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Abstract 

Background  

A deeper understanding of the causal links from education level to health outcomes may shed 

a light for disease prevention at a novel and efficient perspective.  

Methods 

We conducted a wide-angled Mendelian randomization to disentangle the causal role of 

education level from intelligence for 31 health outcomes and explore to what extent body 

mass index and smoking mediate the associations. Univariable and multivariable Mendelian 

randomization analyses were performed.  

Results 

Genetically higher education level was associated with lower risk of major mental disorders 

and most somatic diseases independent of intelligence. The intelligence-adjusted odds ratios 

for each additional standard deviation of education (4.2 years) were 0.48 (0.37, 0.62) for 

suicide attempts, 0.50 (0.36, 0.68) for large artery stroke, 0.51 (0.42, 0.63) for heart failure, 

0.52 (0.42, 0.65) for lung cancer, 0.45 (0.33,0.61) for rheumatoid arthritis, and 0.48 (0.43, 

0.55) for type 2 diabetes. Higher education level adjusted for intelligence was additionally 

associated with lower risk of insomnia, major depressive disorder, stroke, coronary artery 

disease, breast cancer, ovarian cancer and gout but with higher risk of obsessive-compulsive 

disorder, anorexia nervosa, bipolar disorder and prostate cancer. Moreover, higher education 

level was associated with modifiable health-related risk factors in a favorable manner. 

Adjustment for body mass index and smoking attenuated the associations between education 

level and several outcomes, especially for type 2 diabetes and heart failure. High education 

level exerts causal protective effects on major somatic diseases.  

Conclusions 

These findings emphasize the importance of education to reduce the burden of common 

diseases. 
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Main text 

Education level is an important health social determinant and has been proposed as a 

modifiable risk factor for a number of disorders and diseases, such as depression 1, age-

related cognitive decline 2, suicide 3, cardiovascular disease 4, cancer 5, and several other 

diseases 6-8. However, it is unclear whether the associations are causal and independent of 

intelligence. Understanding the causal effects of education level on diseases can facilitate the 

aetiology pathway exploration of diseases as well as development of new strategies for 

disease prevention. Notwithstanding, randomized controlled trials are ethically and 

practically infeasible on this topic. 

Exploiting genetic variants as instrumental variables for an exposure (e.g., education 

level), Mendelian randomization (MR) can strengthen the causal inference of an exposure-

outcome association 9. Comparing the risk of disease across individuals who have been 

classified by their genotype enables the causal effect of an exposure to be estimated with 

substantially less bias, such as confounding and reverse causality, than in a traditional 

observational analysis 9. The rationale for diminished bias in MR studies is that genetic 

variants are randomly assorted and fixed at conception and therefore largely independent of 

confounders and cannot be modified by disease development 9.  

We conducted an MR study to disentangle the causal role of education level from 

intelligence in major mental and neurological disorders and somatic diseases. A secondary 

aim was to explore whether intelligence is causally associated with the same health outcomes 

independently of education. We additionally investigated the associations of education level 

and intelligence with modifiable health-related risk factors and whether main lifestyle factors 

mediate the pathway from education to health outcomes. 
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Methods 

Study design 

The design and hypothesis of the present study are displayed in Supplementary Figure 1. We 

used summary-level data from large genome-wide association studies (GWASs) and genetic 

consortia (Table 1). Totally, our study included 11 mental and neurological disorders 10-20, 20 

major somatic diseases 21-36, and 10 health-related risk factors 31,34,35,37-39. A systematic 

review was conducted to find meta-analyses of observational studies of education level and 

diseases (Supplementary table 1).  

 

Selection of instrumental variables  

Instrumental variables for education level and intelligence were identified from GWASs of, 

respectively, 1 131 881 and 269 867 individuals of European ancestries 40,41. In total, 1271 

and 205 single-nucleotide polymorphisms (SNPs) at the genome-wide significance threshold 

(p<5×10-8) were proposed as instrumental variables for education level and intelligence. All 

used SNPs explained around 12.2% and 5.2% variance for education level and intelligence, 

respectively. Education level was defined as number of years of education and was unified 

across included studies according to an International Standard Classification of Education 

category. Across all cohorts, the sample-size-weighted mean of education year was 16.8 

years of schooling with a standard deviation (SD) of 4.2 years. For the definition of 

intelligence as an instrumental variable in our analysis, included cohorts extracted a single 

sum score, mean score, or factor score from a multidimensional set of cognitive performance 

tests in GWAS with linear model, with the exception of High-IQ/Health and Retirement 

Study where a logistic regression GWAS was run with “case” status (high intelligence) 

versus controls (normal intelligence level). All included GWASs adjusted for key covariates, 
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such as age, sex and principal components for ancestry. The numbers of SNPs used as 

instrumental variables in each analysis are displayed in Table 1.  

