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Abstract 

Objective: Widespread metabolic changes are seen in neurodegenerative disease and could 

be used as biomarkers for diagnosis and disease monitoring. They may also reveal disease 

mechanisms that could be a target for therapy. In this study we looked for blood-based 

biomarkers in syndromes associated with frontotemporal lobar degeneration.  

 

Methods: Plasma metabolomic profiles were measured from 134 patients with 

frontotemporal lobar degeneration (behavioural variant frontotemporal dementia n=30, non 

fluent variant primary progressive aphasia n=26, progressive supranuclear palsy n=45, 

corticobasal syndrome n=33) and 32 healthy controls. 

 

Results: Forty-nine of 842 metabolites were significantly altered in frontotemporal lobar 

degeneration (after false-discovery rate correction for multiple comparisons). These were 

distributed across a wide range of metabolic pathways including amino acids, energy and 

carbohydrate, cofactor and vitamin, lipid and nucleotide pathways. The metabolomic profile 

supported classification between frontotemporal lobar degeneration and controls with high 

accuracy (88.1-96.6%) while classification accuracy was lower between the frontotemporal 

lobar degeneration syndromes (72.1-83.3%). One metabolic profile, comprising a range of 

different pathways, was consistently identified as a feature of each disease versus controls: 

the degree to which a patient expressed this metabolomic profile was associated with their 

subsequent survival (hazard ratio 0.74 [0.59-0.93], p=0.0018).  

 

Conclusions: The metabolic changes in FTLD are promising diagnostic and prognostic 

biomarkers. Further work is required to replicate these findings, examine longitudinal change, 

and test their utility in differentiating between FTLD syndromes that are pathologically 

distinct but phenotypically similar. 
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Introduction 

Frontotemporal lobar degeneration (FTLD) causes a wide spectrum of syndromes including 

the behavioural and language variants of frontotemporal dementia (bvFTD, PPA 

respectively), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS).[1, 2] 

Accurate early diagnosis is challenging, due in part to the specialist clinical skills and 

imaging resources required. There is therefore a pressing need for FTLD biomarkers. Such 

biomarkers may also facilitate clinical trials monitoring and reveal disease mechanisms as a 

target for therapy. In this study we looked for blood-based metabolic biomarkers in four 

clinical syndromes associated with FTLD. We studied the four syndromes together, in view 

of their potential commonalities in clinical and neuropathological features.[1, 3, 4] 

 

Metabolic pathways are likely to be altered in FTLD. For example, genomic studies of FTLD 

syndromes have identified gene loci polymorphisms implicated in a range of metabolic 

processes including protein synthesis, packaging and breakdown, as well as immune 

functions and myelin structure.[5–9] In addition, the identification, quantification and 

analysis of metabolic pathways using metabolomics has identified candidate biomarkers in 

other neurodegenerative diseases including Alzheimer’s, Huntington’s and Parkinson’s 

diseases.[10–12] However, there is limited evidence on metabolomic abnormalities in FTLD: 

the cerebrospinal fluid in FTD shows a panel of metabolites could differentiate FTD from 

controls and Alzheimer’s disease,[13] while hypertriglyceridemia and 

hypoalphalipoproteiemia have been reported in bvFTD.[14]  

 

This study had three aims. First, to identify which biochemicals and their associated 

metabolite pathways are abnormal in each of four FTLD syndromes. Second, to test the 

accuracy of metabolite profiles in classifying patients versus healthy controls. Third, to test 

whether metabolomics changes are indicative of prognosis. We predicted that a wide range of 

metabolic pathways would be abnormal in FTLD and it would be possible to accurately 

classify between FTLD syndromes and controls; but that phenotypic and pathological 

similarities would reduce the accuracy of differential diagnosis between the FTLD 

syndromes.  
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Materials and Methods 

Study Participants 

Patients were recruited from the Cambridge Centre for Frontotemporal Dementia and Related 

Disorders and met the clinical diagnostic criteria for either behavioural variant 

frontotemporal dementia[15], non-fluent variant primary progressive aphasia[16], progressive 

supranuclear palsy Richardson’s syndrome[17] or corticobasal syndrome.[18] Healthy 

controls had no neurological or psychiatric disease. The study was approved by the local 

ethics committee and all participants gave informed consent or, if lacking mental capacity, 

through a consultee process according to UK law. 134 patients (30 bvFTD, 26 nfvPPA, 45 

PSP, 33 CBS) and 32 healthy controls participated. Plasma was obtained by centrifugation of 

whole blood and stored at -80ºC until analysis.  

