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Abstract 

Intro: Evidence from neuroimaging has implicated abnormal cerebral cortical patterns 

in schizophrenia. Application of machine learning techniques is required for 

identifying structural signature reflecting neurobiological substrates of schizophrenia 

at the individual level. We aimed to detect and develop a method for potential marker 

to identify schizophrenia via the features of cerebral cortex using high-resolution 

magnetic resonance imaging (MRI). 

Method: In this study, cortical features were measured, including volumetric (cortical 

thickness, surface area, and gray matter volume) and geometric (mean curvature, 

metric distortion, and sulcal depth) features. Patients with first-episode schizophrenia 

(n = 52) and healthy controls (n = 66) were included from the Department of 

Psychiatry at Xijing Hospital. Multivariate computation was used to examine the 

abnormalities of cortical features in schizophrenia. Features were selected by least 

absolute shrinkage and selection operator (LASSO) method. The diagnostic capacity 

of multi-dimensional neuroanatomical patterns-based classification was evaluated 

based on diagnostic tests. 

Results: Mean curvature (left insula and left inferior frontal gyrus), cortical thickness 

(left fusiform gyrus), and metric distortion (left cuneus and right superior temporal 

gyrus) revealed both group differences and diagnostic capacity. Area under receiver 

operating characteristic curve was 0.88, and the sensitivity, specificity, and accuracy 

of were 94%, 82%, and 88%, respectively. Confirming these findings, similar results 

were observed in the independent validation. There was a positive association 

between index score derived from the multi-dimensional patterns and the severity of 

symptoms (r = 0.40, P < .01) for patients. 

Discussion: Our findings demonstrate a view of cortical differences with capacity to 
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discriminate between patients with schizophrenia and healthy population. Structural 

neuroimaging-based measurements hold great promise of paving the road for their 

clinical utility in schizophrenia. 

 
Keywords: multi-dimensional patterns; classification; schizophrenia; high-resolution 

MRI; machine learning 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.05.20020768doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.05.20020768
http://creativecommons.org/licenses/by/4.0/


1. Introduction 

 

Schizophrenia is regarded as a severe mental disorder that has a profound effect on 

both human health and society (Owen, Sawa, & Mortensen, 2016). “Living with 

schizophrenia,” in the words of Trevor Turner, “remains hard work,” as Barnett 

recently mentioned (Barnett, 2018). Over the last decade, in addition to burgeoning 

evidence showing that schizophrenia is characterized by dramatic structural 

alterations in the brain, significant variability of brain structures implies that there is 

overwhelming biological heterogeneity in schizophrenia (Brugger & Howes, 2017). 

Identifying the determinants of neuroanatomical differences as distinguishing features 

seems to be a promising step in understanding the nature of schizophrenia and 

facilitating its diagnosis in the psychiatric domain. 

 

It is highly plausible to link cortical neuroanatomical features to schizophrenia. A 

recent study based on 4474 patients with schizophrenia and 5098 control subjects 

presents widespread cortical neuroanatomical abnormalities most prominently in 

frontal and temporal lobe regions (van Erp et al., 2018). Previous magnetic resonance 

imaging (MRI) studies have reported differences between patients with schizophrenia 

and healthy controls (HCs) in the features of cerebral cortex such as cortical 

thickness, surface areas, gray matter volumes, sulcal depth, metric distortion, and 

mean curvature (Csernansky et al., 2008; Lyall et al., 2019; Schultz et al., 2013; 

Wisco et al., 2007; Xiao et al., 2015; Xie et al., 2019; Xu et al., 2017). However, most 

studies used a mass-univariate method, and these cortical features mentioned above 

were generally explored in isolation. Notably, these morphological parameters have 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.05.20020768doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.05.20020768
http://creativecommons.org/licenses/by/4.0/


been used for classifying patients with amnestic mild cognitive impairment via a 

multivariate method (S. Li et al., 2014). The multivariate method that is superior to 

the mass-univariate method, which enables treatment of all cortical features together 

and allows us to examine the relationships among individual features beyond their 

own value. Thus, this approach could provide valuable insights into the multifactorial 

etiology of brain disorders. The multivariate method has previously been applied in 

some brain disorders, e.g., autism spectrum disorder (Ecker et al., 2010), multiple 

sclerosis (Bendfeldt et al., 2012), and schizophrenia (Doan et al., 2017; Gould et al., 

2014; Yu et al., 2013). 