 

Outcome sources 

Summary-level data for the associations of the education- and intelligence-associated SNPs 

with the outcomes were extracted from large-scale GWASs or genetic consortia. In the 

present MR study, we included 11 mental and neurological disorders 10-20, 9 cardiovascular 

diseases 21-25, 4 major cancers 26-29, 7 other diseases 30-36 and 10 established health-related risk 

factors for major diseases 31,34,35,37-39. Detailed information, such as the number cases and 

controls, population structure and the source for each outcome, is presented in Table 1. 

Definitions of the diseases are presented in Supplementary Table 2.  

 

Systematic review for meta-analysis of observational studies 

A systematic literature search was conducted in the PubMed database before November 1st, 

2019 to find meta-analyses of observational studies of education level in relation to diseases 

studied in the present MR study. We found latest published meta-analysis on 13 diseases and 

two risk factors, including major depressive disorders 42, suicide attempts 43, posttraumatic 

stress disorder 44, amyotrophic lateral sclerosis 45, Alzheimer’s disease 46, coronary artery 

disease 47, heart failure 48, stroke 49, breast cancer 50, prostate cancer 51, lung cancer 52, type 2 

diabetes 53, chronic kidney disease 54, body mass index 55 and hypertension (blood pressure) 

56. We extracted publication data (PMID number, the first author's name and year of 

publication), sample size, and risk estimates with their corresponding confidence intervals. 

Search strategy and characteristics of included meta-analyses are shown in Supplementary 

Table 1.  
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Statistical analysis 

The random-effects inverse-variance weighted method was used to assess the associations of 

education and intelligence with the outcomes. The weighted median method and MR-Egger 

regression were used as sensitivity analyses to examine the consistency of results and to 

detect potential pleiotropy. The weighted median method gives accurate estimates if at least 

50% of the instrumental variables are valid 57. The MR-Egger regression can detect and 

adjust for pleiotropy albeit rendering low precision of the estimates 58. Given the 

phenotypical and genetic correlation between education level and intelligence 59, we used a 

multivariable inverse-variance weighted method to disentangle the causal effect of education 

level on outcomes independent of intelligence and vice versa 60. Considering that smoking 

and body mass index are modifiable risk factors linking education level to the most diseases, 

we also used multivariable-adjusted MR analysis to determine the effects of body mass index 

and smoking behavior on health outcomes for associations reaching the conventional 

significance level (p<0.05) in both univariable and intelligence-adjusted inverse-variance 

weighted model to explore the mediation effects of body mass index and smoking 61. 

Proportions of attenuated effect size were calculated to present the magnitude of mediation 

effects. Odds ratios (ORs) and 95% confidence intervals (CIs) of diseases and changes of 

levels of risk factors were scaled to an SD increase in genetically predicted years of education 

(4.2 years) and intelligence. We calculated the power for the analyses of education level 

using a web-tool 62 and results are displayed in Table 1. All statistical analyses were two-

sided and performed using the mrrobust package in Stata/SE 15.0 63 and TwoSampleMR in R 

3.6.0 software and MR-Base 64. P values were not used strictly to define statistical 

significance; however, we interpreted the results based on the magnitude and strengths of the 

associations 65. 
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Results 

Genetically predicted education level and diseases 

Genetically predicted education level was causally associated with most diseases, including 8 

out of 11 mental and neurological disorders, all 9 studied cardiovascular diseases, all 4 

studied cancers, and 4 out of 7 other common diseases in the univariable inverse-variance 

weighted MR analysis (Figure 1). In multivariable inverse-variance weighted analysis with 

adjustment for intelligence, higher education level was additionally associated with higher 

odds of schizophrenia and anxiety (these associations were not observed in the univariable 

analysis) (Figure 1). However, the inverse associations of education level with amyotrophic 

lateral sclerosis, Alzheimer’s disease, cardioembolic stroke, intracerebral haemorrhage and 

inflammatory bowel disease observed in the crude MR analysis did not remain after 

adjustment for intelligence (Figure 1). In the intelligence-adjusted model, higher education 

level was associated with lower odds of rheumatoid arthritis (OR 0.45; 0.33, 0.61), type 2 

diabetes (OR 0.48; 0.43, 0.55), suicide attempts (OR 0.48; 0.37, 0.62), large artery stroke 

(OR 0.50; 0.36, 0.68), heart failure (OR 0.51; 0.42, 0.63), lung cancer (OR 0.52; 0.42, 0.65), 

ovarian cancer (OR 0.53; 0.43, 0.66), small vessel stroke (OR 0.62; 0.47, 0.81), any ischemic 

stroke (OR 0.69; 0.61, 0.78), insomnia (OR 0.69; 0.64, 0.75), gout (OR 0.71; 0.60, 0.84), 

major depressive disorder (OR 0.78; 0.72, 0.85) and breast cancer (OR 0.85; 0.77, 0.94). 