 

Metabolite detection and quantification 

Biochemical identification and quantification was performed by Metabolon Inc 

(www.metabolon.com) for all samples at a single timepoint. Samples were analysed with 

ultra-high performance liquid chromatography and tandem mass spectrometry, optimised for 

basic and acidic species. Biochemicals were then identified by comparison of the ion features 

of each sample to a reference library of compounds and grouped into sub and super pathways, 

corresponding to metabolite pathways[19]. For a full list of the metabolic pathways and their 

constituent biochemicals measured in this study see Appendix 1.  

 

Statistical analysis 

Our statistical analysis pipeline is summarised in Figure 1. First, we used independent two-

sample t-tests to compare the age distributions of the FTLD and control groups. A Chi-

squared test with Yates correction was used to compare sex between groups. In the 

metabolite dataset missing values implied a result below the limit of detection in that 

individual. We excluded metabolites if they were missing in more than half of the 

participants. Remaining missing values were replaced by half of the minimum positive value 

of that variable. We also removed metabolites from exogenous metabolic pathways, 

including known drugs and drug pathways, before further analysis.  All metabolite 

concentrations were scaled to unit variance (i.e. normalised to z-scores). [20]  
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Figure 1:  Summary of the analysis pipeline. From a total of 842 metabolites, a principal 

component analysis (PCA) was run on the metabolites in each of 91 subpathways. All 

components with eigenvalue greater than 1 were entered into a global PCA. The subject-

specific weights of the principal components from this PCA were used as features for support 

vector machines, using k-fold cross-validation and recursive feature elimination. 

Components selected by recursive feature elimination were then used as predictors for the 

survival analysis (cox proportional hazards regression with age, gender and FTLD subgroup 

as covariates). 

 

Univariate statistical tests were then used to compare individual metabolite differences 

between groups. We used a generalised linear model on each metabolite, with age and sex as 

covariates, to compare the FTLD and control groups. An FDR corrected p-value threshold of 

0.01 used to determine statistical significance (using the ‘mafdr’ function in MATLAB). 

Bonferroni correction is also presented, while noting that non-independence of metabolites is 

likely to make this method overly conservative. Fold change for each metabolite was 

calculated by dividing the mean disease and control values of unscaled data.  

 

A two-level principal component analysis (PCA) was used to explore the diseases’ effect on 

each metabolite pathway. We used this two-level approach to reduce dimensionality whilst 
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preserving the metabolite pathways structure of the dataset, with parsimonious representation 

of all metabolic pathways in the comparisons between groups. At the first level, we 

performed a ‘local PCA’ on the metabolites in each sub pathway, to identify components that 

best explained the variance in that pathway. Ninety-one local principle component analyses 

were run in total, one for each metabolite subpathway. Within each subpathway, we used the 

Kaiser criteria to select components with an eigenvalue greater than one. To assess which 

metabolite pathways are affected in FTLD we used independent two-sample t-tests to 

compare scores for each local PCA component. An FDR corrected p-value threshold of 0.01 

was used to determine statistical significance. At the second level, we performed a ‘global 

PCA’. This was global in the sense of examining metabolite variance across all subpathways, 

including all the components with an eigenvalue greater than one from all local PCAs.  

 

Next we tested the ability of the global PCA components to classify FTLD syndromes. We 

trained pairwise linear support vector machines using the subject specific weightings for 

components output from the global PCA. A total of eleven SVMs were trained, to 

discriminate between each of the five groups, and to compare all FTLD syndromes jointly 

versus healthy controls. Prior to training, component loading values were rescaled from -1 to 

1. Groups were size-matched by randomly sampling cases from the larger of the groups to 

match the size of the smaller group.  

