
1 
 

Network-based Drug Repurposing for Human Coronavirus 
 

Yadi Zhou1,#, Yuan Hou1,#, Jiayu Shen1, Yin Huang1, William Martin1, Feixiong Cheng1-3,* 

 
1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 

44195, USA 

2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case 

Western Reserve University, Cleveland, OH 44195, USA 

3Case Comprehensive Cancer Center, Case Western Reserve University School of 

Medicine, Cleveland, Oh 44106, USA 

#Equal contribution 

 

*Correspondence to: 

Feixiong Cheng, PhD 

Lerner Research Institute 

Cleveland Clinic 

Tel: +1-216-444-7654; Fax: +1-216-636-0009 

Email: chengf@ccf.org 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 5, 2020. ; https://doi.org/10.1101/2020.02.03.20020263doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.02.03.20020263
http://creativecommons.org/licenses/by-nc/4.0/


2 
 

Abstract 

Human Coronaviruses (HCoVs), including severe acute respiratory syndrome 

coronavirus (SARS-CoV), Middle east respiratory syndrome coronavirus (MERS-CoV), 

and 2019 novel coronavirus (2019-nCoV), lead global epidemics with high morbidity and 

mortality. However, there are currently no effective drugs targeting 2019-nCoV. Drug 

repurposing, represented as an effective drug discovery strategy from existing drugs, 

could shorten the time and reduce the cost compared to de novo drug discovery. In this 

study, we present an integrative, antiviral drug repurposing methodology implementing 

a systems pharmacology-based network medicine platform, quantifying the interplay 

between the HCoV-host interactome and drug targets in the human protein-protein 

interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 

2019-nCoV has the highest nucleotide sequence identity with SARS-CoV (79.7%) 

among the six other known pathogenic HCoVs. Specifically, the envelope and 

nucleocapsid proteins of 2019-nCoV are two evolutionarily conserved regions, having 

the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. 

Using network proximity analyses of drug targets and known HCoV-host interactions in 

the human protein-protein interactome, we computationally identified 135 putative 

repurposable drugs for the potential prevention and treatment of HCoVs. In addition, we 

prioritized 16 potential anti-HCoV repurposable drugs (including melatonin, 

mercaptopurine, and sirolimus) that were further validated by enrichment analyses of 

drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. 

Finally, we showcased three potential drug combinations (including sirolimus plus 

dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by 
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the ‘Complementary Exposure’ pattern: the targets of the drugs both hit the HCoV-host 

subnetwork, but target separate neighborhoods in the human protein-protein 

interactome network. In summary, this study offers powerful network-based 

methodologies for rapid identification of candidate repurposable drugs and potential 

drug combinations toward future clinical trials for HCoVs. 

 

Introduction 

Coronaviruses (CoVs) typically affect the respiratory tract of mammals, including 

humans, and lead to mild to severe respiratory tract infections [1]. In the past 2 decades, 

two highly pathogenic human CoVs (HCoVs), including severe acute respiratory 

syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus 

(MERS-CoV), emerging from animal reservoirs, have led to global epidemics with high 

morbidity and mortality[2]. For example, 8,098 individuals were infected and 774 died in 

the SARS-CoV pandemic, which cost the global economy with an estimated $30 to 

$100 billion[3, 4]. According to the World Health Organization (WHO), as of November 

2019, MERS-CoV has had a total of 2,494 diagnosed cases causing 858 deaths, the 

majority in Saudi Arabia[2]. In December 2019, the third pathogenic HCoV, named 2019 

novel coronavirus (2019-nCoV), was found in Wuhan, China. As of February 02, 2020, 

there have been over 14,000 cases with ~300 deaths for the 2019-nCoV pandemic 

(https://www.cdc.gov/coronavirus/2019-ncov/index.html); furthermore, human-to-human 

transmission has occurred among close contacts[5]. However, there are currently no 

effective medications against 2019-nCoV. Several national and international research 
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groups are working on the development of vaccines to prevent and treat the 2019-

nCoV, but effective vaccines are not available yet. There is an urgent need for the 

development of effective prevention and treatment strategies for 2019-nCoV outbreak. 

Although investment in biomedical and pharmaceutical research and 

development has increased significantly over the past two decades, the annual number 

of new treatments approved by the U.S. Food and Drug Administration (FDA) has 

remained relatively constant and limited[6]. A recent study estimated that pharmaceutical 

companies spent $2.6 billion in 2015, up from $802 million in 2003, in the development 

of an FDA-approved new chemical entity drug[7]. Drug repurposing, represented as an 

effective drug discovery strategy from existing drugs, could significantly shorten the time 

and reduce the cost compared to de novo drug discovery and randomized clinical 

trials[8-10]. However, experimental approaches for drug repurposing is costly and time-

consuming.[11] Computational approaches offer novel testable hypotheses for 

systematic drug repositioning[8-10, 12, 13]. However, traditional structure-based methods 

are limited when three-dimensional (3D) structures of proteins are unavailable, which, 

unfortunately, is the case for the majority of human and viral targets. In addition, 

targeting single virus proteins often have high risk of drug resistance by the rapid 

evolution of virus genomes [1]. 