Conversely, higher education level adjusted for intelligence was associated with an increased 

risk of obsessive-compulsive disorder (OR 2.24; 1.47, 3.41), bipolar disorder (OR 2.04; 1.64, 

2.54), schizophrenia (OR 1.88; 1.49, 2.36), anorexia nervosa (OR 1.88; 1.53, 2.30) and 

anxiety (OR 1.84; 1.33, 2.56) (Figure 1). Results of sensitivity analyses were directionally 

similar but with wider CIs (Supplementary Figure 2). We detected possible pleiotropy in the 

analysis of obsessive-compulsive disorder, inflammatory bowel disease and rheumatoid 

arthritis (p for intercept in MR-Egger <0.05).  
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Genetically predicted intelligence and diseases 

The associations between intelligence and diseases are presented in Supplementary Figure 3 

and 4. The effects of intelligence on mental and somatic diseases showed the same patterns 

with that of education level with the exception for schizophrenia (OR 0.47; 95% CI, 0.33, 

0.67), bipolar disorder (OR 0.72; 95% CI, 0.52, 1.00), and Alzheimer’s disease (OR 0.77, 95% 

CI, 0.59, 1.01) after adjustment for education level (Supplementary Figure 3). Similar results 

were obtained from the weighted median method and pleiotropy was detected in the analysis 

of heart failure in the MR-Egger regression analysis (Supplementary Figure 4).  

 

Education, intelligence and risk factors  

Genetically predicted higher education level was associated with later age of smoking 

initiation (β=0.31; 95% CI, 0.29, 0.33), higher bone mineral density (β=0.05; 95% CI, 0.03, 

0.08), lower serum urate levels (β=-0.12; 95% CI, -0.15, -0.09), lower systolic (β=-0.13; 95% 

CI, -0.15, -0.11) and diastolic (β=-0.18; 95% CI, -0.20, -0.15) blood pressure, lower waist-to-

hip ratio (β=-0.29; 95% CI, -0.31, -0.27), lower body mass index (β=-0.34; 95% CI, -0.37, -

0.31) and fewer cigarettes smoked per day (β=-0.37; 95% CI, -0.42, -0.32) in the univariable 

model; the estimates were similar in the intelligence-adjusted model (Figure 2). Findings 

were consistent in sensitivity analyses and no pleiotropy was observed (Supplementary 

Figure 5). The same patterns of associations were observed for genetically predicted 

intelligence (Supplementary Figure 6). Nevertheless, after adjustment for education level, the 

magnitude of associations attenuated largely (Supplementary Figure 6). 

 

Comparison with observational studies 

The present MR findings were generally similar in the direction and magnitude to the 

estimates based on meta-analyses of observational studies (Supplementary Table 3). However, 
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there were discrepancies concerning the effects of education level on suicide attempts, breast 

cancer and prostate cancer.  

 

Mediation effects of body mass index and smoking 

Table 2 shows the results of mediation analyses after adjusting for body mass index and 

smoking behaviour in the pathway from education to health outcomes. Although not apparent 

for all disease outcomes, body mass index and smoking partly mediated most associations 

between education and diseases (Table 2). A strong mediation effect of body mass index was 

observed in the associations of education with gout (68%), type 2 diabetes (57%) and heart 

failure (34%). With regard to smoking, a strong mediation effect was detected in the 

association of education with major depressive disorder (24%), type 2 diabetes (20%) and 

lung cancer (19%). After adjustment for both body mass index and smoking, the direct causal 

effect of education on outcomes was substantially attenuated for gout (64%), type 2 diabetes 

(63%), heart failure (36%), obsessive-compulsive disorder (32%), suicide attempts (31%), 

coronary artery disease (31%) and lung cancer (29%).  
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Discussion 

In the present MR study with up to 1.3 million individuals, genetic predisposition to higher 

education level was causally associated with the majority of major health outcomes and 

related risk factors. Specifically, genetic predisposition to higher education level, independent 

of intelligence, was associated with lower risk of major depressive disorder, insomnia, 

suicide attempts, stroke, heart failure, coronary artery disease, breast cancer, ovarian cancer, 

lung cancer, gout, type 2 diabetes, and rheumatoid arthritis. Conversely, higher education 

level was associated with higher risk of obsessive-compulsive disorder, anorexia nervosa, 

bipolar disorder, and prostate cancer. Genetically predicted higher intelligence, independent 

of education, was inversely related to bipolar disorder, schizophrenia and Alzheimer’s 

disease. Body mass index and smoking displayed strongest mediation effects observed for 

gout, type 2 diabetes, obsessive-compulsive disorder, suicide attempts and heart failure.  