 

We used backwards sequential feature selection using the ‘sequentialfs’ function in 

MATLAB to identify the components that best predicted disease, as follows. Starting with 

the full dataset, components were sequentially removed until classifier accuracy decreased. 

SVM accuracy and factor selection was validated with 10-fold cross validation. In each 

iteration, the training and test data subsets were kept separate. Random case sampling, SVM 

training and sequential feature selection was repeated 10 times and the mean accuracy over 

all partitions was calculated. Only the components selected in all repetitions are reported. 

With small sample sizes, k-fold cross-validation minimises the bias of within-sample cross-

validation.[21] The reported accuracy from each SVM is the mean accuracy from all SVMs 

trained for each pairwise comparison. Out of sample cross-validation is provided indirectly 

by comparison of the components that were consistent contributors to accurate classification 

for each of the four syndromes versus controls.  
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Next we investigated the relationship between the FTLD-associated metabolome and 

survival. Survival analysis was performed with cox proportional hazards regression. Only 

components selected by sequential feature selection in all disease versus control SVMs were 

used as predictor variables. Age, gender and FTLD-group were entered as covariates. SVM 

analyses were performed using LIBSVM in MATLAB R2018b (MathWorks).[22] Other 

statistical tests used MATLAB R2018b (Mathworks, USA).  
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Results  

Table 1 summarises the clinical groups. There were significant differences between FTLD 

(all diseases combined) and control samples in forty-nine out of 842 metabolites detected 

(two sample t-test, FDR p <0.01). The statistical significance of each metabolite is plotted 

against fold-change in Figure 2A. These metabolites did not cluster in one pathway but were 

distributed across a wide range of metabolic pathways. These included sixteen amino acid, 

seven energy and carbohydrate, three cofactor and vitamin, sixteen lipid, three nucleotide and 

four xenobiotic pathways (Table 2). Twenty-six of these metabolites remained significant 

with family wise error correction (Bonferroni corrected p<0.01), distributed across a wide 

range of pathways. 

 

 

Figure 2: Metabolomic alterations in FTLD syndromes. Volcano plot of log-fold change in 

each metabolite for the contrast of FTLD vs control, and their significance (log-FDR 

corrected p-value). Metabolites are colour coded by superpathway. The horizontal line marks 

p=0.01 significance. The significant metabolites above this line, both increased and 

decreased, come from each the major metabolic pathways.   
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Table 1: Demographic and clinical summary metrics of study participants. ACER: 
Addenbrookes Cognitive Examination – Revised, CBI: Cambridge Behavioural Inventory – 
Revised, PSP-RS (Progressive Supranuclear Palsy Rating Scale). P values are result of 
ANOVA across rows for all FTLD subgroups and Controls (where applicable), except 
%Male where a Chi squared test was used: ns = p>0.05.  

  
FTLD  

(all subgroups) bvFTD nfvPPA PSP CBS Control 

p value 
(FTLD vs 
Control) 

Number 134 30 26 45 33 32  

Mean age at blood test  
(SD) 

70.36 
(8.21) 

64.51 
(7.17) 

72.00 
(7.66) 

72.9 
(8.06) 

70.91 
(7.04) 

68.73 
(9.03) 

ns 

% Male 50 50 38 62 55 56 ns 

Estimated onset to 
phlebotomy (years) (SD) 

4.86  
(2.86) 

5.56 
(2.91) 

4.59  
(2.1) 

4.71 
(3.12) 

4.68 
(2.84)   

ns 

Diagnosis to phlebotomy 
(years)  
(SD) 

1.52  
(1.73) 

2.0 
(2.11) 

1.64 
(1.46) 

1.04 
(1.39) 

1.68 
(1.82)   

ns 

Mean ACE-R (<100) 
(SD) 

62  
(27) 

52 
 (30) 

61  
(29) 

72  
(22) 

61  
(29)   

0.009 

Mean CBI (<180) 
 (SD) 

61 
(28) 

