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Abstract 

In December 2019, Wuhan, China reported an outbreak of atypical pneumonia caused by the 

2019 novel coronavirus (2019-nCoV). As of February 7, 2020, the total number of the confirmed 

cases in mainland China reached to 34,546 of whom 722 have died and 2,050 recovered. While 

most Chinese cities have confirmed cases, the city-level epidemical dynamics is unknown. The 

aim of this study is to model the dynamics of 2019-nCoV at city level and predict the trend under 

different scenarios in mainland China. We used mobile phone data and modified the classic 

epidemiological Susceptible - Infectious - Recovered (SIR) model to consider several  unique 

characteristics of the outbreak of 2019-nCoV in mainland China. The modified SIR model was 

trained using the confirmed cases from January 25 to February 1 and validated by the data 

collected on February 2, 2020. The prediction accuracy of new infected cases on February 2 (R2 

= 0.94, RMSE = 18.24) is higher than using the classic SIR model (R2 = 0.69, RMSE = 40.18). 

We used the trained model to predict the trend in the next 30 days (up to March 2, 2020) under 

different scenarios: keeping the early-stage trend, controlling the disease as successfully as 

SARS in 2003, and increasing person-to-person contacts due to work/school resuming. Results 

show that the total infected population in mainland China will be 10.53, 0.15, and 0.41 million 

and 67%, 100%, 91% Chinese cities will control the virus spreading by March 2, 2020 under the 

above three scenarios. Our study also provides the city-level spatial pattern of the epidemic trend 

for decision makers to allocate resources for controlling virus spreading. 
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1. Introduction 

Wuhan, a large city with 14 million residents and a major air and train transportation hub of 

central China, identified a cluster of unexplained cases of pneumonia on December 29, 2019 (Li 

et al., 2020). Four patients were initially reported and all these initial cases were linked to the 

Huanan Seafood Wholesale Market (Zhu et al., 2020). Chinese health authorities and scientists 

did immediate investigation and isolated a novel coronavirus from these patients by January 7, 

2020, which is then named as 2019-nCoV by the World Health Organization (Chen et al., 2020; 

Wang et al., 2020). 2019-nCoV can cause acute respiratory diseases that progress to severe 

pneumonia (Huang et al., 2020). The infection fatality risk is around 3% estimated from the data 

of early outbreak (Perlman, 2020; Wang et al., 2020). Information on new cases strongly 

indicates human-to-human spread (Fuk-Woo Chan et al., 2020; Li et al., 2020; Riou and Althaus, 

2020).  Infection of 2019-nCoV quickly spread to other cities in China and other countries 

(Figure 1). It becomes an event of global health concern (Hui et al., 2020). Up to February 7, 

2020, according to the reports published by the Chinese Center for Disease Control and 

Prevention, all provinces of mainland China have confirmed cases and the total number reaches 

to 3,4546, of whom 722 have died and 2050 recovered; 24 oversea countries have 285 confirmed 

cases (1 died). Chinese government took immediate actions to control the spread of disease, 

including closing the public transportation from and to Wuhan on January 23, extending the 

Spring Festival holiday, postponing the school-back day, and suspending all domestic and 

international group tours. 

 

Figure 1. Cumulative number of confirmed cases of 2019-nCoV as of February 6, 2020, in 

Wuhan, Hubei province excluding Wuhan, mainland China excluding Hubei province, and 

outside mainland China. 
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Unfortunately, many external factors bring a challenge to control virus spreading. First, it might 

be already late to stop the migration of infected cases to places outside Wuhan. All initial cases 

lived in Wuhan and many confirmed cases in other cities have traveled to Wuhan, suggesting 

that Wuhan is the center of 2019-nCoV outbreak. However, around 5 million Wuhan residents 

left Wuhan in January 2020 due to the Spring Festival (January 24, 2020). It is a Chinese 

tradition that people come back to hometown to celebrate the Spring Festival with their parents 

and visit relatives. It is very likely that a considerable number of infected cases have moved from 

Wuhan to other cities before the Spring Festival (Wu et al., 2020), although Wuhan government 

implemented border control on January 23. Second, because many infected cases have symptoms 

similar with the cold and flu, such as fever and cough, people may not be aware of their infection 

of 2019-nCoV, especially before the Chinese central government announced measures to the 

general public for preventing the transmission of disease on January 20, 2020. A study based on 

425 patients at the early stage of outbreak revealed that the time from infection to illness onset is 

5.2 days (Li et al., 2020). As a result, presymptomatic cases who have left Wuhan may not be 

isolated themselves from their family and relatives (Munster et al., 2020). It is highly possible 

that these infected cases spread the virus to their family members or relatives (Fuk-Woo Chan et 

al., 2020). Third, due to the sudden outbreak of virus, the preparation and resources for 

preventing virus transmission are limited. It was reported that the protective equipment in many 

hospitals in Wuhan was in short supply so that it is difficult to maintain strict personal hygiene. 