 

Comparison with previous studies 

Our findings are broadly in line with a vast body of observational studies showing a 

protective association of high educational level on major depressive disorder 42, amyotrophic 

lateral sclerosis 45, Alzheimer’s disease 46, coronary heart disease 47, heart failure 48, stroke 49, 

lung cancer 52, type 2 diabetes 53, chronic kidney disease 54, hypertension 56 and obesity 55. 

However, for suicide attempts, posttraumatic stress disorder, breast cancer and prostate 

cancer, our MR findings differ from observational findings. The discrepancies might be 

attributed by reverse causality in the observational studies, heterogeneity and small sample 

sizes in the meta-analyses. A substantial heterogeneity (I2=85%; p<0.001) was observed 

among included observational studies in the meta-analysis of breast cancer 50, and the sample 

size was small for prostate cancer 51. Some studies have proposed that the higher risk of 

prostate cancer among men with high education level was driven by higher prostate-specific 
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antigen screening rate among educated men compared with men with low education level 66. 

With regard to the inverse associations of higher education level with breast and ovarian 

cancer, these associations may in part be mediated by reproductive or hormone-related 

factors, or other health behaviours such as healthier diet and physical activity. We are not 

aware of any previous MR studies on education or intelligence in relation to prostate, breast, 

or ovarian cancer, but a protective causal effect of higher education on lung cancer risk has 

been reported recently 67. 

Previous MR studies based on much fewer SNPs (up to 162) as predictors of 

education level showed a protective effect of higher educational level on coronary artery 

disease 68 and Alzheimer’s disease 69. The present study based on substantially more SNPs as 

instrumental variables more precisely verified the findings in previous research. Notably, the 

effects of high education level in the previous studies might be influenced by high 

intelligence given the tight phenotype and genetic correlation between intelligence and 

education level. In the present study, we used multivariable MR analysis to assess the direct 

effect of education level that is not mediated via intelligence with coronary artery disease and 

Alzheimer’s disease. For Alzheimer’s disease, we found that higher intelligence rather than 

education level may be the protective factor, whereas higher education level was the 

protective factor for coronary artery disease. In a previous MR study of the direct effect of 

education and intelligence on certain health outcomes, including diabetes, hypertension, heart 

attack, total stroke, total cancer, and depression, no significant association with education or 

intelligence was observed despite significant or suggestive associations of genetically 

predicted education with potential risk factors (blood pressure, smoking, alcohol 

consumption, body mass index, vigorous physical activity, and television watching) 59. 

However, the genetic instrument used in that study comprised only 219 SNPs associated with 

education or intelligence and genetic associations with the outcomes were estimated in up to 
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138 670 UK Biobank participants, with relatively few outcomes.  Thus, the power may have 

been insufficient to detect associations. Findings of other MR studies of education level in 

relation to health-related risk factors, such as obesity 70, cigarette smoking 71 and blood 

pressure 72, are consistent with our findings.  

The inverse association between intelligence and schizophrenia was also observed in 

an observational study with 24 706 Swedish adults independent of overlapping genetic risks 

of two traits 73. However, the effects of high intelligence on bipolar disorder were conflicting 

across observational studies. A large-scale cohort study with over 20-year follow-up duration 

proposed a “reversed-J” shape association between intelligence and risk of bipolar disorder, 

which indicated that individuals with the lowest and highest intelligence had the greatest risk 

of bipolar disorder) 74. In a GWAS, it was revealed that bipolar disorder risk alleles were 

associated with better cognitive performance 75, which is opposite to our findings. Since 

education had a contradictory effect, which we observed in the present study, on bipolar 

disease to intelligence, the discrepancy among these studies might be caused by a mixed 

effect of education and intelligence at both aspects of phenotype and gene.  

 

Possible mechanisms 

Based on results of the present MR study and previous observational studies, there are three 

major possible pathways linking education level to health outcomes: 1) modifiable risk 

factors largely mediates the educational effects on diseases 72,76; 2) there may be direct effects 

from education-related brain structures or function change via gene methylation, gene 

silencing etc. 77-79, especially for mental and neurological disorders; and 3) subjective well-

being, happiness and meaning of life influenced by education level exerts effects on mental 

and somatic diseases directly or indirectly 80-83. Education, as measured in this study, can be 

defined as an institutionalized form of social resource, and more specifically a form of 
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cultural capital drawing on the terminology of the French sociologist Pierre Bourdieu. 

Related forms of cultural capital emerge as objectivized resources – such as books, art or 

scientific tools – or incorporated resources, such as knowledge, attitudes and practices 84,85. 