83 
 (26) 

39  
(32) 

56  
(31) 

66  
(34)   

<0.001 

Mean PSP-RS (<100) 
(SD)  - -   - 43 (15)  -   

NA 
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Table 2: Table of metabolites that were significantly different in FTLD syndromes combined, 
compared to healthy controls. P value columns show the p value for a generalised linear 
model between FTLD and controls with age and sex as covariates. P-values in the 
uncorrected column in bold indicate survival after Bonferroni correction (equivalent to 
uncorrected p<1.33e-5) 

Metabolite Name Subpathway Superpathway 

Fold 

change 

P value 

(FDR) 

P value 

(uncorr) 

guanidinoacetate Creatine Amino Acid 0.73 5.73E-06 1.14E-07 

beta-citrylglutamate Glutamate Amino Acid 1.47 6.33E-05 1.93E-06 

1-pyrroline-5-carboxylate Glutamate Amino Acid 1.60 3.14E-03 1.58E-04 

2-aminobutyrate Glutathione Amino Acid 0.77 2.19E-03 9.57E-05 

sarcosine Glycine/Serine/ Threonine Amino Acid 0.76 9.13E-08 8.48E-10 

2-methylserine Glycine/Serine/ Threonine Amino Acid 0.51 7.02E-11 9.31E-14 

N-acetylmethionine 

Methionine/Cysteine/Sam/ 

Taurine Amino Acid 1.22 9.61E-03 6.25E-04 

alpha-ketobutyrate 

Methionine/Cysteine/Sam/ 

Taurine Amino Acid 0.38 2.53E-10 1.01E-12 

hypotaurine 

Methionine/Cysteine/Sam/ 

Taurine Amino Acid 1.98 1.03E-06 1.51E-08 

taurine 

Methionine/Cysteine/Sam/ 

Taurine Amino Acid 1.63 7.68E-08 5.14E-10 

spermidine Polyamine Amino Acid 3.42 1.12E-04 3.69E-06 

5-methylthioadenosine 

(MTA) Polyamine Amino Acid 1.24 5.34E-03 2.91E-04 

tryptophan betaine Tryptophan Amino Acid 0.45 5.90E-03 3.50E-04 

serotonin Tryptophan Amino Acid 10.71 1.22E-05 3.23E-07 

homoarginine Urea Cycle; Arginine/ Proline Amino Acid 0.79 5.78E-03 3.30E-04 

pro-hydroxy-pro Urea Cycle; Arginine/ Proline Amino Acid 1.40 4.77E-03 2.53E-04 

N-acetylneuraminate Aminosugar Carbohydrate 1.47 1.14E-05 2.83E-07 

N-

acetylglucosaminylasparagine Aminosugar Carbohydrate 1.74 2.10E-03 8.93E-05 

maltotetraose Glycogen Carbohydrate 16.02 1.14E-05 2.58E-07 

maltotriose Glycogen Carbohydrate 10.87 7.68E-08 6.11E-10 

maltose Glycogen Carbohydrate 3.08 1.50E-06 2.58E-08 

pyruvate 

Glycolysis/Gluconeogenesis/ 

Pyruvate Carbohydrate 0.64 3.13E-03 1.45E-04 

nicotinamide Nicotinate/ Nicotinamide 

Cofactors/ 

Vitamins 2.18 1.50E-06 2.48E-08 

adenosine 5'-

diphosphoribose (ADP-

ribose) Nicotinate/ Nicotinamide 

Cofactors/ 

Vitamins 5.19 2.70E-05 7.52E-07 

flavin adenine dinucleotide 

(FAD) Riboflavin 

Cofactors/ 

Vitamins 1.30 2.10E-03 8.87E-05 

succinate TCA Cycle Energy 0.79 8.55E-03 5.33E-04 

stearamide Fatty Acid/Amide Lipid 0.72 3.41E-03 1.76E-04 

pristanate Fatty Acid/Branched Lipid 0.63 8.63E-04 3.09E-05 
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maleate Fatty Acid/Dicarboxylate Lipid 0.55 1.14E-05 2.88E-07 