Viruses (including HCoV) require host cellular factors for successful replication 

during infections[1]. Systematic identification of virus-host protein-protein interactions 

(PPIs) offers an effective way toward elucidation of the mechanisms of viral infection[14, 

15]. Subsequently, targeting cellular antiviral targets, such as virus-host interactome, 

may offer a novel strategy for the development of effective treatments for viral 
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infections[1], including SARS-CoV[16], MERS-CoV[16], Ebola virus[17], and Zika virus[13, 18-

20]. We recently presented an integrated antiviral drug discovery pipeline that 

incorporated gene-trap insertional mutagenesis, known functional drug-gene network, 

and bioinformatics analyses[13]. This methodology allows to identify several candidate 

repurposable drugs for Ebola virus[10, 13]. Our work over the last decade has 

demonstrated how network strategies can, for example, be used to identify effective 

repurposable drugs[12, 21-24] and drug combinations[25] for multiple human diseases. For 

example, network-based drug-disease proximity that sheds light on the relationship 

between drugs (e.g., drug targets) and disease modules (molecular determinants in 

disease pathobiology modules within the PPIs), and can serve as a useful tool for 

efficient screening of potentially new indications for approved drugs, as well as drug 

combinations, as demonstrated in our recent studies[12, 22, 25]. 

In this study, we present an integrative, antiviral drug repurposing methodology 

that combines a systems pharmacology-based network medicine platform that 

quantifies the interplay between the virus-host interactome and drug targets in the 

human PPI network. The basis for these experiments rests on the notions that (i) the 

proteins that functionally associate with viral infection (including HCoV) are localized in 

the corresponding subnetwork within the comprehensive human PPI network[26]; and (ii) 

proteins that serve as drug targets for a specific disease may also be suitable drug 

targets for potential antiviral infection owing to common PPIs and functional pathways 

elucidated by the human interactome (Figure 1). We follow this analysis with 

bioinformatics validation of drug-induced gene signatures and HCoV-induced 
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transcriptomics in human cell lines to inspect the postulated mechanism-of-action in a 

specific HCoV for which we propose repurposing (Figure 1). 

 

Results 

Phylogenetic Analyses of 2019-nCoV  

To date, 7 pathogenic HCoVs (Figure 2A and 2B) have been found[1, 27]: (i) 2019-nCoV, 

SARS-CoV, MERS-CoV, HCoV-OC43, and HCoV-HKU1 are b genera, and (ii) HCoV-

NL63 and HCoV-229E are a genera. We performed the phylogenetic analyses using the 

whole genome sequence data from 15 HCoVs to inspect the evolutionary relationship of 

2019-nCoV with other HCoVs. We found that the whole genomes of 2019-nCoV had 

~99.99% nucleotide sequence identity across three diagnosed patients (Supplementary 

Table S1). The 2019-nCoV shares the highest nucleotide sequence identity (79.7%) 

with SARS-CoV among the 6 other known pathogenic HCoVs, revealing conserved 

evolutionary relationship between 2019-nCoV and SARS-CoV (Figure 2A). 

HCoVs have five major protein regions for virus structure assembly and viral 

replications[27], including replicase complex (ORF1ab), spike (S), envelope (E), 

membrane (M), and nucleocapsid (N) proteins (Figure 2B). The ORF1ab gene encodes 

the non-structural proteins (nsp) of viral RNA synthesis complex through proteolytic 

processing[28]. The nsp12 is a viral RNA-dependent RNA polymerase, together with co-

factors nsp7 and nsp8 possessing high polymerase activity. From the protein three-

dimensional (3D) structure view of SARS-CoV nsp12, it contains a larger N-terminal 

extension (which binds to nsp7 and nsp8) and polymerase domain (Figure 2C). The 
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spike is a transmembrane glycoprotein that plays a pivotal role in mediating viral 

infection through binding the host receptor[29, 30]. Figure 2D shows the 3D structure of 

the spike protein bound with the host receptor angiotensin converting enznyme2 (ACE2) 

in SARS-CoV (PDB ID: 6ACK). A recent study showed that 2019-nCoV is able to utilize 

ACE2 as an entry receptor in ACE2-expressing cells[31], suggesting potential drug 

targets for therapeutic development. In addition, the nucleocapsid is also an important 

subunit for packaging the viral genome through protein oligomerization[32], and the 

single nucleocapsid structure was shown in Figure 2E. 

Protein sequence alignment analyses indicated that the 2019-nCoV was most 

evolutionarily conserved with SARS-CoV (Supplementary Table S2). Specifically, the 

envelope and nucleocapsid proteins of 2019-nCoV are two evolutionarily conserved 

regions, with sequence identities of 96% and 89.6%, respectively, compared to SARS-

CoV (Supplementary Table S2). However, the spike protein exhibited the lowest 

sequence conservation (sequence identity of 77%) between 2019-nCoV and SARS-

CoV. Meanwhile, the spike protein of 2019-nCoV only has 31.9% sequence identity 

compared to MERS-CoV. 

 

HCoV-host Interactome Network 

First, we assembled the CoV-associated host proteins from 4 known HCoVs (SARS-

CoV, MERS-CoV, HCoV-229E, and HCoV-NL63), one mouse MHV, and one avian IBV 

(N protein) (Supplementary Table S3). In total, we obtained 119 host proteins 

associated with CoVs with various experimental evidences. Specifically, these host 
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proteins are either the direct targets of HCoV proteins or are involved in crucial 

pathways of HCoV infection. The HCoV-host interactome network is shown in Figure 

3A. We identified several hub proteins including JUN, XPO1, NPM1, and HNRNPA1, 

with the highest number of connections within the 119 proteins. KEGG pathway 

enrichment analysis revealed multiple significant biological pathways (adjusted P value 

< 0.05), including measles, RNA transport, NF-kappa B signaling, Epstein-Barr virus 

infection, and influenza (Figure 3B). Gene ontology (GO) biological process enrichment 

analyses further confirmed multiple viral infection-related processes (adjusted P value < 

0.001), including viral life cycle, modulation by virus of host morphology or physiology, 

viral process, positive regulation of viral life cycle, transport of virus, and virion 

attachment to host cell (Figure 3C). We then mapped the known drug-target network 

(see Methods) into the HCoV-host interactome to search for druggable, cellular targets. 