With the quick increase of infected cases, Wuhan and other cities in Hubei Province have large 

pressure to isolate and give medical treatment to infected people. All above factors can make 

preventing the spread of 2019-nCoV even more difficult than the severe acute respiratory 

syndrome (SARS), another coronavirus outbreak in China 17 years ago that caused more than 

8000 infections and 800 deaths. 

 

Projecting the epidemic trend of 2019-nCoV outbreak is critical for the decision makers to 

allocate resources and take appropriate actions to control virus transmission. Right after the 

outbreak, several studies have retrieved the epidemiological parameters and predicted the future 

situation (Nishiura et al., 2020; Read et al., 2020; Shen et al., 2020; Zhao et al., 2020). These 

studies used the reported cases at the early stage of outbreak and modelled epidemic dynamics in 

Wuhan or   nation-wide. The basic reproductive number (𝑅0) from these studies ranges from 

2.68 to 5.47. A recent study (Wu et al., 2020) used air passenger data and social medium data to 

forecast the spread of 2019-nCoV in Wuhan and other major Chinese cities. They estimated that 

75,815 individuals have been infected in Greater Wuhan as of January 25, 2020 and epidemics 

are already growing exponentially in major cities of China with a 1-2 weeks lag time behind 

Wuhan outbreak. Although these studies at the early stage of outbreak help us to understand 

some important epidemic information of 2019-nCoV, the fine-scale epidemic trend in all 

Chinese cities remains unknown, which is more helpful for allocating medical resources to 

achieve the optimal result for preventing disease spreading.  
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To model the fine-scale epidemic dynamics of all individual cities in mainland China, we 

proposed a spatially explicit approach. We first used mobile phone data to obtain the number of 

people that traveled from Wuhan to each individual city, then modified the classic 

epidemiological Susceptible - Infectious – Recovered (SIR) model to fit the dynamics of 2019-

nCoV at the city level and finally used this modified model to predict the trend under different 

scenarios. Particularly, our model considers each individual city with two groups of susceptible 

population, i.e., local residents and those from Wuhan, because they may have different 

transmission rate (𝛽). Parameters of our model were retrieved by training the model with the 

daily-confirmed cases at the city level and the calibrated model was then used to predict the trend 

in the next 30 days under three conditions: keeping the early-stage trend, successfully controlling 

the spread as SARS, and increasing person-to-person contacts during the transportation post to 

the Spring Festival. 

 

2. Data 

We collected the daily outbreak data of 2019-nCoV Pneumonia in 334 prefecture-level cities in 

mainland China from January 11 to February 2, 2020, including confirmed, dead and cured cases 

from an online platform reporting real-time statistics of 2019-nCoV 

(https://ncov.dxy.cn/ncovh5/view/pneumonia). These daily reported data were used to train and 

validate our epidemic model. We employed China Unicom mobile phone database 

(https://www.cubigdata.cn) to obtain the inter-city human mobility. China Unicom is one of 

three largest mobile service providers in China. It has 0.32 billion users. Considering 2019-nCoV 

originating from Wuhan and the initial cases were reported around January 1, 2020, we inferred 

the number of people who have Wuhan travel history during January 1-31, 2020 in each city 

based on the mobile phone dataset (Figure 2 and Appendix Table 1). In addition, Household 

Registered Population at 2017 year-end derived from census data was used to approximate the 

number of local residents in each city during 2020 Spring Festival (Appendix Table 1). 
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Figure 2. Population from Wuhan to other cities in mainland China during January 1-24, 2020 

 

3. Methodology 

3.1 Modification of SIR model 

Our proposed model stems from the SIR model, a classic approach to simulate epidemiological 

dynamics. The model comprises three variables: 𝑆  for the susceptible population, 𝐼  for the 

infectious, and 𝑅 for the recovered/removed. This model explicitly quantified the full cycle of 

diseases spreading in human-to-human. The above three variables change over time through the 

following differential equations (Equation 1).  

{
 
 

 
 

𝑑𝑆

𝑡
= −

𝛽𝑆𝐼

𝑁
𝑑𝐼

𝑡
=

𝛽𝑆𝐼

𝑁
− 𝛾𝐼

𝑑𝑅

𝑡
= 𝛾𝐼

                                                                  (1) 

 

In Equation (1), each variable was regarded as a function of time (t): 𝑆 = 𝑆(𝑡), 𝐼 = 𝐼(𝑡), 𝑅 =

𝑅(𝑡), and 𝑁  denoted the total population number (𝑁 = 𝑆 + 𝐼 + 𝑅); 𝛽  and 𝛾  denote the daily 

transmission rate and daily recovery rate respectively. Susceptible-Exposed-Infectious-

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.09.20021360doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.09.20021360


Recovered (SEIR) model is another widely used epidemic model that includes exposed 

population. A recent study found that the latent/exposed cases can also spread the disease (Rothe 

et al., 2020). Therefore, we treated exposed cases as infected cases in the classic SIR model 

rather than using SEIR model.  