glycerol 3-phosphate Glycerolipid Lipid 0.66 7.69E-07 1.02E-08 

1-(1-enyl-palmitoyl)-GPE (P-

16:0)* Lysoplasmalogen Lipid 1.25 5.77E-03 3.21E-04 

heptanoate (7:0) Medium Chain Fatty Acid Lipid 1.86 1.85E-06 3.43E-08 

10-undecenoate (11:1n1) Medium Chain Fatty Acid Lipid 0.63 6.67E-06 1.42E-07 

1-palmitoleoylglycerol (16:1) Monoacylglycerol Lipid 0.46 1.65E-03 6.35E-05 

1-linoleoylglycerol (18:2) Monoacylglycerol Lipid 0.59 4.87E-04 1.68E-05 

1-stearoyl-2-oleoyl-GPS 

(18:0/18:1) Phosphatidylserine (PS) Lipid 8.94 1.95E-09 1.03E-11 

1-stearoyl-2-arachidonoyl-

GPS (18:0/20:4) Phosphatidylserine (PS) Lipid 7.47 3.82E-07 4.56E-09 

choline phosphate Phospholipid Lipid 1.59 1.42E-07 1.50E-09 

phosphoethanolamine Phospholipid Lipid 2.61 9.92E-11 2.63E-13 

sphinganine Sphingolipid Lipid 1.53 3.14E-03 1.55E-04 

sphingosine Sphingolipid Lipid 1.38 2.57E-03 1.16E-04 

lactosyl-N-behenoyl-

sphingosine (18:1/22:0) Sphingolipid Lipid 1.48 3.14E-03 1.50E-04 

N1-methylinosine 

Purine/(Hypo)Xanthine/Inosine 

Containing Nucleotide 1.46 5.90E-03 3.52E-04 

dihydroorotate Pyrimidine/Orotate Containing Nucleotide 0.55 1.80E-03 7.18E-05 

2'-deoxyuridine Pyrimidine/Uracil Containing Nucleotide 0.65 1.62E-03 6.02E-05 

benzoate Benzoate Xenobiotics 0.73 1.12E-04 3.72E-06 

iminodiacetate (IDA) Chemical Xenobiotics 1.19 3.13E-05 9.15E-07 

thioproline Chemical Xenobiotics 1.16 8.69E-03 5.53E-04 

1-methylxanthine Xanthine Xenobiotics 0.58 6.34E-03 3.87E-04 

 

To assess differences in metabolic pathways, as opposed to individual metabolites, we 

compared the component loadings of principal component analyses on the metabolites in 

each pathway. Principle component analysis on each of 91 sub-pathways yielded 230 

individual components. The component scores on twelve sub-pathways were significantly 

different between FTLD and controls (two sample t-test, FDR p <0.01). These included 

widespread changes in the metabolome including amino acid (creatine, glutamate, glycine, 

serine, threonine, methionine, cysteine, taurine, polyamine and tryptophan), carbohydrate 

(amino sugar and glycogen) and lipid (fatty acid, lysoplasmalogen, mevalonate, 

monoacylglycerol and phospholipid) pathways. 

 

We then tested the efficacy of metabolomics as a diagnostic biomarker for FTLD (Table 3). 

Linear support vector machines with sequential feature selection using all 50 principle 

components from the global PCA as predictor variables accurately distinguished FTLD from 

controls (92.5%) and individual FTLD syndromes from controls (bvFTD 96.67% nfvPPA 
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88.08% PSP 95.78% CBS 95.16%). Accuracy was less among FTLD syndromes. BvFTD 

classification accuracy from nfvPPA (82.00%), PSP (81.33%) and CBS (83.33%) was better 

than PSP, CBS and nfvPPA. This was even lower in separating nfvPPA from PSP (79.52%) 

or CBS (0.72%) and PSP from CBS (78.6%).  