Our study shows that education is a health relevant cultural capital whilst intelligence is not 

to the same degree related with health and risk of disease. 

Observational studies have found that the associations between education level and 

diseases attenuated largely after adjustment for health-related risk factors. Compared with 

unadjusted model, the risk of cardiovascular diseases of low education attainment attenuated 

around 30-45% in statistical models adjusted for multiple risk factors, such as smoking, body 

mass index, hypertension and physical activity 86,87. However, measurement error and 

misclassification of mediators in observational studies often underestimates the mediation 

effects. The mediation effects were also proved in previous MR analysis 72,76. In the present 

study, genetically predicted education level was associated with a favourable risk factor 

profile: with improved smoking behaviours (postponed smoking initiation age and less 

cigarette per day) as well as lower adiposity (body mass index and waist-to-hip ratio), blood 

pressure and serum urate levels, which might mediate associations between education level 

and diseases. By conducting mediation analysis, we showed that body mass index and 

smoking behaviour partly or entirely mediated the pathway from education level to several 

health outcomes, in particular gout, type 2 diabetes, obsessive-compulsive disorder, suicide 

attempts, atrial fibrillation, heart failure, coronary artery disease and lung cancer. 

Previous studies have found that low education level might influence the changes in 

biochemical response and risk-related brain function, such as inflammation 77, 

cardiometabolic traits 78 and amygdala reactivity 79, via gene methylation, thereby influencing 

disease risk. In addition, genetic studies have also revealed that improvement of subjective 

well-being 80,81, happiness 80,81, meaning of life 82, social interaction 83, possibly derived from 
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high education level benefited human health directly and indirectly (e.g. influencing brain 

morphology, central nervous system and adrenal/pancreas tissues). There are other possible 

explanations, like followings: education level also could modify the risk of health outcomes 

through other diseases (comorbidity), the use of health care services, neighbourhood 

environment, occupations, income and marital status, which were amenable if education level 

was increased.  

The results indicate that more than knowledge itself is affecting how people live their 

life, for instance through pathways regarding reduced smoking or alcohol habits among 

highly educated people. Therefore, we should consider further explanations, such as the 

relationship between high education on the one hand and the status and resources that follow 

it, on the other, which could by itself have a positive health effect on the individual. A further 

explanation assumes that it is the process itself that can be associated with increased well-

being. That is, the process of taking part of and acquiring external knowledge rather than 

remaining with one's own innate thinking or being kept oblivious. Should only a fraction of 

the disease burden be explained by this process of mental activity  �  given that education 

leads to a different kind of thinking, which is supported by the present study in that health is 

affected regardless of intelligence level  �  then increased knowledge through education may 

lead to longevity through mechanisms beyond health literacy pathways of late-onset diseases 

and beyond the influence of social and material factors.  

 

Strengths and limitations 

The present study is the first study that comprehensively investigated the causal effects of 

education and intelligence on a very broad range of major disease outcomes and associated 

risk factors using genetic data from large-scale GWASs and genetic consortia. We used much 

more SNPs deriving from a larger GWAS with around 1.1 million individuals as instrumental 
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variables for education level and the latest GWASs with largest sample size for outcomes 

compared to previous MR studies, thereby assuring adequate statistical power to detect weak 

associations. In addition, we disentangled the independent effect of education level from 

intelligence using a multivariable MR approach. Thus, it is a straightforward approach to 

estimate the possible health benefits from education promotion among general population. 

We used mediation analysis to reveal the roles of body mass index and smoking behaviour as 

mediators in the pathway from education level to health outcomes. Even though there were 

genetic data for certain outcomes from GWASs with trans-ancestry populations, the majority 

of included participants were individuals with European ancestry thereby diminishing 

population stratification bias. However, population confinement limited the transferability of 

the present findings to populations of non-European ancestries.  

The major limitation of the present study is the possible unbalanced horizontal 

pleiotropy aroused from used genetic variants marking more generic biological pathways. It 

has been found that the lead SNPs related to education level and intelligence are significantly 

overexpressed in the central nervous system, such as hippocampus and cerebral cortex, but 

not in other organs 40. For cardiovascular disease, cancers and other physical diseases, we can 

minimize the possibility of pleiotropy from the global or systemic measures of fitness (such 

as mitochondrial function). It is more likely to conclude that the potential pleiotropy might 

exert a large to moderate effect via predominantly neurological pathways (for example, 

behaviours associated with obesity or smoking) for somatic diseases. In this scenario, the 

vertical pleiotropy would not bias the total causal effect by a higher educational level on 

disease development. With regard to mental and neurological disorders, although gene 

overwhelmingly expressed in the brain or central nervous system, studies found no, or at 

most a small, genetic correlation between lower education attainment and mental and 

neurological disorders by using bivariate genomic-relationship-matrix restricted maximum 
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likelihood analysis 1. Thus, the associations between education level and mental or 

neurological diseases were not mainly because of measurable pleiotropic genetic effects, but 

because of education-related environmental factors. In addition, from a statistical perspective, 

we detected almost no pleiotropy in the results of MR-Egger regression and the estimates 

were consistent through sensitivity analyses, which indicated a negligible distortion by 

pleiotropy. Intergenerational effects from parents for certain disease, such as coronary artery 

diseases and type 2 diabetes, could not be assessed by using the data in the present MR study.  