 

Classification studies allow the research of an optimized combination of multiple 

features for discriminating schizophrenia patients from healthy volunteers. 

Functionally, resting-state networks have been proven useful for classifying 

schizophrenia patients and controls with a high overall accuracy in independent 

training and testing data sets (Skatun et al., 2017). Support vector machine (SVM) 

have been proved that can classify small sample data of first-episode psychosis very 

well (Squarcina et al., 2017). In schizophrenia and autism spectrum disorder, 

classification studies have provided an unprecedented opportunity to improve the 

individualized diagnosis by means of radiomic signatures for mental disorders 

(Chaddad, Desrosiers, Hassan, & Tanougast, 2017; Cui et al., 2018). Emerging 

structural MRI studies further add empirical support to advance our understanding of 

accurate classification of schizophrenia (Liang et al., 2018; J. Liu et al., 2017; 

Qureshi, Oh, Cho, Jo, & Lee, 2017; Rozycki et al., 2018; Winterburn et al., 2017). 

More importantly, neuroanatomical subtypes of schizophrenia patients were linked 

with symptoms using machine learning techniques (Dwyer et al., 2018), aiding 
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disease discrimination for biologically based diagnosis (Wang, Yu, Zhu, Yin, & Cui, 

2019). The classification study combined with a multivariate method is a reliable 

option to explore the determinants of cortical neuroanatomical profile as defining 

features for schizophrenia. 

 

Previous studies either examined imaging differences between patients with 

schizophrenia and controls, or used classification methods to identify features that 

could distinguish patients from controls. We hypothesized that neither all brain 

regions with differences could be used for classification, nor all classification features 

could have differences in schizophrenia. In this research, we used a multivariate 

computational approach that combined cortical features, including cortical thickness, 

surface area, gray matter volume, sulcal depth, metric distortion, and mean curvature, 

to investigate the abnormal changes between schizophrenia patients and HCs. In 

addition, we expected to observe multidimensional neuroanatomical patterns in 

classifying schizophrenia patients and HCs. Furthermore, we aimed to develop and 

validate a method of disease definition for schizophrenia by neuroanatomical features 

and explored whether these cortical features have equal contribution when 

differentiating the two groups, thus improving objective individualized schizophrenia 

identification using a quantitative and specific signature in clinical practice. 

 

2. Methods 

 

2.1. Subjects 
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The data set in this study included 52 first-episode schizophrenia patients at Xijing 

Hospital (51 inpatients and 1 outpatients without receiving any medication), and 66 

HCs who were recruited by advertisement from the local community (Supplementary 

Table 1) (Cui, et al., 2018). There were a few overlapping subjects used in our 

previous study (Cui, Cai, et al., 2019; Cui et al., 2015; Cui, Wang, et al., 2017), but 

different MRI data were analyzed. Briefly, the exclusion criteria were comprised of: i) 

pregnancy, major medical and neurological diseases, history of significant head 

trauma, and illicit drug or alcohol abuse or dependence. ii) additional exclusion 

criteria for HCs included current or past history of psychiatric illness and the presence 

of psychosis in first-degree relatives. The absence of any psychotic syndromes in HCs 

was confirmed using the Prodromal Questionnaire (Loewy, Bearden, Johnson, Raine, 

& Cannon, 2005). Two senior clinical psychiatrists performed the neuropsychological 

assessments and diagnosis according to the Structured Clinical Interview for 

Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision 

(DSM-IV-TR), as well as detailed information regarding past symptoms acquired 

through patient interview and examination of the patient’s medical records. Patients 

were assessed with the Positive And Negative Syndrome Scale (PANSS) on the day of 

scanning (Kay, Fiszbein, & Opfer, 1987). This study was approved by the local 

Research Ethics Committee (Xijing Hospital, Fourth Military Medical University). 

All participants gave written informed consent after a complete description of this 

study. 

 

2.2. Data acquisition 

 

The high-resolution, T1-weighted, three-dimensional (3D) anatomical data were 
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performed in the Department of Radiology by using a 3.0-T Magnetom Trio Tim 

imaging unit with an eight-channel phased-array head coil (Siemens, Erlangen, 

Germany) and protocols published previously (Chang et al., 2017; Chang et al., 2015; 

Cui et al., 2016; Cui, Liu, et al., 2017; Cui, et al., 2018; B. Li et al., 2017; L. Liu et 

al., 2019). Imaging was acquired by using a magnetization-prepared rapid gradient-

echo sequence with the following parameters: repetition time (TR) = 2530 ms, echo 

time (TE) = 3.5 ms, flip angle = 7°, field of view = 256 mm × 256 mm, data matrix = 

256 × 256, section thickness = 1 mm, section gap = 0 mm, number of sections = 192, 

and image resolution = 1 × 1 × 1 mm. 