 

Table 3: Matrix of average classification accuracy of the support vector machines’ 
classification between groups (percentage total correct classification). Groups were sized 
matched for each classifier (see methods). The diagonal values represent the classification 
accuracy for that disease group against all other groups combined. Classification accuracy is 
high in each FTLD syndrome compared with healthy controls, but lower when classifying 
between FTLD syndromes. [bvFTD=behavioural variant frontotemporal dementia, 
nfvPPA=non-fluent variant primary progressive aphasia, PSP=progressive supranuclear palsy 
Richardson’s syndrome, CBS=corticobasal syndrome]. 

 

  bvFTD nfvPPA PSP CBS Control 

bvFTD 86 82 81 83 97 

nfvPPA 82 80 76 72 88 

PSP 81 76 83 79 96 

CBS 83 72 79 82 95 

Control 97 88 96 95 93 

 

Sequential feature selection, by removing components that did not contribute to SVM 

accuracy, identifies the components that best separated the two groups. Only 2 or 3 

components were selected for each disease vs control classifier. One principle component 

was selected in every comparison between disease group and controls (component 3). From 

the between syndrome classifications, additional components were consistently selected (up 

to 6 in the bvFTD vs CBS comparison). For the nfvPPA vs CBS classifier accuracy no 

components were consistently selected.  

 

Component 3, from the global PCA of all metabolite pathways, was selected by sequential 

feature selection in every disease vs control classifier. This means the metabolites 

contributing to this component were consistently important in separating disease groups from 

controls. All but two healthy controls positively loaded onto this component while the 
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loadings in the FTLD syndromes varied (Figure 3A). Component 3 represented metabolites 

from a wide range of pathways (Figure 3B, full list of subpathway loadings in Appendix 2). 

Sub-pathways with high positive loading onto component 3 included phospholipid and other 

lipid pathways, haemoglobin and the carbohydrate glycogen metabolism pathway. 

Subpathways with high negative loading onto component 3 included certain fatty-acid 

pathways and amino acid pathways including leucine, valine, tryptophan, glycine, serine, 

threonine, methionine, cysteine and taurine metabolism.  

 

We next tested component 3 as a prognostic biomarker (in patients only) using Cox 

proportional hazards regression using age, gender, disease groups and component 3 and days 

from blood test to death. The standardised individual participant loadings on component 3 

were significantly associated with time to death (hazard ratio 0.74 (0.59-0.93), p=0.0018). To 

illustrate this effect, we plotted separately the patients with high (z score>1), medium (z score 

between 1 and -1) and low (z score<1) values on this component (Figure 4). 
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Figure 3A: Individual loading onto component 3, by group. 3B. Subpathways loading on 

component 3.  
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Figure 4: Kaplan-Meir Survival Curve of loadings on component 3. Patients were separated 

into three groups based on their loading onto component 3. High loading patients had a z 

score greater than 1, medium between 1 and -1 and low had a z score less than -1. There was 

a significant difference in survival curves between the three groups (log rank p=0.04). Graph 

generated using MatSurv (https://github.com/aebergl/MatSurv) 

 

Discussion 

Our results show that multiple metabolic pathways are changed in patients with clinical 

syndromes associated with frontotemporal lobar degeneration. One profile of metabolic 

change (here identified as component 3) was consistently identified as feature of each disease 

versus controls, and the degree to which a patient expressed this metabolomic profile was 

correlated with subsequent survival. The metabolic changes in FTLD were not confined to a 

single pathway but were found across carbohydrates, lipids, amino acids, and peptide 

pathways. The identification of a blood-based metabolic index of FTLD and survival could 

assist differential diagnosis and clinical trial design, but we acknowledge that it is not known 

whether these abnormalities result from specific aetiopathogenic processes, or environmental 

sequelae of neurodegenerative disease. Replication in independent cohorts and the analysis of 
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longitudinal change will also be important extensions of this work. In the following, we 

discuss the metabolic changes in turn, their potential utility for diagnosis and prognosis, and 

the study’s limitations.  