We found that 47 human proteins (39%, blue nodes in Figure 3A) can be targeted by at 

least one approved drug or experimental drug under clinical trial. For example, GSK3B, 

DPP4, SMAD3, PARP1, and IKBKB are the most targetable proteins. The high 

druggability of HCoV-host interactome motivates us to develop a therapeutic strategy by 

specifically targeting cellular proteins associated with HCoVs, such as drug repurposing. 

 

Network-based Drug Repurposing for HCoVs 

The basis for the proposed network-based drug repurposing methodologies rests on the 

notions that the proteins that associate with and functionally govern a viral infection are 

localized in the corresponding subnetwork (Figure 1A) within the comprehensive 

human interactome network. For a drug with multiple targets to be effective against an 
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HCoV, its target proteins should be within or in the immediate vicinity of the 

corresponding subnetwork in the human interactome (Figure 1), as we demonstrated in 

multiple diseases [12, 21, 22, 25] using this drug repurposing strategy. We used a state-of-

the-art network proximity measure to quantify the relationship between HCoV-specific 

subnetwork (Figure 3A) and drug targets in the human protein-protein interactome. We 

constructed a drug-target network by assembling target information for more than 2,000 

FDA-approved or experimental drugs (see Methods). To improve the quality and 

completeness of the human protein interactome network, we integrated PPIs with five 

types of experimental data: (1) binary PPIs from 3D protein structures; (2) binary PPIs 

from unbiased high-throughput yeast-two-hybrid assays; (3) experimentally identified 

kinase-substrate interactions; (4) signaling networks derived from experimental data; 

and (5) literature-derived PPIs with various experimental evidences (see Methods). We 

used a Z-score (Z) measure and permutation test to reduce the study bias in network 

proximity analyses (including hub nodes in the human interactome network by literature-

derived PPI data bias) as described in our recent studies[12, 25]. 

In total, we computationally identified 135 drugs that were associated (Z < -1.5 

and P < 0.05, permutation test) with the HCoV-host interactome (Figure 4A and 

Supplementary Table S4). To validate bias of the pooled cellular proteins from 6 CoVs, 

we further calculated the network proximities of all the drugs for 4 CoVs with a high 

enough number of know host proteins, including SARS-CoV, MERS-CoV, IBV, and 

MHV, separately. We found that the Z-scores showed consistency among the pooled 

119 HCoV-associated proteins and other 4 individual CoVs (Figure 4B). The Pearson 

correlation coefficients of the proximities of all the drugs for the pooled HCoV are 0.926 
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vs. SARS-CoV (P < 0.001, t distribution), 0.503 vs. MERS-CoV (P < 0.001), 0.694 vs. 

IBV (P < 0.001), and 0.829 vs. MHV (P < 0.001). These network proximity analyses 

offer putative repurposable candidates for potential prevention and treatment of HCoVs. 

 

Discovery of Repurposable Drugs for HCoV 

To further validate the 135 repurposable drugs against HCoVs, we first performed gene 

set enrichment analysis (GSEA) using transcriptome data of MERS-CoV and SARS-

CoV infected host cells (see Methods). These transcriptome data were used as gene 

signatures for HCoVs. Additionally, we downloaded the expression data of drug-treated 

human cell lines from the Connectivity Map (CMAP) database [33] to obtain drug-gene 

signatures. We calculated a GSEA score (see Methods) for each drug and used this 

score as an indication of bioinformatics validation of the 135 drugs. Specifically, an 

enrichment score (ES) was calculated for each HCoV data set, and ES > 0 and P < 0.05 

(permutation test) was used as cut-off for a significant association of gene signatures 

between a drug and a specific HCoV. The GSEA score, ranging from 0 to 3, is the 

number of data sets that met these criteria for a specific drug. Mesalazine (an approved 

drug for inflammatory bowel disease), sirolimus (an approved immunosuppressive 

drug), and equilin (an approved agonist of the estrogen receptor for menopausal 

symptoms) achieved the highest GSEA scores of 3, followed by paroxetine and 

melatonin with GSEA scores of 2. We next selected 16 potential repurposable drugs 

(Figure 5A and Table 1) against HCoVs using subject matter expertise based on a 

combination of factors: (i) strength of the network-predicted associations (a smaller 

network proximity score in Supplementary Table S4); (ii) validation by GSEA analyses; 
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(iii) literature-reported antiviral evidences, and (iv) fewer clinically reported side effects. 

Specifically, we showcased several selected repurposable drugs with literature-reported 

antiviral evidences as below. 

Selective estrogen receptor modulators (SERMs). An overexpression of 

estrogen receptor has been shown to play a crucial role in inhibiting viral replication[34]. 

SERMs have been reported to play a broader role in inhibiting viral replication through 

the non-classical pathways associated with estrogen receptor[34]. SERMs interfere at the 

post viral entry step and affect the triggering of fusion, as the SERMs’ antiviral activity 

still can be observed in the absence of detectable estrogen receptor expression[17]. 

Toremifene (Z = -3.23, Figure 5A), the first generation of nonsteroidal SERM, exhibits 

potential effects in blocking various viral infections, including MERS-CoV, SARS-CoV, 

and Ebola virus in established cell lines[16, 35]. Interestingly, different from the classical 

ESR1-related antiviral pathway, toremifene prevents fusion between the viral and 

endosomal membrane by interacting with and destabilizing the virus membrane 

glycoprotein, and eventually inhibiting viral replication[36]. As shown in Figure 5B, 

toremifene potentially affects several key host proteins associated with HCoV, such as 

RPL19, HNRNPA1, NPM1, EIF3I, EIF3F, and EIF3E[37, 38]. Equilin (Z = -2.52 and GSEA 

score = 3), an estrogenic steroid produced by horses, also has been proven to have 

moderate activity in inhibiting the entry of Zaire Ebola virus-glycoprotein and human 

immunodeficiency virus (ZEBOV-GP/HIV)[17]. Altogether, network-predicted SERMs 

(such as toremifene and equilin) offer potential repurposable candidates for HCoVs. 