 

In summary, the present MR study strengthened the evidence of protective role of high 

education level on the majority of mental disorders and somatic diseases independent of 

intelligence. Body mass index and smoking partly mediated several of the associations 

between education level and health outcomes. These findings strongly suggest increasing 

education level for overall health benefits.   
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Table 1. Characteristics of included studies of mental disorders, somatic diseases, and health-related risk factors 

Disease Cases, 
No. 

Controls, 
No. 

Population Used 
SNPs, No. 

Source Consortium 

Mental disorder 
Anorexia nervosa 16 992 55 525 European 1227 Watson HJ et al Psychiatric Genomics Consortium 
Anxiety 7016 14 745 European 1207 Otowa T et al Psychiatric Genomics Consortium 
Bipolar disorder 20 352 31 358 European 1271 Stahl EA et al Psychiatric Genomics Consortium 
Insomnia 397 959 933 051 European 1194 Jansen PR et al CNCR 
Major depressive disorder 170 756 329 443 European 1244 Stahl EA et al UK Biobank 
Obsessive-compulsive disorder 2688 7037 European 1265 IOCDF-GC and OCGAS Psychiatric Genomics Consortium 
Posttraumatic stress disorder 30 000 170 000 Mix 1271 Nievergelt CM et al Psychiatric Genomics Consortium 
Suicide attempts 6024 44 240 European 1072 Erlangsen A et al iPSYCH 
Schizophrenia 33 426 54 065 European 1253 Psychiatric Genomics Consortium Psychiatric Genomics Consortium 

Neurological disease       
Amyotrophic lateral sclerosis 21 982 41 944 European 1268 Kunkle BW et al Project MinE 
Alzheimer’s disease 12 577 23 475 European 1260 van Rheenen W et al IGAP 

Cardiovascular disease       
Atrial fibrillation 65 446 522 000 Mix 1261 Roselli C et al AFGen 
Coronary artery disease 60 801 123 504 Mix 1266 Nikpay M et al CARDIoGRAMplusC4D Consortium 
Heart failure 7382 387 652 European 1255 Aragam KG et al UK Biobank 
Total stroke 67 162 454 450 Mix 1258 Malik R et al MEGASTROKE Consortium 
Any ischemic stroke 60 341 NA Mix 1270 Malik R et al MEGASTROKE Consortium 
Large artery stroke 6688 146 392 Mix 1270 Malik R et al MEGASTROKE Consortium 
Small vessel stroke 11 710 192 662 Mix 1268 Malik R et al MEGASTROKE Consortium 
Cardioembolic stroke 9006 204 570 Mix 1269 Malik R et al MEGASTROKE Consortium 
Intracerebral haemorrhage 1545 1481 Mix 852 Woo D et al ISGC 

Cancer       
Breast cancer 122 977 105 974 Mix 1269 Michailidou K et al BCAC 
Breast cancer ER+ 69 501 NA Mix 1269 Michailidou K et al BCAC 
Breast cancer ER- 21 468 NA Mix 1269 Michailidou K et al BCAC 
Lung cancer 11 348 15 861 European 1230 Wang Y et al ILCCO 
Ovarian cancer 25 509 40 941 European 1213 Phelan CM et al OCAC 
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Prostate cancer 79 194 61 112 European 1175 Schumacher FR et al PRACTICAL Consortium 
Atopic dermatitis 21 399 95 464 Mix 1269 Paternoster L et al EAGLE Consortium 
Chronic kidney disease 41 395 439 303 European 1263 Wuttke M et al CKDGen Consortium 
Fracture 53 184 373 611 European 1259 Morris JA et al GEFOS Consortium 
Gout 13 179 750 634 Mix 1271 Tin A et al GUGC 
Inflammatory bowel disease 25 042 34 915 European 1213 de Lange KM et al UK IBD consortium 
Rheumatoid arthritis 29 880 73 758 Mix 1254 Okada Y et al GARNET consortium 
Type 2 diabetes 74 124 824 006 European 1263 Mahajan A et al DIAGRAM consortium 