 

We further modified the SIR structure based on the unique characteristics of the outbreak of 

2019-nCoV. First, in all cities other than Wuhan, the initial infectious cases are most likely 

imported from Wuhan. Second, many Wuhan residents moved to other cities due to the Spring 

Festival and this mobility was closed after the border control on January 23. Third, those people 

from Wuhan have low contacts with local residents because Chinese government required them 

to implement self-quarantine. Accordingly, in the modified SIR model, the susceptible variable 𝑆 

was divided into two groups: 𝑆1, the number of susceptible without Wuhan travel history, and 𝑆2, 

the number of susceptible traveling from Wuhan. These Wuhan-inbound groups (𝑆2), potentially 

carrying virus with higher transmission rate (𝛽2 ), differed from local residents (𝑆1 ) with 

relatively lower transmission rate (𝛽1) as Chinese government took measures to reduce the 

person-to-person contacts (𝛽2 ≥ 𝛽1). In our modified SIR model, recovered population I was 

extended to include those cured, died, and isolated in hospital because they cannot transmit the 

virus. The differentiate equations of our modified SIR model is as follows: 
𝑑𝑆1

𝑡
= −

𝛽1𝑆1𝐼

𝑁𝑜
𝑑𝑆2

𝑡
= −

𝛽2𝑆1𝐼

𝑁𝑤
𝑑𝐼

𝑡
= (

𝛽1𝑆1

𝑁𝑜
+
𝛽2𝑆1

𝑁𝑤
− 𝛾) 𝐼

𝑑𝑅

𝑡
= 𝛾𝐼

                                                   (2) 

Where 𝑁𝑜  is the total local population derived from the census data, and 𝑁𝑤 represent the total 

inflow population from Wuhan to each city during January 1 to January 24, estimated from 

mobile phone data provided by China Unicom. 

 

In the modified SIR model, four variables need to be initialized: (1) initial number of infectious 

𝐼0, treated as a parameter to be estimated (see section 3.2); (2) initial number of local susceptible 

𝑆01, equal to the total number of the local population of the City 𝑆01 = 𝑁𝑜; (3) initial number of 

susceptible traveling from Wuhan 𝑆02, equal to the population from Wuhan excluding the initial 

infectious from Wuhan 𝑆02 = 𝑁𝑤 − 𝐼0 ; and (4)  initial number of removed 𝑅0 , assuming no 

recovered, hospitalized, or death at initial state 𝑅0 = 0. 

 

3.2 Estimation of model parameters 

Our modified SIR model has three important parameters: transmission rate 𝛽1  among local 

residents, 𝛽2 among people from Wuhan, and recovery rate 𝛾. For 𝛾, we assume that once an 

infected individual is hospitalized, the person will be segregated and therefore no longer 

infectious. According to a recent study using the first 425 patients (Li et al., 2020), the mean 
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incubation period of 2019-nCoV is 5.2 days, and the mean duration from illness onset to hospital 

admission is 9.1 days. We assume that the incubation period and duration from illness onset to 

first medical visit is similar with these 425 infected cases. Therefore, the estimated infectious 

period is 5.2 + 9.1 = 14.3 days and 𝛾 equals 1/14.3 = 0.0699. 

 

For parameters 𝛽1 and 𝛽2, we used the daily cumulative confirmed cases at early outbreak stage 

(up to February 1, 2020) to retrieve their optimal values, because early-stage dynamics is less 

affected by prevention interventions. We first estimated the optimal value of 𝛽2 using reported 

data of Wuhan since the epidemic model for Wuhan only has parameter 𝛽2. Then, the estimated 

𝛽2 was used as a prior parameter for the estimation of 𝛽1 for individual prefecture-level cities. 

The Nelder-Mead algorithm (Nelder and Mead, 1965) was employed by this study to estimate 

parameters through minimizing the sum of squared differences between the simulated and actual 

daily cumulative confirmed cases. Since the epidemic model is highly sensitive to the initial 

infectious number, and the reported confirmed cases of the first few days may be much fewer 

than actual cases because the public has just raised awareness of the virus. Therefore, using the 

number of reported cases on the first onset day as initial infectious number in the model can 

cause large uncertainty for the estimation of 𝛽1 and 𝛽2. To reduce the impact of the initial inputs, 

we did not use the reported data of the first few days and treated the initial infectious number 𝐼0 

as another parameter to be estimated together with 𝛽1 and 𝛽2. Specifically, estimation of 𝛽2 used 

daily cumulative confirmed cases of Wuhan from January 17 to February 1, 2020 and assumed 

January 1, 2020 as the start point. Estimation of 𝛽1  used reported data from January 25 to 

February 1, 2020 and assumed January 20 as the start point when massive inter-city mobility 

happened before the Spring Festival. Comparison between the result of model simulation using 

the estimated parameters and the reported cases was used to evaluate the goodness of model 

fitting (see some examples in Figure 3).  