Angiotensin receptor blockers (ARBs). ARBs have been reported to associate 

with viral infection, including HCoVs[39-41]. Irbesartan (Z = -5.98), a typical ARB, was 
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approved by the FDA for treatment of hypertension and diabetic nephropathy. Here, 

network proximity analysis shows a significant association between Irbesartan’s targets 

and HCoV-associated host proteins in the human interactome. As shown in Figure 5C, 

irbesartan targets SLC10A1, encoding the sodium/bile acid cotransporter (NTCP) 

protein that has been identified as a functional preS1-specific receptor for the hepatitis 

B virus (HBV) and the hepatitis delta virus (HDV). Irbesartan can inhibit NTCP, thus 

inhibiting viral entry[42, 43]. SLC10A1 interacts with C11orf74, a potential transcriptional 

repressor that interacts with nsp-10 of SARS-CoV[44]. There are several other ARBs 

(such as eletriptan, frovatriptan, and zolmitriptan) in which their targets are potentially 

associated with HCoV-associated host proteins in the human interactome. 

Immunosuppressant or antineoplastic agents. Previous studies have 

confirmed the mammalian target of rapamycin complex 1 (mTORC1) as the key factor 

in regulating various viruses’ replications, including Andes orthohantavirus and 

coronavirus[45, 46]. Sirolimus (Z = -2.35 and GSEA score = 3), an inhibitor of mammalian 

target of rapamycin (mTOR), was reported to effectively block viral protein expression 

and virion release effectively[47]. Indeed, the latest study revealed the clinical 

application: sirolimus reduced MERS-CoV infection by over 60%[48]. Moreover, sirolimus 

usage in managing patients with severe H1N1 pneumonia and acute respiratory failure 

can improve those patients’ prognosis significantly[47]. Mercaptopurine (Z = -2.44 and 

GSEA score = 1), an antineoplastic agent with immunosuppressant property, has been 

used to treat cancer since the 1950s and expanded its application to several auto-

immune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and 

Crohn’s disease[49]. Mercaptopurine has been reported as a selective inhibitor of both 
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SARS-CoV and MERS-CoV by targeting papain-like protease which plays key roles in 

viral maturation and antagonism to interferon stimulation[50, 51]. Mechanistically, 

mercaptopurine potentially target several host proteins in HCoVs, such as JUN, 

PABPC1, NPM1, and NCL[37, 52] (Figure 5D). 

Anti-inflammatory agents. Inflammatory pathways play essential roles in viral 

infections[53, 54]. As a biogenic amine, melatonin (N-acetyl-5-methoxytryptamine) (Z = -

1.72 and GSEA score = 2) plays a key role in various biological processes, and offers a 

potential strategy in the management of viral infections[55, 56]. Viral infections are often 

associated with immune-inflammatory injury, in which the level of oxidative stress 

increases significantly and leaves negative effects on multiple organ functions[57]. The 

antioxidant effect of melatonin makes it a putative candidate drug to relieve patients’ 

clinical symptoms in antiviral treatment, even though melatonin cannot eradicate or 

even curb the viral replication or transcription[58, 59]. In addition, the application of 

melatonin may prolong patients’ survival time, which may provide a chance for patients’ 

immune systems to recover and eventually eradicate the virus. As shown in Figure 5E, 

melatonin indirectly targets several HCoV cellular targets, including ACE2, BCL2L1, 

JUN, and IKBKB. Eplerenone (Z = -1.59), an aldosterone receptor antagonist, is 

reported to have a similar anti-inflammatory effect as melatonin. By inhibiting mast-cell-

derived proteinases and suppressing fibrosis, eplerenone can improve survival of mice 

infected with encephalomyocarditis virus[60]. 

In summary, our network proximity analyses offer multiple putative repurposable 

drugs that target diverse cellular pathways for potential prevention and treatment of 
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HCoVs. However, further preclinical experiments and clinical trials are required to verify 

the clinical benefits of these network-predicted candidates before clinical use. 

 

Network-based Identification of Potential Drug Combinations for HCoV 

Drug combinations, offering increased therapeutic efficacy and reduced toxicity, play an 

important role in treating various viral infections[61]. However, our ability to identify and 

validate effective combinations is limited by a combinatorial explosion, driven by both 

the large number of drug pairs and dosage combinations. In our recent study, we 

proposed a novel network-based methodology to identify clinically efficacious drug 

combinations[25]. Relying on approved drug combinations for hypertension and cancer, 

we found that a drug combination was therapeutically effective only if it was captured by 

the ‘Complementary Exposure’ pattern: the targets of the drugs both hit the disease 

module, but target separate neighborhoods (Figure 6A). Here we sought to identify 

drug combinations that may provide a synergistic effect in treating HCoVs with well-

defined mechanism-of-action by network analysis. For the 16 potential repurposable 

drugs (Figure 5A), we showcased three network-predicted candidate drug 

combinations in the potential treatment of HCoVs. 