 

2.3. Data processing 

 

T1 Sequence image processing was performed using the Freesurfer image analysis 

suite (version 6.0.0, http://surfer.nmr.mgh.harvard.edu/). Briefly, preprocessing was 

performed with the following steps: i) skull stripping, ii) normalization to a standard 

anatomical template (Tournoux & Pierre, 1988), iii) correction for bias-field 

homogeneity, iv) segmentation of subcortical white matter and deep gray matter 

volumetric structures (Fischl et al., 2002; Fischl et al., 2004), v) gray-white mater 

boundary tessellation and a series of deformation procedures which consist of surface 

inflation (Dale, Fischl, & Sereno, 1999), vi) registration to a spherical atlas (Fischl, 

Sereno, & Dale, 1999) and parcellation of the cerebral cortex into units based on the 

gyral and sulcal structures (Fischl, et al., 2004). The information collected from 

preprocessing was used for calculating 408 structural measures, including volumetric 

(68 measures of cortical thickness, surface area and gray matter regional volume) and 

geometric (68 measures of mean curvature, metric distortion and sulcal depth) based 
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on Desikan-Killiany Atlas (S. Li, et al., 2014). We calculated these six imaging 

measures of 68 regions parcellated according to the atlas, resulting in a total of 408 

features (The definition for calculating the cortical features are shown in 

Supplementary Table 2). The data that the factors of sex and age of all subjects were 

regressive using FSL toolbox were reserved for further analyzing. Furthermore, we 

calculated and compared the group differences in the intracranial volume, brain 

volume and gray matter volume between patients and HCs to avoid their effects on 

cortical features (Supplementary Table 3).  

 

2.4. Statistical analysis 

 

Statistical analysis was mainly conducted by using Statistical Product and Service 

Solutions (SPSS) and R language (https://www.r-project.org/). Workflow proceeded 

as follows:  

i) t-test: for each of the features, the independent two-tailed t-test was used to assess 

the differences between schizophrenia patients and HCs, while the threshold level in 

all features for significance criterion was determined at P < 0.05, uncorrected.  

ii) Dimension reduction: 408 features (after removed the features which did not meet 

the condition: mean �  2 � SD ) were used in the classification, and the 

dimensionality of the features exceeded the sample size, creating difficulty in 

classification. Least absolute shrinkage and selection operator (LASSO) regression 

was used to achieve dimension reduction (Collins, Reitsma, Altman, & Moons, 2015; 

Huang et al., 2016). Due to the small sample size of our research and avoiding over-

fitting, a leave-one-out cross validation approach was used in our research. We used 

leave-one-out cross validation to get a proper L1- regularization value (i.e., λ). 
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The exact relationship between λ and t is data-dependent. Tuning parameter (λ) 

selection in the LASSO model used leave-one-out cross validation via minimum 

criteria and the selected λ minimized the loss function. For each λ value and in each 

leave-one-out cycle, one subject was removed from the whole group and used as the 

test sample. The remaining subjects were used to train the model and the model was 

used to test the subject who had been removed. This procedure was repeated 1000 

times. The misclassification was measured by the proportion of observations that 

patients were incorrectly classified into control groups for each λ value. The λ with 

the lowest misclassification was selected as the final λ. The remaining features were 

obtained. Finally, the different λ were trained using each individual feature. The 

dimension reduction algorithm used was glmnet (https://cran.r-

project.org/web/packages/glmnet).  

iii) Classification: the remaining features were used to build classification models 

using a SVM. In addition, the penalty parameter C of the error term was fixed at C=1 

for all cases (default value). The classifier and the classifier was then used to test the 

subject who had been removed; the classification accuracy, specificity and sensitivity 

were measured and reported.  

iv) Clinical correlation: the research index score was selected as the classification 

indicator to relate with the PANSS score. We integrated all of the classification 

indicators of each ROI after the dimension was reduced for each cortical feature. 
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α : the classification indicator of each feature; F: cortical features; n: the number of 

ROIs after dimensionality reduction; and i: the number of cortical measures (i = 6). 

The workflow is shown in Fig. 1. 

 

2.5. Independent validation 

 

We used an independent validation dataset (see the Supplement), and performed 

validation with features after dimensionality reduction in the principal dataset, as 

listed in Table 2. 