 
Figure 3. Comparison between result of model fitting and reported confirmed cases of (a) Wuhan 

(𝛽2 = 0.303), (b) Yichang (𝛽1 = 0.221) and (c) Shenzhen (𝛽1 = 0.022) 

 

To examine the goodness of model fitting, we calculated R-squared and root mean square error 

(RMSE) between the fitting result and confirmed cases for each city, the median value of R-

squared and RMSE is 0.89 and 1.39 respectively, indicating our model can well fit the early-

stage spreading trend in majority of cities. However, for some cities with small number of 
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confirmed cases or with data errors, the fitted model is unsatisfactory. Therefore, for these cities 

with R-squared less than 0.70, the 𝛽1 value of the city was treated as failure of estimation. 63 out 

of 237 cities were eliminated from parameter estimation in this process. Abnormally high 𝛽1 

estimation (> 3rd quantile+1.5 IQR) of four cities outside Hubei province was substituted by 90% 

quantile values of all cities. In addition, to ensure enough data points for fitting the model, 𝛽1 

was only estimated for cities with daily reported confirmed cases of 5 consecutive days or longer. 

For cities cannot estimate 𝛽1 directly from report data, their 𝛽1 values were spatially interpolated 

by the inverse distance weighted interpolation from their neighboring cities (i.e., cities with 

common borders), or assigned to the lower quartile of 𝛽1 from all cities if their neighboring cities 

also do not have a valid 𝛽1 estimation. 

 

To test the accuracy of our proposed model, we used the reported confirmed cases on February 2 

to validate our simulation result. We compared the differences between both the cumulative and 

daily increase of the predicted infected cases of February 2 with the reported confirmed cases of 

the same day. The coefficient of determination, R-squared and the RMSE were calculated to 

examine the model accuracy. To demonstrate the effectiveness of our modified SIR model, the 

results was also compared with the prediction from the classic SIR model that uses nationwide 

uniform parameters. 

 

3.3 Prediction of different scenarios  

The epidemic trend is the joint effect of virus transmissibility and outbreak control (Anderson et 

al., 2004). The control mechanism of diagnosis and isolation was successfully applied in many 

megacities during SARS period and proved to contain the spread of the virus (Chowell et al., 

2003). Beneficial from the SARS experience, the government at all levels have responded 

quickly to limit the movement of people at the beginning of outbreak period. However, different 

future scenarios of virus spread may occur due to the influence of other factors such as the 

massive transportation post to the Spring Festival and the following work resuming. Meanwhile, 

the epidemiologic feature of novel coronavirus, a shorter double period and infectious incubation 

period compared with SARS, adds to the uncertainty (Li et al., 2020). Hence, we estimated the 

different epidemic trends in a 30-day period (up to March 2, 2020) through the model parameter 

manipulation, namely, transmission rate 𝛽 to reveal the effectiveness of government control and 

removal rate 𝛾 to represent the promptness of medical treatment. Three scenarios were designed, 

and their parameter’s temporal variations of one example were shown in Figure 4. The 

adjustment of model parameters starts from February 2, 2020. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.09.20021360doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.09.20021360


 

Figure 4. An example of model parameters’ temporal variation under three scenarios: (a) keeping 

the trend of early stage, (b) controlling the spread as successfully as SARS, and (c) increasing 

person-to-person contacts due to work/school resuming after Spring Festival 

 

Scenario 1 denoted the pessimistic view about the virus spread trend. The stable value of 𝛽 and 𝛾 

revealed the failure of outbreak control and implied the free propagation of virus, which is 

similar with the exponential increase of original SIR model. On the contrary, scenario 2 

estimated the future trend under the successful control, with continuously decreasing 

transmissibility and increasing medical care capacity. According to the history of controlling 

SARS 17 years ago, we assumed that this novel coronavirus could be fully controlled within a 

month, which would push down the transmissibility of each city to very low levels (e.g., 𝛽 

equals to 0.01) (Lai, 2005). The exponential function was used to describe the attenuation of 𝛽 in 

our study (Fisman et al., 2014), which has been employed to simulate the control process of 

other infectious disease such as the MERS-coronavirus. For those cities that have two susceptible 

groups, their 𝛽1 and 𝛽2 values would decrease concurrently. The change of 𝛾 value illustrated 

more available hospital beds in the future so that the average diagnostic isolation time reduced 

from 14.3 to 9.8 days. In scenario 3, the interference of work/school resuming was considered, so 

a short rebound was introduced to the transmission rate 𝛽 (i.e. rate of February 10-14 gradually 

increases to that of February 5). The 𝛾 in scenario 3 would keep the same increasing trend as 

scenario 2.  