Sirolimus plus Dactinomycin. Sirolimus, an inhibitor of mTOR with both 

antifungal and antineoplastic properties, has demonstrated to improves outcomes in 

patients with severe H1N1 pneumonia and acute respiratory failure[47]. The mTOR 

signaling plays an essential role for MERS-CoV infection[62]. Dactinomycin, also known 

actinomycin D, is an approved RNA synthesis inhibitor for treatment of various cancer 
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types. An early study showed that dactinomycin (1 microgram/ml) inhibited the growth of 

feline enteric CoV[63]. As shown in Figure 6B, our network analysis shows that sirolimus 

and dactinomycin synergistically target HCoV-associated host protein subnetwork by 

‘Complementary Exposure’ pattern, offering potential combination regimens for 

treatment of HCoV. Specifically, sirolimus and dactinomycin may inhibit both mTOR 

signaling and RNA synthesis pathway (including DNA topoisomerase 2-alpha (TOP2A) 

and DNA topoisomerase 2-beta (TOP2B)) in HCoV infected cells (Figure 6B). 

Toremifene plus Emodin. Toremifene is the approved first generation 

nonsteroidal SERMs for the treatment of metastatic breast cancer[64]. SERMs (including 

toremifene) inhibited Ebola virus infection[17] by interacting with and destabilizing the 

Ebola virus glycoprotein[36]. In vitro assays have demonstrated that toremifene inhibited 

growth of MERS-CoV[16, 65] and SARA-CoV[35] (Table 1). Emodin, an anthraquinone 

derivative extracted from the roots of rheum tanguticum, have been reported to have 

various anti-virus effects. Specifically, emdoin inhibited SARS-CoV associated 3a 

protein[66], and blocked an interaction between the SARS-CoV spike protein and 

ACE2[67]. Altogether, network analyses and published experimental data suggested that 

combining toremifene and emdoin offered a potential therapeutic approach for HCoVs 

(Figure 6C).  

Mercaptopurine plus Melatonin. As shown in Figure 5A, targets of both 

mercaptopurine and melatonin showed strong network proximity with HCoV-associated 

host proteins in the human interactome network. Recent in vitro and in vivo studies 

identified mercaptopurine as a selective inhibitor of both SARS-CoV and MERS-CoV by 

targeting papain-like protease [50, 51]. Melatonin was reported in potential treatment of 
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viral infection via its anti-inflammatory and antioxidant effects[55-59]. Melatonin indirectly 

regulates ACE2 expression, a key entry receptor involved in viral infection of HCoVs, 

including 2019-nCoV[31]. JUN, also known as c-Jun, is a key host protein involving in 

HCoV infectious bronchitis virus[68]. As shown in Figure 6D, mercaptopurine and 

melatonin may synergistically block c-Jun signaling by targeting multiple cellular targets. 

In summary, combination of mercaptopurine and melatonin may offer a potential 

combination therapy for 2019-nCoV by synergistically targeting papain-like protease, 

ACE2, c-Jun signaling, and anti-inflammatory pathways (Figure 6D). However, further 

experimental and clinical validations are highly warranted. 

 

Discussion 

In this study, we presented a network-based methodology for systematic identification of 

putative repurposable drugs and drug combinations for potential treatment of HCoV. 

Integration of drug-target networks, HCoV-host interactions, HCoV-induced 

transcriptome in human cell lines, and human protein-protein interactome network are 

essential for such identification. Based on comprehensive evaluation, we prioritized 16 

putative repurposable drugs (Figure 5) and 3 putative drug combinations (Figure 6) for 

the potential treatment of HCoVs, including 2019-nCoV. However, all network-predicted 

repurposable drugs and drug combinations must be validated in preclinical models and 

randomized clinical trials before being used in patients. 

We acknowledge several limitations in our current study. In this study, we used a 

low binding affinity value of 10 µM as a threshold to define a physical drug-target 
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interaction. However, a stronger binding affinity threshold (e.g., 1µM) may be a more 

suitable cut-off in drug discovery, although it will generate a smaller drug-target network. 

Although sizeable efforts were made for assembling large-scale, experimentally 

reported drug-target networks from publicly available databases, the network data may 

be incomplete and some drug-protein interactions may be functional associations, 

instead of physical bindings. We may use computational approaches to systematically 

predict the drug-target interactions further[24, 69]. In addition, the collected virus-host 

interactions are far from complete and the quality can be influenced by multiple factors, 

including different experimental assays and human cell line models. We may 

computationally predict a new virus-host interactome for HCoVs using sequence-based 

and structure-based approaches[70]. The current systems pharmacology model cannot 

separate therapeutic antiviral effects from those predictions due to lack of detailed 

pharmacological effects of drug targets and unknown functional consequences of virus-

host interactions. Drug targets representing nodes within cellular networks are often 

intrinsically coupled with both therapeutic and adverse profiles[71], as drugs can inhibit or 

activate protein functions (including antagonists versus agonists). Comprehensive 

identification of the virus-host interactome for 2019-nCoV, with specific biological effects 

using functional genomics assays[72, 73], will significantly improve the accuracy of current 

network-based methodologies.  

Owing to lack of the complete drug target information (such as the molecular 

‘promiscuity’ of drugs), the dose-response and dose-toxicity effects for both 

repurposable drugs and drug combinations cannot be identified in current network 

models. For example, Mesalazine, an approved drug for inflammatory bowel disease, is 
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a top network-predicted candidate drug (Figure 5A) associated with HCoVs. Yet, 

several clinical studies showed the potential pulmonary toxicities (including pneumonia) 

associated with mesalazine usage [74, 75]. Preclinical studies are warranted to evaluate in 

vivo efficiency and side effects before clinical trials. Furthermore, we only limited to 

predict pairwise drug combinations based on our previous network-based framework[25]. 

However, we expect that our methodology reminds to be a useful network-based tools 

for prediction of combining multiple drugs toward exploring network relationships of 

multiple drugs’ targets with the HCoV-host subnetwork in the human interactome. 

