feb 15, 2018, for alive participants 

then. 

Cognitive function 
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We selected two cognitive function measures from touch screen tests at baseline that 

covered the majority of participants, i.e., reaction time and visual memory errors. The reaction 

time was measured as the average time used to correctly identify a match in a symbol match 

game similar to the snap card game. The visual memory errors was measured as the number of 

errors that a participant made to complete a pairs matching task where 6 pairs of cards were 

presented for 3 seconds beforehand. Each was log transformed to correct skewness of the 

distribution. The visual memory errors was right shifted by 1 before the transformation to avoid 

infinite values from zero visual memory errors.  

Physical measures 

In baseline physical measures, we included body mass index (BMI), systolic and diastolic 

blood pressures, any falls in the last year, heel bone mineral density (BMD), lung function 

measures of FEV1 (forced expiratory volume in 1 second), FVC (forced vital capacity), and 

FEV1/FVC ratio, Fried frailty (frail or not frail), skeletal muscle mass index [22], and maximal 

hand grip strength. Any falls in the last year and some elements to derive the Fried frailty were 

assessed by survey questions. Other measurements were performed at the assessment centers 

when participants were recruited.  

Heel bone mineral density in grams/cm2 was estimated based on the Quantitative 

Ultrasound Index through the calcaneus. The spirometry test was performed using a Vitalograph 

Pneumotrac 6800 that analyzed 2-3 blows of participants. The Fried frailty [23] was derived 

using participants aged 60 and older at baseline where the frailty status was confirmed if three or 

more of the conditions were met, 1) self-reported weight loss (yes/no, based on a survey question 

to ask weight change compared to one year ago), 2) exhaustion (yes/no, based on a survey 

question to ask frequency of feeling tired or having little energy over the past two weeks), 3) 
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self-reported slow walking pace (yes/no, based on a survey question to ask usual walking pace: 

slow if less than 3 miles per hour), 4) lowest 20% of hand grip strength in the same sex group 

(yes/no), 5) lowest 20% of physical activity in the same sex group (yes/no), by the short version 

of International Physical Activity Questionnaire (IPAQ) [24]. 

The maximal hand grip strength of both hands was measured using a Jamar J00105 

hydraulic hand dynamometer. The skeletal muscle mass was measured by the skeletal muscle 

index (SMI) defined by Janssen et al. [25], 

��� � ���/��� 

with height (Ht) in meters and the skeletal muscle mass (SMM) defined as 

��� � ���� 	⁄ � � 0.401 � ������� � 3.825� � ���� � ��0.071�� � 5.102 

where the Bioelectrical Impedance Analysis resistance (R) in ohms for the whole body was taken 

by a Tanita BC418MA body composition analyzer; gender was 1 for men and 0 for women and 

age was measured in years. 

Statistical analysis 

Aging-related outcomes including time-to-event (survival), continuous, and binary 

variables were modelled for associations with ApoE genotypes using Cox regression, linear 

regression, and logistic regression models. Prior to association analyses, continuous variables 

may be log-transformed to correct skewness of the distribution and further z-transformed to 

standardize the scale. Each ApoE genotype (e2e2, e2e3, e3e4, or e4e4) was compared with e3e3, 

adjusted for age at baseline (outcomes measured at baseline) or age at the last update (survival 

and disease outcomes), sex, assessment center, genotyping array type, and the first five genetic 
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principal components. We highlighted associations with Bonferroni-adjusted p-values (n=106) 

smaller than 5% for the null hypothesis of no e2e3 or e2e2 effect. All the statistical analyses 

were performed in R version 3.4.1. 

Power analysis 

Without losing generality, the z-tranformed values of a continuous variable by the mean 

and standard deviation from e3e3 samples follow a standard normal distribution (mean 0 and 

standard deviation 1) and we assume that e2e3 and e2e2 share the same standard deviation. 

Given the sample sizes that we have for the three ApoE genotypes, the power to detect a 0.05 

standard deviation (SD) mean difference between e3e3 and e2e3 or a 0.1 SD mean difference 

between e3e3 and e2e2 using an ANOVA F-test (p < 0.05/106), is presented in Supplementary 

Table S1. Most continuous traits have power over 99% except oestradiol (65%) and rheumatoid 

factor (27%). 

For binary outcomes, assume that the relative risk comparing e2e3 to e3e3 and that 

comparing e2e2 to e3e3 are 1.2 and (1.2)2, approximately equalvalent to odds ratios as the 

prevalence is low (<0.1). Given the sample sizes that we have for e3e3, e2e3, and e2e2, the 

power to reject the null hypothesis (p<0.05/106) that both relative risks are 1, is provided in 

Supplementary Table S1. We focus on disease outcomes with power  ≥ 78% referred to as 

“primary” and the rest are considered “secondary”. 

Age at death was the only survival outcome in this study, with death status and age at the 

last follow-up information. For convenience, we approximately calculated the power using death 

status only as a binary outcome, which should be similar to that of the survival outcome as the 
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death rate is low. We found in actual data analyses that the hazard ratios of death in participants 

(see the Results section) was very similar to the corresponding odds ratios (results not shown). 
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Figure 1 Significant Associations Between e2e2 or e2e3 and Biomarkers at the Bonferroni-
Corrected level of 5% 
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Figure 2 Significant Associations Between e2e2 or e2e3 and Hematological Measures at the 

Bonferroni-Corrected level of 5% 
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Figure 3 Associations Between e2 (e2e2 or e2e3) and Primary Disease Outcomes 
Note: Traits labelled with an asterisk if significant at the Bonferroni-corrected level of 5% 
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Figure 4 Associations Between e2e2 or e2e3 and Physical Measures, Cognitive Function, and a 
49-Item Frailty 
Note: Traits labelled with an asterisk if significant at the Bonferroni-corrected level of 5%  
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Figure 5 Associations Between e2e2 or e2e3 and Parent, Chronic Pain, and Physical Measures 
Note: Traits labelled with an asterisk if significant at the Bonferroni-corrected level of 5% 
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