 

4. Results 

4.1 Results of parameter estimation 

Four parameters were estimated in our modified SIR model, namely transmission rates 𝛽1 and 𝛽2, 

removal rate 𝛾 , and initial infectious population 𝐼0 . As aforementioned in section 3.2, we 

estimated the transmission rate 𝛽2 and the recovery rate 𝛾 to be 0.303 and 0.0699 respectively, 

and the transmission rate 𝛽1 and initial infectious population 𝐼0 vary from city to city (Appendix 

Table 2). Figure 5 (a) illustrated estimation results of 𝛽1 in cities with sufficient daily reported 
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confirmed cases (namely direct estimation). 𝛽1 values of other cities without direct estimation 

were spatially interpolated (Figure 5 (b)). As the transmission rate among local residents in each 

city, 𝛽1 reflects the intensity of control measures adopted by each local government, as well as 

the awareness of citizens to take protective measures. For example, 𝛽1 in megacities such as 

Beijing, Shanghai, Guangzhou and Shenzhen are surprisingly low considering their intensive 

traffic and population mobility, which may attribute to higher health literacy of their citizens 

(Shen et al., 2015). Similar to the estimation process of 𝛽1 , we estimated initial infectious 

population 𝐼0 by employing the direct estimation and interpolation, results are shown in Figure 5 

(c) and (d) respectively. It shows that 𝐼0 is highly spatially clustered, which is similar to the 

spatial distribution of confirmed cases. Cities with higher 𝐼0 are mainly concentrated in eastern 

China, especially in Hubei Province and its surrounding areas, Pearl and Yangtze River delta 

region, as well as highly populated cities such as Beijing and Chongqing. These places may 

import many infected cases from Wuhan before Spring Festival (Wu et al., 2020). 

 

Figure 5. Results of parameter estimation: 𝛽1 (a) and 𝐼0 (c) of cities estimated using daily 

confirmed cases; 𝛽1 (b) and 𝐼0 (d) of other cities spatially interpolated. 

4.2 Results of model validation 

The modified SIR model with estimated parameters of each individual city was used to predict 

the number of cumulative infected cases (including removed cases) and the number of new 

infected cases on February 2, 2020. The predicted values by the modified SIR model well 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.09.20021360doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.09.20021360


matched the reported cumulative infected cases (R-squared: 0.99, RMSE: 27.34, P < 0.0001, 

Figure 6.a). The capacity of the modified SIR model for predicting daily increase of new infected 

cases is also acceptable (R-squared: 0.94, RMSE: 18.24, P < 0.0001, Figure 6.b). The fitted 

regression line is close to the 1:1 reference line in Figures 6 (a) and (b), indicating no bias in 

prediction. To demonstrate the effectiveness of our modified SIR model, the results was 

compared with the prediction from the classic SIR model that uses nationwide uniform 

parameters (𝛽= 0.332, 𝛾=0.0699) (Figures 6.c and d). Compared with the modified SIR model, 

the predicted values by the classic SIR model does not match very well with the cumulative 

infected cases (R-squared: 0.77, RMSE: 158.73, P < 0.0001, Figure 6.c) or the daily new infected 

cases (R-squared: 0.69, RMSE: 40.18, P < 0.0001, Figure 6.d). The predicted values by the 

classic SIR model significantly overestimated the infected number than the reported cases, where 

the fitted regression line is clearly below the 1:1 reference line. 

 

Figure 6. Model validation of the modified SIR model (cumulative case (a) and daily new case 

(b)) and classic SIR model (cumulative case (c) and daily new case (d)) based on data of 

February 2, 2020. The solid lines represent the fitted linear regression curve and dashed lines 

represent 1:1 lines for reference. 
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4.3 Three scenarios of epidemic dynamics 

We predicted changes of infected cases and removed cases of each city up to March 2, 2020 

under three different scenarios (scenario 1 - keeping the trend; scenario 2 - controlling the 

disease as successfully as SARS in 2003; and scenario 3 - increasing person-to-person contacts 

due to work/school resuming). Our prediction shows that the whole mainland China will have 

10,529,530, 148,137, and 411,082 people infected up to March 2, 2020 under the above three 

scenarios respectively. To provide an intuitive picture about epidemic dynamics in different 

scenarios, we showed in Figure 7 the number of active infections (S variable in our model, 

Appendix Table 3) in each city on February 15 and March 2 respectively. The infected people 

will mainly distribute in the central and eastern provinces, the number of western cities at a 

relatively low level under all scenarios. Different scenarios lead to different spatial and temporal 

changes. A significant increase between February 15 and March 2 is observed in nearly all cities 

under scenario 1, especially for Hubei and adjacent provinces (Figures 7.a and d). In scenario 2, 

active infected cases in many cities will be lower than 100 by March 2, although the number of 

infected people in Hubei province is still quite high (Figure 7.b and e). In scenario 3, if the 

government does not restrict increasing transportation post to the Spring Festival holiday, the 

cities close to Wuhan will face a severe situation that the active infections will be over 5000 on 

March 2 (Figure 7.c and f). Other regions such as the Pearl and Yangtze River delta will also be 

influenced by the increasing person-to-person contact.  

