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Abstract: Rapid assessment of the transmission potential of an emerging or re-
emerging pathogen is a cornerstone of public health response. A simple 
approach is shown for using the number of disease introductions and secondary 
cases to determine whether the upper bound of the reproduction number 
exceeds the critical value of one. 

 
Objective: 
We present a simple analysis for monitoring the upper bound of estimates for the reproduction 
number, R, in settings where there are very few cases of disease. We focus particular attention 
on the threshold at which endemic transmission appears possible. This is relevant for deciding 
whether observed transmission events are sufficiently infrequent so that disease spread is self-
limiting. 
 
Background: 
Subcritical transmission is characterized by R less than one. This signifies that on average, 
each new case causes less than one infection and so disease spread is self-limited. In contrast, 
supercritical transmission with R greater than one leads to the potential for endemic or epidemic 
transmission. 
 
As the COVID-19 pandemic has illustrated, the classification of disease spread as being 
subcritical or supercritical has significant public health implications for characterizing the risk of 
emerging infections.1 When control interventions are enacted for a disease with supercritical 
transmission, identifying if and when transmission becomes subcritical is an important indicator 
of the effectiveness of public health interventions. In addition, this classification is a useful 
characterization of the risk of re-emergence of previously controlled disease that may be seen 
with novel strains of a pathogen or a change in vaccination effectiveness.   
 
For diseases in which spread is on the cusp of the subcritical versus supercritical boundary, 
epidemiologic investigations typically include an assessment of whether a new case is a 
‘primary case’ due to introduction of disease into a population of interest, or a ‘secondary case’ 
due to spread of disease within that population.2 The number of disease introductions and 
subsequent transmissions can be utilized to infer a range for the reproduction number. If the 
upper confidence interval of this range is below one, subcritical transmission is likely. 
 
Methods and Findings: 
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Our method draws from prior work that showed that the number of cases caused by each 
infection is effectively modelled via a negative binomial offspring distribution.3 This approach 
incorporates both the strength and heterogeneity of disease transmission. With this model, the 
maximum likelihood estimation of the reproduction number, R, is simply the proportion of cases 
due to community transmission (Figure 1A).2,4  The upper bound of the confidence interval for 
the R estimate can also be determined with this minimal data, provided that an assumption is 
made for the amount of heterogeneity in disease transmission, as quantified by the dispersion 
parameter, k (Figure 1B). The smaller k is, the more transmission heterogeneity there is and the 
larger the upper bound of the confidence interval. To minimize the possibility of underestimating 
the risk of supercritical transmission, we use k = 0.2 as our default value, consistent with the 
lower values of dispersion seen in the literature.3 As the number of observed cases increases 
for a fixed proportion of secondary cases, the maximum likelihood estimate of R remains 
constant. Because the precision of inference improves, the upper bound of the confidence 
interval decreases. For example, if there are 5 observed transmissions with 10 introductions or 
10 observed transmissions with 20 introductions, the maximum likelihood estimate of R is 0.33. 
However, the upper bound of the 95% confidence interval has a supercritical value 1.62 in the 
former scenario and a subcritical value of 0.98 in the latter scenario. 
 

 
 

Figure 1: Evaluating the plausibility of subcritical transmission. A) The 
maximum likelihood estimate for the reproduction number, R, as a function of the 
number of disease introductions and linked transmissions. The black line 
corresponds to the critical value of R = 1 that distinguishes self-limited, subcritical 
transmission from sustained, supercritical transmission. These particular results 
are independent of the dispersion parameter which quantifies the degree of 
transmission heterogeneity. B) The upper bound of the 95% confidence interval 
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for the reproduction number as a function of the number of disease introductions 
and linked transmissions. The colors correspond to the same legend as in panel 
A. A dispersion parameter of 0.2 is assumed, which corresponds to a high 
possibility of superspreading activity. C) The maximum number of transmissions 
that can be observed without concern that R has exceeded a predetermined 
threshold. The legend reflects the predetermined threshold, by indicating the 
maximum allowable value for the upper bound of the 95% confidence interval for 
R. A dispersion parameter of 0.2 is assumed. D)  The number of secondary 
cases that can be observed before endemic transmission is possible (i.e. upper 
bound of 95% confidence of R is greater than 1). The plot shows the dependence 
on several values of the dispersion parameter as indicated by the legend. The 
solid curve corresponds to the results seen in panels B and C. Please see the 
main text and supplement for methodological details. An interactive display of 
results can be accessed at 
https://mindscape.shinyapps.io/Estimating_the_upper_limit_of_R/ 
 

From a public health perspective, it may be useful to model how many secondary cases can be 
observed before endemic transmission is statistically possible (Figure 1C). The threshold of 
secondary cases that can occur before endemic transmission is possible depends on the 
dispersion parameter, because higher values of the dispersion parameter narrow the confidence 
interval of R estimation (Figure 1D).2 In contrast to our default choice of 0.2 for the dispersion 
parameter which assumes superspreading is possible, many models are based on the 
homogeneous susceptible-infected-recovered framework that has a dispersion of one and thus 
predicts a much higher allowable number of transmission events before supercritical 
transmission is a concern. For example, when there are twenty disease introductions, the 
thresholds of secondary cases for supercritical transmission are 11 and 43 for dispersion values 
of 0.2 and 1, respectively. The value of our method in assessing the risk of endemic spread is 
illustrated for COVID-19 transmission in Hawaii in the early stages of the pandemic (Table 2). 
 