Health-related risk factor 
Body mass index NA 694 649 Mix 1260 Pulit SL et al GIANT consortium 
Waist-to-hip ratio NA 697 734 Mix 1260 Pulit SL et al GIANT consortium 
Blood pressure, systolic NA 317 754 European 1263 Neale lab UK Biobank 
Blood pressure, diastolic NA 317 756 European 1263 Neale lab UK Biobank 
Age of smoking initiation NA 341 427 European 1255 Liu M et al GSCAN 
Cigarettes per day NA 337 334 European 1255 Liu M et al GSCAN 
Alcohol intake per week NA 941 280 European 1255 Liu M et al GSCAN 
Bone mineral density NA 426 824 European 1208 Morris JA et al GEFOS Consortium 
Estimated glomerular filtration rate  NA 765 348 Mix 1264 Wuttke M et al CKDGen Consortium 
Serum urate NA 288 649 European 1264 Tin A et al GUGC 

 
AFGen stands for Atrial Fibrillation Consortium; BCAC, Breast Cancer Association Consortium; CNCR, Center for Neurogenomics and Cognitive Research; 
DIAGRAM, The DIAbetes Genetics Replication And Meta-analysis; EAGLE, The EArly Genetics and Lifecourse Epidemiology; ER, estrogen receptor; GARNET, 
Genetics and Allied research in Rheumatic diseases Networking; GEFOS, GEnetic Factors for Osteoporosis, GUGC, The Global Urate Genetics Consortium; 
GSCAN, Consortium of Alcohol and Nicotine use; IGAP, The International Genomics of Alzheimer's Project; ILCCO, The International Lung Cancer Consortium; 
ISGC, International Stroke Genetics Consortium; NA, Not available; OCAC, The Ovarian Cancer Association Consortium; PRACTICAL, The Prostate Cancer 
Association Group to Investigate Cancer Associated Alterations in the Genome; SNP, single-nucleotide polymorphism; UK IBD consortium, UK Inflammatory 
Bowel Disease Genetics Consortium.  . 
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Table 2. Mediation analysis to disentangle the effects of body mass index and smoking in the pathway from education level to health outcomes 
 

Health outcome 
Total effect of education Effect after adjusting for BMI Effect after adjusting for smoking Effect after adjusting for both 

ORa 95% CI P ORb 95% CI P %* ORc 95% CI P %* ORd 95% CI P %* 

Mental disorder                

Anorexia nervosa 1.78 (1.60, 1.98) 1.56E-26 1.54 (1.36, 1.75) 1.70E-11 25 1.83 (1.63, 2.05) 3.00E-24 0 1.58 (1.39, 1.80) 4.90E-12 21 

Insomnia 0.72 (0.69, 0.75) 4.15E-58 0.74 (0.71, 0.78) 2.80E-34 8 0.75 (0.72, 0.79) 1.10E-36 12 0.76 (0.73, 0.80) 1.80E-26 16 

Major depressive disorder  0.77 (0.74, 0.80) 1.28E-36 0.80 (0.76, 0.84) 9.60E-20 15 0.82 (0.78, 0.85) 9.40E-19 24 0.83 (0.79, 0.87) 2.80E-13 29 

Obsessive-compulsive disorder 2.12 (1.71, 2.62) 5.66E-12 1.70 (1.31, 2.19) 5.50E-05 29 1.99 (1.57, 2.53) 1.10E-08 8 1.67 (1.28, 2.17) 2.00E-04 32 

Suicide attempts 0.56 (0.49, 0.64) 5.18E-18 0.64 (0.54, 0.75) 3.60E-08 23 0.61 (0.52, 0.70) 2.10E-11 15 0.67 (0.57, 0.79) 2.50E-06 31 

Neurological disease                

Amyotrophic lateral sclerosis 0.88 (0.79, 0.98) 1.50E-02 0.88 (0.78, 1.00) 4.60E-02 0 0.83 (0.74, 0.93) 1.00E-03 0 0.84 (0.74, 0.95) 8.00E-03 0 

Alzheimer’s disease 0.72 (0.66, 0.79) 6.60E-13 0.73 (0.65, 0.81) 4.17E-09 4 0.72 (0.65, 0.79) 3.00E-11 0 0.72 (0.64, 0.80) 5.01E-09 0 

Cardiovascular disease                

Coronary artery disease 0.62 (0.58, 0.66) 8.54E-53 0.70 (0.65, 0.75) 2.30E-21 25 0.66 (0.61, 0.70) 9.30E-34 13 0.72 (0.67, 0.78) 2.50E-17 31 

Heart failure 0.51 (0.46, 0.57) 4.16E-37 0.64 (0.56, 0.72) 3.50E-13 34 0.54 (0.48, 0.60) 1.80E-26 8 0.65 (0.57, 0.73) 1.20E-11 36 