 

3. Results 

 

3.1. Multivariate computation-based abnormalities in patients 

 

Abnormal areas in patients with schizophrenia are listed in Table 1 (P < 0.05, 

uncorrected for multiple comparisons, because our hypothesis indirectly concerned 

the difference of imaging). Apart from sulcal depth, other features showed a 

consistent trend in alterations, including increased surface area, cortical thickness, and 

metric distortion, as well as decreased mean curvature and gray matter volume. Fig. 2 

highlights these regions where P < 0.05 in each feature. 

 

3.2. Feature selection and classification 
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Of the cortical features, all features were reduced to 13 potential predictors with 

nonzero coefficients in the LASSO logistic regression model (Table 2). For the 

combination of six groups of imaging measures, the SVM classifier accurately 

discriminated patients from HCs on the basis of the ROC curve, with an accuracy of 

88% (Fig. 3 and Supplementary Fig. 1). The sensitivity and specificity were 94% and 

82%, respectively. The classification parameters were repeated 1000 times and the 

average of each parameter were calculated. Specifically, after we find the optimal 

parameter, we get the dimension reduction feature, and without changing the 

parameter, we repeated the following SVM steps for 1000 times. As for each cortical 

feature, results are shown in Supplementary Table 4. Confirming these findings, 

similar results were observed in the independent validation (Supplementary Table 5). 

 

3.3. Clinical correlates 

 

In the correlation analysis, the index score derived from the multi-dimensional 

patterns was positively associated with the PANSS total score of patients (r = 0.40, P 

< 0.01). 

 

4. Discussion 

 

Based on cerebral cortical features in this study, we compared the differences between 

patients with schizophrenia and HCs using a multivariate computational method, and 

explored the diagnostic performance for schizophrenia via multi-dimensional 
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neuroanatomical patterns. We found that not all abnormal brain regions are helpful for 

classification. Also, features used for classification do not necessarily have imaging 

measure differences. We detected the features of the mean curvature (left insula and 

left inferior frontal gyrus), cortical thickness (left fusiform gyrus), and metric 

distortion (left cuneus and right superior temporal gyrus) revealing both group 

differences and diagnostic capacity. The accuracy of identifying patients was 88% 

using optimized combination of all of the features, with a sensitivity of 94% and 

specificity of 82%. 

 

The patterns of brain morphology in patients with schizophrenia that may be 

implicated in the pathophysiology are tangled with convergent findings based on the 

structural analysis. At the level of individual study, emerging evidence has shown 

dramatically varied neuroanatomical differences. First, as mounted by burgeoning 

studies, decreased volume of the anterior cingulate cortex with lower variability is one 

of the main findings of altered gray matter in schizophrenia (Brugger & Howes, 

2017). Second, there has been a broad interest in cortical thickness in schizophrenia. 

Third, reviewing literature for the past decade, increased parahippocampal-lingual and 

visual cortical gyrification (mean curvature) was detected in schizophrenia (Schultz et 

al., 2010; Schultz, et al., 2013), and mean curvature in the prefrontal cortex was 

related to integrity in short-range cortico-cortical connections and clinical outcome in 

schizophrenia (Lubeiro et al., 2017). Fourth, other cerebral morphological features, 

metric distortion and sulcal depth, were also compared between schizophrenic and 

healthy populations. Patients showed markedly reduced metric distortion in the 

Broca’s area (pars triangularis of the left inferior frontal gyrus) in the patient group 

relative to the controls (Wisco, et al., 2007). They exhibited shallower olfactory sulci 
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(Turetsky, Crutchley, Walker, Gur, & Moberg, 2009), and there was a significant 

association between neuroleptic exposure and depth of the right paracingulate sulcus 

(Rametti et al., 2010). At present, we demonstrated a new perspective of 

morphometric abnormalities in schizophrenia in line with biological heterogeneity 

demonstrated by a recently published meta-analysis (Brugger & Howes, 2017). 

Nevertheless, part of this substantial evidence is the fundamental basis for defining 

schizophrenia via cortical features in nature and extent. 

 

Of primary importance is that this study extends previous results in two aspects. 