 

Figure 7. Mapping of predicted number of infected people on February 15: (a) scenario 1, (b) 

scenario 2, (c) scenario 3 and March 2: (d) scenario 1, (e) scenario 2, and (f) scenario 3 
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To better understand the specific attributes of epidemic dynamics under different scenarios, we 

investigated the temporal changes of active infections across all cities in mainland China. In 

Figure 8, we show the results in provinces with large number of confirmed cases, first-tier cities, 

and cities within Wuhan one-hour economic circle. If there is no reduction in transmissibility 

(scenario 1), the active infections in Wuhan will grow exponentially during the whole period of 

prediction, while in other provinces and cities the epidemic peak will emerge in late February. 

With strict restriction on the movement of people and isolation (scenario 2), in all these 

provinces and cities, the active infections will decrease around middle February. The comparison 

between results of scenario 1 and 2 demonstrates the urgency and effectiveness of city-level 

quarantine to Hubei province. In scenario 3 where transmissibility rebounds after the public 

holiday in all cities, the peak of active infections will postpone ten days and the magnitude will 

increase by about 50% compared with scenario 2. Our simulation suggested that strict quarantine 

of inner- and inter-city population movement during February would have a significant effect on 

the suppression of virus spreading. 

 

Figure 8. Temporal change of active infections in representative provinces and cities based on 

the modified SIR model 
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Another critical attribute of epidemic dynamics is the net daily increase of infections, i.e., the 

difference between new infections and removal in one day. Figure 9 shows the temporal changes 

of net daily increase of infections in three scenarios. Among all three scenarios, Hubei provinces 

will contribute the majority of increments in mainland China. Under different scenarios, the peak 

of net daily increase of infections emerges at different time. With no strict restriction (scenario 1), 

the peak point was not observed during the prediction period. The peak point will appear around 

February 10 with strict restriction (scenario 2), but it will shift to middle February or later with 

work/school resuming (scenario 3).  

 

 

Figure 9. Net daily increase of infections in Hubei and other provinces under three scenarios 

 

We consider the net daily increase of infections lower than one case as the signal of effective 

control of coronavirus outbreak. Among all 333 cities in mainland China, our modelling shows 

that 67%, 100%, and 91% will successfully control the disease by March 2 under the three 

scenarios respectively (Appendix Table 3). For those 17 cities within Hubei province, 0%, 100%, 

and 53% will control the disease by March 2 under the three scenarios respectively. We mapped 

the date when a city successfully controls the coronavirus outbreak in Figure 10. The results 

show that some western cities will have no possibility of virus outbreak, as the predicted net 

daily increase is always lower than one in all scenarios. The spatial pattern of successful control 

date is similar across three scenarios, a distinguished gradient decrease from central region 

(Hubei, Henan, Hunan and Chongqing) to the peripheral regions. The urban agglomeration along 

the coastline would have late dates of successful control, especially in scenario 3 with 

work/school resuming after the Spring Festival. 
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Figure 10. Dates when the coronavirus outbreak will be controlled in each city of mainland 

China under scenarios: (a) keeping the trend of early stage, (b) controlling the spread as 

successfully as SARS, and (c) increasing person-to-person contacts due to work/school resuming 

after Spring Festival 

 

 

5. Discussion 

In this study, we modeled the epidemic trend of 2019-nCoV for each individual city in mainland 

China and used the model to predict the future scenarios under different conditions. Compared 

with other recent modeling studies, our study has some strength. First, the unique characteristics 

of the novel coronavirus were taken into account, and a modified version of the original SIR 

epidemic model was established for each individual city. Considering that the new coronavirus 

originating from Wuhan and the majority of the local infected patients outside Wuhan had 

Wuhan travel history before the Spring Festival, we extended the SIR model to make it suitable 

for the transmission characteristics of the novel coronavirus in mainland China. The proposed 

model estimated the transmission rate 𝛽 for the Wuhan inflows and local residents separately to 

describe the spreading pattern of the coronavirus in a more realistic way. Second, our proposed 

spatially explicit model is able to obtain fine scale prediction result. Different cities have 

different transmission rates due to their own conditions (for instance, population density and 

human mobility characteristics). If the transmission rate in national scale is used to model the 

epidemics of different cities (Wu et al., 2020), the prediction of epidemic trend of all major cities 

is similar to Wuhan (see Figure 4 in Wu et al., 2020). In this study, different transmission rates of 

different cities were estimated using the city-level migration data and reported confirmed cases, 

then the epidemic prediction results at the city scale were obtained to provide references for 

undertaking more balanced and efficient control measures.  