Finally, we aimed to systematically identify repurposable drugs by specifically targeting 

nCoV host proteins only. Thus, our current network models cannot predict repurposable 

drugs from the existing anti-virus drugs that target virus proteins only. Thus, 

combination of the existing anti-virus drugs (such as remdesivir[76]) with the network-

predicted repurposable drugs (Figure 5) or drug combinations (Figure 6) may improve 

coverage of current network-based methodologies by utilizing multi-layer network 

framework. 

In conclusion, this study offers a powerful, integrated network-based systems 

pharmacology methodology for rapid identification of repurposable drugs and drug 

combinations for the potential treatment of HCoV. Our approach can minimize the 

translational gap between preclinical testing results and clinical outcomes, which is a 

significant problem in the rapid development of efficient treatment strategies for the 

emerging 2019-nCoV outbreak. From a translational perspective, if broadly applied, the 

network tools developed here could help develop effective treatment strategies for other 

types of virus and human diseases as well. 
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Methods and Materials 

Genome Information and Phylogenetic analysis 

In total, we collected DNA sequences and protein sequences for 15 HCoVs, including 

three most recent 2019-nCoV genomes, from the NCBI GenBank database (January 

28, 2019, Supplementary Table S1). Whole genome alignment and protein sequence 

identity calculation were performed by Multiple Sequence Alignment in EMBL-EBI 

database with default parameters. The neighbor joining (NJ) tree was computed from 

the pairwise phylogenetic distance matrix using MEGA X[77] with 1000 bootstrap 

replicates. The protein alignment and phylogenetic tree of HCoVs were constructed by 

MEGA X. 

 

Building the Virus-Host Interactome 

We collected HCoV-host protein interactions from various literatures based on our 

sizeable efforts. The HCoV-associated host proteins of several HCoVs, including SARS-

CoV, MERS-CoV, IBV, MHV, HCoV-229E, and HCoV-NL63 were pooled. These 

proteins were either the direct targets of HCoV proteins or were involved in critical 

pathways of HCoV infection identified by multiple experimental sources, including high 

throughput yeast-two-hybrid (Y2H) systems, viral protein pull-down assay, in vitro co-

immunoprecipitation and RNA knock down experiment. In total, the virus-host 

interaction network included 6 HCoVs with 119 host proteins (Supplementary Table 

S3). 
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Functional Enrichment Analysis 

Next, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene 

Ontology (GO) enrichment analyses to evaluate the biological relevance and functional 

pathways of the HCoV-associated proteins. All functional analyses were performed 

using Enrichr[78]. 

 

Building the Drug-Target Network 

Here, we collected drug-target interaction information from the DrugBank database 

(v4.3)[79], Therapeutic Target Database (TTD)[80], PharmGKB database, ChEMBL 

(v20)[81], BindingDB[82], and IUPHAR/BPS Guide to PHARMACOLOGY[83]. The chemical 

structure of each drug with SMILES format was extracted from DrugBank[79]. Here, only 

drug-target interactions meeting the following three criteria were used: (i) binding 

affinities, including Ki, Kd, IC50 or EC50 each ≤ 10 μM; (ii) the target was marked as 

‘reviewed’ in the UniProt database[84]; and (iii) the human target was represented by a 

unique UniProt accession number. The details for building the experimentally validated 

drug-target network are provided in our recent study[12]. 

 

Building the Human Protein-Protein Interactome 

To build a comprehensive list of human PPIs, we assembled data from a total of 18 

bioinformatics and systems biology databases with five types of experimental 
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evidences: (i) Binary PPIs tested by high-throughput yeast-two-hybrid (Y2H) systems; 

(ii) Binary, physical PPIs from protein three-dimensional (3D) structures; (iii) Kinase-

substrate interactions by literature-derived low-throughput or high-throughput 

experiments; (iv) Signaling network by literature-derived low-throughput experiments; 

and (v) Literature-curated PPIs identified by affinity purification followed by mass 

spectrometry (AP-MS), Y2H, or by literature-derived low-throughput experiments. All 

inferred data, including evolutionary analysis, gene expression data, and metabolic 

associations, were excluded. The genes were mapped to their Entrez ID based on the 

NCBI database[85] as well as their official gene symbols based on GeneCards 

(https://www.genecards.org/). In total, the resulting human protein-protein interactome 

used in this study includes 351,444 unique PPIs (edges or links) connecting 17,706 

proteins (nodes), representing a 50% increase in the number of the PPIs we have used 

previously. Detailed descriptions for building the human protein-protein interactome are 

provided in our previous studies[12, 86, 87]. 

 

Network Proximity Measure 

We posit that the human PPIs provide an unbiased, rational roadmap for repurposing 

drugs for potential treatment of HCoVs in which they were not originally approved. 

Given 𝐶, the set of host genes associated with a specific HCoV, and 𝑇, the set of drug 

targets, we computed the network proximity of 𝐶 with the target set 𝑇 of each drug using 

the “closest” method: 

〈𝑑%&〉 =
)

*|%|*,‖&‖
.∑ 𝑚𝑖𝑛3∈&5∈% 𝑑(𝑐, 𝑡) + ∑ 𝑚𝑖𝑛5∈%3∈& 𝑑(𝑐, 𝑡)<          (1) 
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where 𝑑(𝑐, 𝑡) is the shortest distance between gene 𝑐 and 𝑡 in the human protein 

interactome. The network proximity was converted to Z-score based on permutation 

tests: 

𝑍>?@ =
>?@A>BCCCC

DB
          (2) 

where 𝑑ECCC and 𝜎E were the mean and standard deviation of the permutation test repeated 

1,000 times, each time with two randomly selected gene lists with similar degree 

distributions to those of 𝐶 and 𝑇. The corresponding P value was calculated based on 

the permutation test results. Z-score < -1.5 and P < 0.05 were considered significantly 

proximal drug-HCoV associations. All networks were visualized using Gephi 0.9.2 

(https://gephi.org/). 