 Total cases Imported cases Community 
acquired 

Upper bound for 
the 95% 
confidence interval 
for R 

March 389 250 134 0.46 

April 168 15 145 1.35 

May 40 10 30 1.76 

June 301 24 226 1.24 

 
Table 1: Assessing the potential for supercritical transmission in Hawaii. 
Early in the pandemic, when lockdowns were strictest, the potential for persistent 
disease spread appeared to be well controlled.  Although the total number of 
cases decreased in April and May, the concern for supercritical spread 
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increased. The relatively high proportion of cases due to community spread in 
May foreshadows the explosive increase in cases seen in June.  Case counts 
were obtained from Hawaii’s Department of Health.5 The sum of imported and 
community-acquired cases does not always equal the total cases because some 
cases were categorized as having an unknown source. 
 

 
One caveat of our approach is that imperfect observation of cases can bias results.4,6,7 To 
obtain a sense of how imperfect observation affects results, we simulated observed 
transmission events for four observation scenarios and determined the corresponding results for 
inference of R (Figure 2, and Table 2). The scenarios are each represented by a passive and 
active observation probability.2,6 The passive observation probability reflects the chance that any 
case will be observed without enhanced surveillance. The active observation probability is the 
probability that a case will be observed only because of contact tracing resulting from passive 
observation of a linked case. The four scenarios we consider are passive observation only, 
partial contact tracing, perfect contact tracing, and perfect observation. 
 

 
 

Figure 2: Evaluating the impact of imperfect observation. The top panel 
shows the probability distributions for the number of observed transmission 
events for different observation scenarios. The observation scenarios are 
determined by the passive and active observation probabilities, as indicated by 
Table 2. Each histogram represents results when thirty observed transmission 
chains are simulated. A reproduction number of 0.5 and a dispersion parameter 
of 0.2 is assumed. Results are based on 1,000 simulations. The middle panel 
shows the distributions for the maximum likelihood estimate of R, based on the 
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simulations generated for the top panel. The bottom panel shows the 
corresponding distributions for the upper value of the 95% confidence interval for 
the inferred value of R. Please see the main text and supplement for 
methodological details. 
 

 

Observation 
scenario 

Passive : active 
observation 
probabilities 

Number of 
observed 
transmissions 

Maximum 
likelihood 
value of R 

Upper bound 
for the 95% 
confidence 
interval for R 

Fraction of 
simulations 
where 
supercritical 
transmission 
appears 
plausible 

Passive 
observation 
only 

0.5 : 0.0 19 (4 - 52) 0.39 
(0.12 - 0.63) 

0.87 
(0.39 - 1.14) 

25% 

Partial contact 
tracing 

0.5 : 0.5 31 (8 - 82) 0.51 
(0.21 - 0.73) 

1.02 
(0.58 - 1.20) 

57% 

Perfect contact 
tracing 

0.5 : 1.0 43 (13-115) 0.59 
(0.30 - 0.79) 

1.10 
(0.74 - 1.21) 

77% 

Perfect 
observation 

1.0 : 1.0 25 (5 - 82) 0.46  
(0.14 - 0.73) 

0.96 
(0.45 - 1.20) 

44% 

 
Table 2: Evaluating the impact of imperfect observation. Statistics for the 
distributions seen in Figure 2.  The median values for each distribution are 
shown. Numbers in parentheses are the 2.5th and 97.5th quantiles for the 
distributions. 

 
We find that when compared to perfect observation, passive observation decreases the 
observed number of transmissions and leads to an underestimation of the risk of supercritical 
transmission. In contrast, imperfect observation with perfect contact tracing of passively 
observed cases has the opposite effect. This is because passively observed cases are more 
likely to be in large transmission chains and thus contact tracing biases the observed 
transmission chain size upwards.2,6 Thus, if contact tracing is robust then the bias introduced 
will overestimate the plausibility of subcritical transmission. 
 
Discussion: 
While the reproduction number is a useful indicator for the transmissibility of a disease, it often 
varies amongst subpopulations and over time. Variation in climate, population density, 
demographics, social interactions, health care access, and public health interventions can all 
affect transmission. The approach we have presented for evaluating if the observed number of 
disease introductions and transmission events is consistent with supercritical transmission is 
particularly applicable for monitoring disease in well-defined populations such as 
geographically-restricted regions, hospitals, prisons, or dormitories. The COVID-19 pandemic 
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has been the main driver for development of this approach, as public health agencies wrestle 
with knowing when local control is achieved for specific communities and working environments. 
However, this methodological approach is also applicable to other diseases exhibiting human-
to-human spread. 
 
Importantly, this approach assumes that none of the observed cases remain infectious and that 
there are no patients who are already infected but are pre-symptomatic. This may be a 
reasonable assumption if transmission primarily occurs when patients are symptomatic and if 
symptomatic patients are quickly quarantined. However, until there has been a substantial gap 
in time (at least one serial interval) since a patient is quarantined, this assumption requires 
judicious consideration. 
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