 

Our predictions of three future scenarios, namely failure of outbreak control, successful control, 

and considering work/school resuming, provide information for decision makers to allocate 

resources for stopping the disease spread. Generally speaking, densely populated cities and cities 
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in central China will face severe pressures to control the epidemic, since the increase of infected 

people is inevitable in all three scenarios in the near future. By comparing predictions of the 

three scenarios, it is obvious that reducing the transmissibility is a critical approach to decline the 

net daily increase and controlling the magnitude of epidemics. Fortunately, the latest number of 

confirmed diagnoses (Figure 1) is lower than that of free propagation of the virus assumed in 

scenario 1, indicating current control measures implemented by Chinese government are 

effective, including controlling traffic between Wuhan and other regions, isolating suspected 

patients, canceling mass gatherings, and requiring people to implement protective measures. 

However, once the Spring Festival travel rush appears recently as scenario 3 designed (as most 

provinces plan to resume work on February 9), it will inevitably cause considerable growth in 

transmissibility and further re-increase of epidemic. In addition, current insufficient supply of 

protective equipment may exacerbate this situation. Therefore, public health interventions should 

be performed continuously to obtain the best results of epidemic control. The following measures 

are recommended to implement continuously in the near future, such as, postponing work/school 

resuming, arranging work-from-home, instructing enterprises to implement epidemic prevention 

measures. Essentially, all measures are for reducing population mobility and person-to-person 

contact, and there is no panacea for all conditions, hence interventions in different regions should 

be adapted according to local epidemics. 

 

Our modeling work has several limitations. First, due to the limited prior knowledge for this 

sudden Wuhan 2019-nCoV outbreak, the infection rate and recovery rate in this study are 

regarded as the same for different age groups, which may result in errors of predication for cities 

with different age structures. Second, the model parameters were estimated using the reported 

confirmed cases that may be lower than the actual number of infections, so the parameter 

estimation may not represent the real situation. Third, besides the transmission between Wuhan 

and other cities, we do not consider other inter-city transmissions. Although the Chinese 

government strictly controlled the traffic between cities, the inter-city transmission may 

contribute to the epidemic dynamics in the future days, especially during days of work and 

school resuming.  

 

Author Contributions: XZ designed the experiments. PJ, ZQ, and JY collected and processed 

data. AZ and SX analyzed data. All authors interpreted the results and wrote the manuscript. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

 

Reference 

Anderson, R.M., Fraser, C., Ghani, A.C., Donnelly, C.A., Riley, S., Ferguson, N.M., Leung, 

G.M., Lam, T.H., Hedley, A.J., 2004. Epidemiology, transmission dynamics and control of 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.09.20021360doi: medRxiv preprint 

file:///C:/Program%20Files/æ��é��/Dict/8.5.3.0/resultui/html/index.html#/javascript:;
https://doi.org/10.1101/2020.02.09.20021360


SARS: The 2002-2003 epidemic. Philos. Trans. R. Soc. B Biol. Sci. 359, 1091–1105. 

https://doi.org/10.1098/rstb.2004.1490 

Chen, Y., Liu, Q., Guo, D., 2020. Coronaviruses: genome structure, replication, and pathogenesis. 

J. Med. Virol. https://doi.org/10.1002/jmv.25681 

Chowell, G., Fenimore, P.W., Castillo-Garsow, M.A., Castillo-Chavez, C., 2003. SARS 

outbreaks in Ontario, Hong Kong and Singapore: The role of diagnosis and isolation as a 

control mechanism. J. Theor. Biol. 224, 1–8. https://doi.org/10.1016/S0022-5193(03)00228-

5 

Fisman, D., Rivers, C., Lofgren, E., Majumder, M.S., 2014. Estimation of MERS-Coronavirus 

Reproductive Number and Case Fatality Rate for the Spring 2014 Saudi Arabia Outbreak: 

Insights from Publicly Available Data. PLoS Curr. 1–25. 

https://doi.org/10.1371/currents.outbreaks.98d2f8f3382d84f390736cd5f5fe133c 

Fuk-Woo Chan, J., Yuan, S., Kok, K.-H., Kai-Wang To, K., Chu, H., Yang, J., Xing, F., Liu, J., 

Chik-Yan Yip, C., Wing-Shan Poon, R., Tsoi, H.-W., Kam-Fai Lo, S., Chan, K.-H., Kwok-

Man Poon, V., Chan, W.-M., Daniel Ip, J., Cai, J.-P., Chi-Chung Cheng, V., Chen, H., Kim-

Ming Hui, C., Yuen, K.-Y., 2020. A familial cluster of pneumonia associated with the 2019 

novel coronavirus indicating person-to-person transmission: a study of a family cluster. 