Total stroke 0.70 (0.67, 0.74) 1.10E-41 0.75 (0.71, 0.80) 1.10E-19 19 0.71 (0.67, 0.75) 5.40E-33 4 0.76 (0.71, 0.80) 3.70E-18 23 

Any ischemic stroke 0.68 (0.64, 0.72) 4.86E-33 0.70 (0.65, 0.76) 8.70E-20 8 0.68 (0.64, 0.73) 2.40E-27 0 0.70 (0.65, 0.76) 1.70E-18 8 

Large artery stroke 0.51 (0.43, 0.60) 7.33E-17 0.55 (0.46, 0.67) 1.60E-09 11 0.53 (0.44, 0.63) 9.00E-13 6 0.56 (0.46, 0.69) 1.40E-08 14 

Small vessel stroke 0.59 (0.51, 0.68) 3.07E-13 0.61 (0.52, 0.73) 1.40E-08 6 0.59 (0.50, 0.69) 2.00E-11 0 0.61 (0.51, 0.72) 2.60E-08 6 

Cancer                

Breast cancer 0.87 (0.83, 0.91) 2.12E-08 0.88 (0.83, 0.94) 4.00E-05 8 0.88 (0.84, 0.93) 8.80E-06 8 0.89 (0.84, 0.95) 3.00E-04 16 

Breast cancer ER+ 0.89 (0.84, 0.94) 2.34E-05 0.90 (0.84, 0.97) 4.00E-03 10 0.90 (0.85, 0.96) 1.00E-03 10 0.91 (0.85, 0.98) 1.20E-02 19 

Breast cancer ER- 0.71 (0.66, 0.77) 6.97E-17 0.70 (0.64, 0.77) 1.80E-13 0 0.72 (0.66, 0.78) 4.20E-17 4 0.71 (0.64, 0.78) 2.50E-12 0 

Lung cancer 0.52 (0.47, 0.58) 3.20E-30 0.58 (0.50, 0.66) 1.30E-15 17 0.59 (0.53, 0.67) 6.30E-17 19 0.63 (0.55, 0.72) 2.90E-11 29 

Ovarian cancer 0.84 (0.78, 0.92) 7.30E-05 0.90 (0.81, 0.99) 3.60E-02 40 0.82 (0.75, 0.90) 4.00E-05 0 0.88 (0.79, 0.98) 1.40E-02 27 

Prostate cancer 
 

1.12 (1.05, 1.20) 1.00E-03 1.06 (0.98, 1.15) 1.45E-01 49 1.07 (1.00, 1.15) 6.00E-02 40 1.04 (0.96, 1.13) 3.23E-01 65 
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Other diseases                

Gout 0.77 (0.70, 0.84) 1.75E-09 0.92 (0.84, 1.02) 1.35E-01 68 0.76 (0.69, 0.84) 4.40E-08 0 0.91 (0.81, 1.01) 6.70E-02 64 

Rheumatoid arthritis 0.43 (0.37, 0.49) 5.29E-29 0.41 (0.34, 0.49) 1.50E-21 0 0.44 (0.37, 0.51) 7.90E-23 3 0.42 (0.35, 0.51) 1.40E-19 0 

Type 2 diabetes 0.53 (0.50, 0.57) 9.07E-83 0.76 (0.71, 0.81) 1.20E-12 57 0.60 (0.56, 0.64) 3.30E-48 20 0.79 (0.74, 0.85) 6.30E-11 63 

 
BMI indicates body mass index; ER, estrogen receptor. 
a total effect without any adjustment; 
b adjusted for the effect of body mass index; 
c adjusted for the effect of smoking (cigarettes per day); 
d adjusted for the effects of both body mass index and smoking behaviors; 
*Percentage of the effect of education on the health outcome that is mediated by body mass index, smoking, or both (Formula: log(OR_total)-
log(OR_adjusted)/log(OR_total)*100)). We replaced the values with zero for those percentage below zero.   
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Figure legends 

 

Figure 1. Associations of genetic predisposition to higher education level with health outcomes in MR analyses without and with adjustment for 

genetically predicted intelligence. CI indicates confidence interval; ER, estrogen receptor; IVW, inverse-variance weighted; OR, odds ratio; SD, 

standard deviation. I2 represents the degree of heterogeneity among included SNPs for education.  

 

Figure 2. Associations genetic predisposition to higher education level and health-related risk factors in MR analyses without and with 

adjustment for genetically predicted intelligence. CI indicates confidence interval; eGFR, estimated glomerular filtration rate; IVW, inverse-

variance weighted; SD, standard deviation. I2 represents the degree of heterogeneity among included SNPs for education. 
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