Our study not only validates that there are significant differences in cortical 

characteristics between schizophrenia patients and healthy population, but also finds 

that the characteristics of imaging differences are not identical to the results of 

dimensionality reduction by machine learning. On one hand, the accuracy was 

between 73.0% and 87.09% in classifying schizophrenia by functional connectivity or 

resting-state network features in previous (Anderson et al., 2010; Ariana & Cohen, 

2013; Jafri, Pearlson, Stevens, & Calhoun, 2008; Shen, Wang, Liu, & Hu, 2010) and 

recent machine learning studies (Cui, et al., 2018; Cui, Wei, et al., 2019; Mikolas et 

al., 2016; Skatun, et al., 2017). We utilized cortical features to obtain an accuracy of 

88% in the present study, increasing the diagnostic performance of neuroimaging in 

schizophrenia identification and pushing preclinical findings up to a level of clinical 

translation. On the other hand, we shared the same sample in the current and previous 

studies (Cui, et al., 2018), since we planned to further investigate the practical value 

of structural neuroradiology in schizophrenia. As a result, both multi-dimensional 

neuroanatomical patterns and functional connectivity features hold great promise for 

assisting diagnosing schizophrenia. Multi-dimensional neuroanatomical pattern 
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analysis is another reliable option for classification study in schizophrenia. 

 

Another important implication of our results is that we provided new insights 

into the determinants of differences of the underlying neurobiology and unaltered 

structure functioning as diagnostic tools by means of a multivariate computational 

approach and multidimensional neuroanatomical patterns, with implications for 

precision medicine. Generally speaking, multiple lines of evidence have characterized 

schizophrenia patients via certain abnormalities in neuroanatomy, and of particular 

interest is cortical or subcortical gray matter, through different methods. These 

findings are supportive of generalizability across heterogeneous samples (Dietsche, 

Kircher, & Falkenberg, 2017). In our study, there were 408 features that were 

dimensionally reduced by LASSO and classified by SVM. The results show that not 

all the differences of imaging between patients with schizophrenia and controls are 

the characteristics of distinguishing patients and controls, vice versa. Through 

independent verification of another data set, we believe that the features after 

dimensionality reduction could be used to identify patients with schizophrenia 

accurately. 

 

As compared with previous literatures by Yu et al, Gould et al, and Doan et al 

who also used multivariate approach for classification of patients with schizophrenia 

and HCs (Doan, et al., 2017; Gould, et al., 2014; Yu, et al., 2013), the current study 

proposes a point of view, i.e., neither all brain regions with differences could be used 

for classification, nor all classification features could have differences in 

schizophrenia. In the study by Doan et al, they used multivariate machine learning 

analysis based on cortical thickness, surface area, and gray matter density maps. They 
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found six biologically meaningful patterns showing group effects sensitive to 

schizophrenia (Doan, et al., 2017). In our study, for the features after LASSO 

dimensionality reduction, we provided classification weights (the contribution degree 

in the process of classification). Additionally, the features we used included the 

features as selected by Doan et al and several other cortical features, suggesting the 

best levels of accuracy, specificity and sensitivity for the integrated features. Similar 

results were found in the independent validation. Gould et al used SVM to classify 

patients and controls based on the volume of gray matter and white matter, showing a 

cross-validation accuracy of 71%. They also discussed the effects of cognitive 

subtypes and gender alignment rates (Gould, et al., 2014). In addition to features of 

volume, we also examined other five features calculated. However, cortical volume 

was not the most prominent feature for classification in our study, with an 

classification of 69% (Supplementary Table 4). Another study with a relatively small 

sample size based on SVM using functional connectivity, achieving 62.0% accuracy 

for identifying schizophrenia via leave-one-out cross validation (Yu, et al., 2013). 

Instead of functional patterns, structural neuroimaging was performed in this present 

study. Of note, independent validation is helpful to enhance the generalization of our 

results. 

 

Despite these encouraging results, there is a drawback in the current study. 

Information about smoking was missing for a portion of participants, and alcoholic 

consumption was unavailable. How much the contribution of these factors is 

unknown. Additionally, structural imaging is a promising tool of predicting 

schizophrenia patients’ subsequent response to antipsychotics (Altamura et al., 2017; 

Dusi et al., 2017; Morch-Johnsen et al., 2015); however, this study is limited on the 
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issue of diagnosis. Also prognostic significance of the cortical features via structural 

MRI is of importance for schizophrenia in clinical settings. Biologically-based 

prediction of the treatment response in schizophrenia seems to be urgent, because 

clinical decision-making requires the guidance of quantitative and objective tests. 