 

Our first aim was to identify metabolic markers of FTLD. Several of the metabolite 

differences in FTLD implicate carbohydrate metabolism and energy pathways. Maltose and 

maltose metabolites, elevated in our FTLD groups, are primary disaccharides in the human 

diet. This result may be due to the altered dietary preferences, appetite, weight change and 

exercise associated with FTLD.[23–26] However, it may also be due to endogenous changes 

in energy metabolism and storage. Pyruvate and succinate, both key components of the TCA 

cycle, were low in FTLD despite the raised polysaccharides levels. Glycerol-3-phosphate, 

which has an important role in reoxidisation of NADH, was also low. These abnormalities 

reflect altered glucose uptake and metabolic dysfunction, which is of particular interest in 

view of in vivo PET imaging of FTLD where abnormal glucose metabolism often precedes 

neuronal loss and atrophy.[27–29] 

 

The amino acid differences could also be attributed to defective energy metabolism. For 

example, glucogenic amino acid metabolites, including alpha-ketobutyrate, 2-methylserine 

and sarcosine were low in FTLD and in other neurodegenerative disease it has been 

suggested that abnormalities in these pathways represent an attempt to preserve or restore 

glycolysis.[30] Spermidine, elevated in FTLD, is a polyamine amino acid that promotes 

autophagy and has neuroprotective effects in rodent models.[31] The raised levels in FTLD 

might reflect a response to increased cell death that occurs in patients with neurodegenerative 

disease.[32] We found increased serotonin levels in FLTD (FC: 10.71, p<0.001). Central 

nervous serotonergic pathways are abnormal in FTLD [33] and serotonin reuptake inhibitors 

have been used as a symptomatic treatment in FTLD.[34] However, there is usually limited 

exchange of serotonin across the blood brain barrier, and the significance of this peripheral 

serotonin result is unclear for the central nervous system. Peripheral serotonin effects include 

glucose regulation via its action on pancreatic beta cells, hepatocytes and adipose tissue.[35] 

Abnormal peripheral serotonin levels in FTLD may therefore again relate to abnormal 

glucose regulation. 

 

Lipid pathways were also abnormal in FTLD with alterations in several phospholipid, 

glycerolipid and sphingolipid metabolites. These are important components of cell 
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membranes. Phospholipid pathway metabolites, including phosphatidylserines (FC7-8, 

p<0.001) and phosphoethanolamine (FC 2.61, p<0.001), showed the greatest differences in 

FTLD compared to controls. Our results contrast with a lipidomics study of bvFTD which 

found the same phospholipids were reduced in bvFTD. However, the apparent discrepancy 

could be explained by the differences in disease stages. Phospholipids are a major component 

of cell membranes and phosphatidylserine has been proposed as a pro-apoptotic marker in 

pre-clinical neuronal models of tauopathies.[36, 37] Sphingosine and its derivative 

sphingoamine, important components of sphingolipid metabolism, were also elevated in 

FTLD syndromes. Sphingosine derived lipids comprise up to one third of cell membranes and 

are highly prevalent in central nervous system white matter. Dysregulated sphingomyelin 

metabolism has been implicated in neurodegeneration due to Alzheimer’s disease [38] and 

have been suggested as a potential blood biomarker.[39] 

 

Our second aim was to determine whether the metabolome could be used to classify patients 

by syndrome and provide proof-of-concept for a blood-based biomarker. Classification 

accuracy, using only the metabolite principle components, was high (88-97%) between each 

FTLD syndrome and controls. Sequential feature selection found that only a small subset of 

components was required, without loss of accuracy. Interestingly classification accuracy did 

not reflect the strength of the published clinicopathological correlations in each syndrome. 

Frontotemporal lobar degeneration syndromes are associated with different underlying 

pathologies, including FTLD-tau and FTLD-TDP43.[1] Each FTLD syndrome has a different 

clinicopathological accuracy; the clinical syndrome of PSP-Richardson’s syndrome is almost 

always caused by 4-repeat tau pathology [17] and had a classification accuracy of 95%.  