 

Network-based Rational Design of Drug Combination Prediction 

For this network-based approach for drug combinations to be effective, we need to 

establish if the topological relationship between two drug-target modules reflects 

biological and pharmacological relationships, while also quantifying their network-based 

relationship between drug-targets and HCoV-associated host proteins (drug-drug-HCoV 

combinations). To identify potential drug combinations, we combined the top lists of 

drugs. Then, “separation” measure 𝑆HI was calculated for each pair of drugs 𝐴 and 𝐵 

using the following method: 

𝑆HI = 〈𝑑HI〉 −
〈>MM〉,〈>NN〉

O
          (3) 
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where 〈𝑑∙〉 was calculated based on the “closest” method. Our key methodology is that a 

drug combination is therapeutically effective only if it follows a specific relationship to 

the disease module, as captured by Complementary Exposure patterns in targets’ 

modules of both drugs without overlapping toxic mechanisms.[25] 

 

Gene Set Enrichment Analysis 

We performed the gene set enrichment analysis as an additional prioritization method. 

We first collected three differential gene expression data sets of hosts infected by 

HCoVs from the NCBI Gene Expression Omnibus (GEO). Among them, two 

transcriptome data sets were SARS-CoV infected samples from patient’s peripheral 

blood[88] (GSE1739) and Calu-3 cells[89] (GSE33267) respectively. One transcriptome 

data set was MERS-CoV infected Calu-3 cells[90] (GSE122876). Adjusted P value less 

than 0.01 was defined as differentially expressed genes. These data sets were used as 

HCoV host signatures to evaluate the treatment effects of drugs. Differential gene 

expression in cells treated with various drugs were retrieved from the Connectivity Map 

(CMAP) database[33], and were used as gene profiles for the drugs. For each drug that 

was in both the CMAP data set and our drug-target network, we calculated an 

enrichment score (ES) for each HCoV signature data set based on previously described 

methods[91] as follows: 

𝐸𝑆 = R𝐸𝑆ST − 𝐸𝑆>UVW, 𝑠𝑔𝑛(𝐸𝑆ST) ≠ 𝑠𝑔𝑛(𝐸𝑆>UVW)
0, 𝑒𝑙𝑠𝑒

          (4) 
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𝐸𝑆ST and 𝐸𝑆>UVW were calculated separately for the up- and down-regulated genes from 

the HCoV signature data set using the same method. We first computed 𝑎ST/>UVW and 

𝑏ST/>UVW  as: 

𝑎 = max
)dedf

ge
f
− h(e)

E
i          (5) 

𝑏 = max
)dedf

gh(e)
E
− eA)

f
i          (6) 

where 𝑗 = 1,2,⋯ , 𝑠 were the genes of HCoV signature data set sorted in ascending 

order by their rank in the gene profiles of the drug being evaluated. The rank of gene 𝑗 

is denoted by 𝑉(𝑗), where 1 ≤ 𝑉(𝑗) ≤ 𝑟, with 𝑟 being the number of genes (12,849) from 

the drug profile. Then, 𝐸𝑆ST/>UVW was set to 𝑎ST/>UVW if 𝑎ST/>UVW > 𝑏ST/>UVW , and was 

set to −𝑏ST/>UVW if 𝑏ST/>UVW > 𝑎ST/>UVW. Permutation tests repeated 100 times using 

randomly generated gene lists with the same number of up- and down-regulated genes 

as the HCoV signature data set were performed to measure the significance of the ES 

scores. Drugs were considered to have potential treatment effect if ES > 0 and P < 0.05, 

and the number of such HCoV signature data sets were used as the final GSEA score 

that ranges from 0 to 3. “NA” indicates that the drug cannot be evaluated by this method 

due to the lack of the drug profile. 
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Table 1. Top drug candidates from network-based repurposing approach with 

literature antiviral evidences. 

Z-score DrugBank 
ID 

Drug Name Structure Category Therapeutic effect on 
virus 

PubMed ID 
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-3.23 DB00539 Toremifene 

 

antineoplastic EBOV, MERS-CoV, 
SARS-CoV 
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29566060, 
24841273, 
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antipruritic, anti-
infective 
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estrogen ZEBOV-GP/HIV 27169275 
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anti-inflammatory EBV 25914477 
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antineoplastic 
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selective serotonin 
reuptake inhibitor 
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-1.62 DB01103 Quinacrine 

 

antimalarial, antibiotic EV71, EBOV 23301007, 
31307979, 
27890675 

-1.59 DB00700 Eplerenone 

 

diuretic viral myocarditis 19213804 

-1.54 DB07715 Emodin 

 

anthraquinones HSV-1, HSV-2, HBV, 
SARS-CoV, CVB₄ 

21050882, 
16940925, 
21356245, 
16730806, 
24071990 

-1.53 DB06412 Oxymetholone 

 

anabolic steroid HIV wasting 12815555 

-1.49 DB02709 Resveratrol 

 

polyphenolic 
phytoalexin 

MERS-CoV 29495250 

 
HBV, hepatitis B virus; HCV, hepatitis C virus; HDV, hepatitis delta virus; EBOV, Ebola viruses; ZEBOV-
GP, Zaire Ebola virus-glycoprotein; HIV, human immunodeficiency virus; EBV, Epstein-Barr virus; ANDV, 
Andes orthohantavirus; EMCV, encephalomyocarditis virus; FECV, feline enteric coronavirus; RSV, 
respiratory syncytial virus; EV71, enterovirus 71; HSV-1 and -2, Herpes simplex viruses; CVB₄, 
Coxsackievirus B₄. 
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Figure Legends 