 

In summary, linking abnormalities to disease diagnosis can form a valuable 

method for managing schizophrenia using multivariate computation and multi-

dimensional patterns via high-resolution structural MRI. This study detects 

widespread cortical abnormalities in schizophrenia and develops a multi-dimensional 

neuroanatomical patterns-based approach to classify schizophrenia. The cortical 

features might be a promising tool for correct identification of patients with 

schizophrenia. 
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Tables 

Table 1. Each feature with significant differences between SZs and HCs. 

Features Regions 
Volume-based ROI 

Difference 
X (voxel) Y (voxel) Z (voxel) P 

Surface Area 

PCL.L 82 101 142 .016 ↑ 

PCUN.L 83 70 120 .039 ↑ 

PoCG.R 131 101 125 .032 ↑ 

PCUN.R 100 70 120 .032 ↑ 

SPG.R 116 67 134 .030 ↑ 

Mean Curvature 

ITG.L 40 98 49 .018 ↓ 

IFGoperc.L 42 39 91 .004 ↓ 

MTG.L 34 92 70 .019 ↓ 

CAL.L 83 47 78 .048 ↓ 

PCUN.L 83 70 120 .037 ↓ 

INS.L 55 133 75 .001 ↓ 

IPL.R 136 80 122 .040 ↓ 

ORBsup.R 108 174 58 .030 ↓ 

Cortical Thickness 
FFG.L 59 86 52 .019 ↑ 

ACG.L 86 161 86 .006 ↑ 

GM Volume 

PCL.L 82 101 142 .017 ↓ 

PCUN.L 83 70 120 .039 ↓ 

PCL.R 97 94 140 .020 ↓ 

PCUN.R 100 70 120 .034 ↓ 

SPG.R 116 67 134 .030 ↓ 

Sulcal Depth 
FFG.L 59 86 52 .016 ↓ 

SPG.L 67 66 131 .002 ↑ 

Metric Distortion CUN.L 84 46 99 .005 ↑ 
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CAL.R 106 53 81 .044 ↑ 

PoCG.R 131 101 125 .042 ↑ 

PCUN.R 100 70 120 .021 ↑ 

STG.R 148 104 79 .032 ↑ 

.L: left hemisphere; .R: right hemisphere; PCL: paracentral lobule; PCUN: precuneus; PoCG: 

postcentral gyrus; SPG: superior parietal gyrus; ITG: inferior temporal gyrus; IFGoperc: inferior 

frontal gyrus, opercular part; MTG: middle temporal gyrus; CAL: calcarine fissure and surrounding 

cortex; INS: insula; IPL: inferior parietal, but supramarginal and angular gyri; ORBsup: superior 

frontal gyrus, orbital part; FFG: fusiform gyrus; ACG: anterior cingulate and paracingulate gyri; CUN: 

cuneus; STG: superior temporal gyrus 
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Table 2. The features using the least absolute shrinkage and selection operator (LASSO) binary 

logistic regression model. 

Features Regions Weighted vector 

Mean Curvature 

INS.L 0.59 

ACG.L 0.55 

IFGoperc.L 0.22 

ACG.L 0.01 

Cortical Thickness 
FFG.L 0.61 

ACG.R 0.63 

GM Volume 
EC.R 0.07 

PCG.R 0.43 

Sulcal Depth 

PCG.L 0.81 

IPL.L 0.96 

LOG.L 0.66 

Metric Distortion 
CUN.L 0.58 

STG.R 0.85 

L: left hemisphere, R: right hemisphere. INS: Insula, ACG: Anterior cingulate and paracingulate 

gyri, IFGoperc: Inferior frontal gyrus opercular part, FFG: Fusiform gyrus, EC: Entorhinal cortex, 

PCG: Posterior cingulate gyrus, IPL: Inferior parietal, LOG: lateral occipital gyrus, CUN: Cuneus, 

STG: Superior temporal gyrus. 
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Figure legends 

 

Fig. 1. The workflow of data processing. Step 1: preprocessing and feature extraction 

of T1 MRI data; Step 2: the difference comparing SZs and HCs in each of the cortical 

features using a t-Test; Step 3: dimensionality reduction of all features in Step 1 using 

LASSO method and SVM algorithm; Step 4: correlation between index scores and 

PANSS scores. 

 
Fig. 2. Differences in each of the cortical features. A: Surface Area; B: Metric 

Distortion; C: Mean Curvature; D: Sulcal Depth; E: Cortical Thickness; F: Grey 

Matter Volume. The regions where P values were less than 0.05 are colored. 

 
Fig. 3. Classification of each of the cortical features and the combinations of the 

features. 
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