BvFTD, which can be caused by Tau-, TDP43- or FUS-pathology [15], still had a 

metabolomics accuracy of 96.5%. CBS has poor clinic-pathological correlation and may be 

associated with Corticobasal degeneration, Alzheimer’s Disease pathology, PSP or other 

pathology [40], but the syndrome still manifested a metabolomic classification accuracy of 

95.6%. This would suggest some of the classifying features results are not 

neuropathologically specific but rather reflect generalised aspects of progressive 

neurodegeneration or the widespread physiological stresses that follow. 

 

Classification accuracy was lower between the different FTLD syndromes. This is expected 

in view of the closely overlapping clinical features and underlying neuropathologies across 

FTLD syndromes. We suggest that the FTLD syndromes with the closest overlap in 
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phenotype and pathology have the lowest classification accuracy. For example, nfvPPA can 

be the initial presenting syndrome of PSP-pathology or corticobasal degeneration, and 

nfvPPA can evolve towards a CBS-like phenotype, or CBS-NAV.[18, 41–43] PSP and CBS 

were weakly differentiated, and share many similar features in pathology and syndrome, as 

indicated by the nosological status of PSP-CBS and CBS-PSP.[17, 18] 

 

Our third aim was to find a prognostic biomarker in FTLD. Component 3 was associated with 

survival (days to death), independent of disease group, age or gender. A range of metabolic 

pathways contributed to this component, including phospholipid, amino acid, carbohydrate 

and cofactor pathways. This suggests the metabolomics marker of mortality risk reflects a 

signature of underlying progressive neurodegeneration, as opposed to an isolated metabolic 

pathway alteration. We suggest that the component reflects both environmental and 

endogenous changes, but further studies are required to target the biochemicals comprising 

component 3. Despite the uncertainty over the causes of the metabolomic differences, our 

findings suggest that blood-based biomarkers have potential as diagnostic biomarkers. To 

confirm the role of metabolomics as a prognostic biomarker longitudinal measures are 

essential, and comparisons against other differential diagnostic groups such as Parkinson’s 

disease and non-degenerative causes of late-life behavioural change.  

 

Our study has several limitations. Metabolomics can be highly sensitive to differences in 

sampling, storage and analysis. For practical reasons, and with a view to utility in healthcare 

settings, our samples were taken at variable times of day, and participants were not fasted. 

For ethical reasons, no medications were withheld or altered in participants for the purposes 

of the study. Some participants were taking levodopa or selective serotonin reuptake 

inhibitors for example. This might account for some of differences between disease groups 

and controls. However, to mitigate this risk, we removed metabolites and sub-pathways that 

have been associated with these medications in reference datasets. We also acknowledge that 

the Metabolon analysis pipeline cannot differentiate between optical isomers of a metabolite, 

which may have different physiological properties. Our sample size is modest, we restricted 

our classification sample sizes to prevent inequalities in the group sizes (which may 

otherwise bias a classifiers). Our sample was therefore limited by the prevalence of the least 

common disorder. Nonetheless, for small sizes, the k-fold cross-validation approach provides 

a minimally biased estimate of the potential accuracy of classification. For each disease 

group, we used within-sample cross validation, separating training and tests data on each 
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iteration, but we have not replicated our findings in an independent cohort. Out-of-sample 

cross-validation was found across the four separate disease groups for component 3, which 

was most closely associated with survival. However, further work is required to replicate the 

findings in other disease-specific cohorts to confirm the utility of metabolomics as a 

diagnostic biomarker. In anticipation of clinical utility, we focussed on comparison and 

classification by syndrome. However, genetic FTD cohorts and retrospective analysis 

samples from people with post mortem diagnostic confirmation would enable the additional 

metabolomics analysis by pathology rather than syndrome.  

 

In summary, our findings highlight the widespread metabolic changes in each of four major 

clinical disorders associated with frontotemporal lobar degeneration. We found that the 

metabolite profile can be used to classify between FTLD and healthy controls with high 

accuracy and relate to prognosis. Several metabolites show promise as diagnostic and 

prognostic biomarkers which if developed could enrich case identification in healthcare 

settings and in future clinical trials. Further work is required to replicate these findings and 

test their utility in differentiating between FTLD and pathologically distinct, but 

phenotypically similar syndromes.  
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