Figure 1. Overall workflow of this study. Our network-based methodology combines 

a systems pharmacology-based network medicine platform that quantifies the interplay 

between the virus-host interactome and drug targets in the human PPI network. (A) 

Human coronavirus (HCoV) associated host proteins were collected from literatures and 

pooled to generate a pan-HCoV protein subnetwork. (B) Network proximity between 

drug targets and HCoV-associated proteins was calculated to screen for candidate 

repurposable drugs for HCoVs under the human protein interactome model. (C & D) 

Gene set enrichment analysis was utilized to validate the network-based prediction. (E) 

Top candidates were further prioritized for drug combinations using network-based 

method captured by the ‘Complementary Exposure’ pattern: the targets of the drugs 

both hit the HCoV-host subnetwork, but target separate neighborhoods in the human 

interactome network. (F) Overall hypothesis of network-based methodology: (i) the 

proteins that functionally associate with HCoVs are localized in the corresponding 

subnetwork within the comprehensive human interactome network; and (ii) proteins that 

serve as drug targets for a specific disease may also be suitable drug targets for 

potential antiviral infection owing to common protein-protein interactions elucidated by 

the human interactome. 

 

Figure 2. Phylogenetic analysis of coronaviruses. (A) Phylogenetic tree of 

coronavirus (CoV). Phylogenetic algorithm analyzed evolutionary conservation among 

whole genomes of 15 coronaviruses. Red color highlights the recent emergent 
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coronavirus, 2019-nCoV, originating in Wuhan, China. Numbers on the branches 

indicate bootstrap support values. The scale shows the evolutionary distance computed 

using the p-distance method. (B) Schematic plot for HCoV genomes. The genus and 

host information of viruses was labeled on the left by different colors. Empty dark gray 

boxes represent accessory open reading frames (ORFs). The 3D structures of SARS-

CoV nsp12 (PDB ID: 6NUR) (C), spike (PDB ID: 6ACK) (D) and nucleocapsid (PDB ID: 

2CJR) (E) shown were based on homology modeling. Genome information and 

phylogenetic analysis results are provided in Supplementary Table S1-2. 

 

Figure 3. Drug-target network analysis of the HCoV-host interactome. (A) A 

subnetwork highlighting the HCoV-host interactome. Nodes represent three types of 

HCoV-associated host proteins: targetgable (proteins can be targeted by approved 

drugs or drugs under clinical trials), non-targetable (proteins don’t have any known 

ligands), neighbors (protein-protein interaction partners). Edge colors indicate five types 

of experimental evidences of the protein-protein interactions (see Methods). 3D: three-

dimensional structure. (B) KEGG human pathway and (C) gene ontology enrichment 

analyses for the HCoV-associated proteins. 

 

Figure 4. A discovered drug-HCoV network. (A) A subnetwork highlighting network-

predicted drug-HCoV associations connecting 135 drugs and HCoVs. From the 2,938 

drugs evaluated, 135 ones achieved significant proximities between drug targets and 

the HCoV-associated proteins in the human interactome network. Drugs are colored by 
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their first-level of the Anatomical Therapeutic Chemical (ATC) classification system 

code. (B) A heatmap highlighting network proximity values for SARS-CoV, MERS-CoV, 

IBV, and MHV respectively. Color key denotes network proximity (Z-score) between 

drug targets and the HCoV-associated proteins in the human interactome network. P-

value was computed by permutation test. 

 

Figure 5. A discovered drug-protein-HCoV network for 16 potential repurposable 

drugs. (A) Network-predicted evidences and gene set enrichment analysis (GSEA) 

scores for 16 potential repurposable drugs for HCoVs. The overall connectivity of the 

top drug candidates to the HCoV-associated proteins was examined. Most of these 

drugs indirectly target HCoV-associated proteins via the human protein-protein 

interaction networks. All the drug-target-HCoV-associated protein connections were 

examined, and those proteins with at least 5 connections are shown. The box heights 

for the proteins indicate the number of connections. GSEA scores for 8 drugs were not 

available (NA) due to the lack of transcriptome profiles for the drugs. (B-E) Inferred 

mechanism-of-action networks for four selected drugs: (B) toremifene (first generation 

nonsteroidal selective estrogen receptor modulator), (C) irbesartan (an angiotensin 

receptor blocker), (D) mercaptopurine (an antimetabolite antineoplastic agent with 

immunosuppressant properties), and (E) melatonin (a biogenic amine for treating 

circadian rhythm sleep disorders). 
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Figure 6. Network-based rational design of drug combinations for HCoVs. (A) The 

possible exposure mode of the HCoV-associated protein module to the pairwise drug 

combinations. An effective drug combination will be captured by the ‘Complementary 

Exposure’ pattern: the targets of the drugs both hit the HCoV-host subnetwork, but 

target separate neighborhoods in the human interactome network. ZCA and ZCB denote 

the network proximity (Z-score) between targets (Drugs A and B) and a specific HCoV. 

SAB denotes separation score (see Methods) of targets between Drug A and Drug B. (B-

D) Inferred mechanism-of-action networks for three selected pairwise drug 

combinations: (B) Sirolimus (a potent immunosuppressant with both antifungal and 

antineoplastic properties) plus Dactinomycin (a RNA synthesis inhibitor for treatment of 

various tumors), (C) Toremifene (first generation nonsteroidal selective estrogen 

receptor modulator) plus Emodin (an experimental drug for the treatment of polycystic 

kidney), and (D) Melatonin (a biogenic amine for treating circadian rhythm sleep 

disorders) plus Mercaptopurine (an antimetabolite antineoplastic agent with 

immunosuppressant properties). 
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