Lancet. https://doi.org/10.1016/S0140-6736(20)30154-9 

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., 2020. 

Clinical features of patients infected with 2019 novel coronavirus in Wuhan , China. Lancet. 

https://doi.org/10.1016/S0140-6736(20)30183-5 

Hui, D.S., I Azhar, E., Madani, T.A., Ntoumi, F., Kock, R., Dar, O., Ippolito, G., Mchugh, T.D., 

Memish, Z.A., Drosten, C., Zumla, A., Petersen, E., 2020. The continuing 2019-nCoV 

epidemic threat of novel coronaviruses to global health — The latest 2019 novel 

coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 

https://doi.org/10.1016/j.ijid.2020.01.009 

Lai, D., 2005. Monitoring the SARS Epidemic in China: A Time Series Analysis. J. Data Sci. 3, 

279–293. https://doi.org/10.6339/JDS.2005.03(3).229 

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K.S.M., Lau, E.H.Y., 

Wong, J.Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., 

Tu, W., Chen, C., Jin, L., Yang, R., Wang, Q., Zhou, S., Wang, R., Liu, H., Luo, Y., Liu, Y., 

Shao, G., Li, H., Tao, Z., Yang, Y., Deng, Z., Liu, B., Ma, Z., Zhang, Y., Shi, G., Lam, 

T.T.Y., Wu, J.T., Gao, G.F., Cowling, B.J., Yang, B., Leung, G.M., Feng, Z., 2020. Early 

Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. 

Engl. J. Med. 0, 1–9. https://doi.org/10.1056/NEJMoa2001316 

Munster, V.J., Koopmans, M., van Doremalen, N., van Riel, D., de Wit, E., 2020. A Novel 

Coronavirus Emerging in China — Key Questions for Impact Assessment. N. Engl. J. Med. 

https://doi.org/10.1056/NEJMp2000929 

Nelder, J.A., Mead, R., 1965. A Simplex Method for Function Minimization. Comput. J. 7, 308–

313. https://doi.org/10.1093/comjnl/7.4.308 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.09.20021360doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.09.20021360


Nishiura, Jung, Linton, Kinoshita, Yang, Hayashi, Kobayashi, Yuan, Akhmetzhanov, 2020. The 

Extent of Transmission of Novel Coronavirus in Wuhan, China, 2020. J. Clin. Med. 

https://doi.org/10.3390/jcm9020330 

Perlman, S., 2020. Another Decade, Another Coronavirus. N. Engl. J. Med. 

https://doi.org/10.1056/NEJMe2001126 

Read, J.M., Bridgen, J.R., Cummings, D.A., Ho, A., Jewell, C.P., 2020. Novel coronavirus 2019-

nCoV: early estimation of epidemiological parameters and epidemic predictions. medRxiv. 

https://doi.org/10.1101/2020.01.23.20018549 

Riou, J., Althaus, C.L., 2020. Pattern of early human-to-human transmission of Wuhan 2019-

nCoV. bioRxiv. https://doi.org/10.1101/2020.01.23.917351 

Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., Zimmer, T., Thiel, 

V., Janke, C., Guggemos, W., Seilmaier, M., Drosten, C., Vollmar, P., Zwirglmaier, K., 

Zange, S., Wölfel, R., Hoelscher, M., 2020. Transmission of 2019-nCoV Infection from an 

Asymptomatic Contact in Germany. N. Engl. J. Med. 

https://doi.org/10.1056/NEJMc2001468 

Shen, M., Hu, M., Liu, S., Chang, Y., Sun, Z., 2015. Assessment of the Chinese Resident Health 

Literacy Scale in a population-based sample in South China. BMC Public Health 15, 1–11. 

https://doi.org/10.1186/s12889-015-1958-0 

Shen, M., Peng, Z., Xiao, Y., Zhang, L., 2020. Modelling the epidemic trend of the 2019 novel 

coronavirus outbreak in China. bioRxiv. https://doi.org/10.1101/2020.01.23.916726 

Wang, C., Horby, P.W., Hayden, F.G., Gao, G.F., 2020. A novel coronavirus outbreak of global 

health concern. Lancet. https://doi.org/10.1016/S0140-6736(20)30185-9 

Wu, J.T., Leung, K., Leung, G.M., 2020. Nowcasting and forecasting the potential domestic and 

international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling 

study. Lancet. https://doi.org/10.1016/S0140-6736(20)30260-9 

Zhao, S., Ran, J., MUSA, S.S., Yang, G., Lou, Y., Gao, D., Yang, L., He, D., 2020. Preliminary 

estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, 

from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. bioRxiv. 

https://doi.org/10.1101/2020.01.23.916395 

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., 

Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F., Tan, W., 2020. A Novel 

Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 

https://doi.org/10.1056/NEJMoa2001017 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.09.20021360doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.09.20021360

