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Abstract

A novel coronavirus (2019-nCoV) has recently emerged as a global threat. As the epidemic
progresses, many disease modelers have prioritized estimating the basic reproductive number
R0, defined as the average number of secondary cases caused by a primary case. While these
efforts are extremely valuable, their modeling approaches and the resulting estimates vary
widely. Here, we present a framework for comparing different estimates of R0 across a wide
range of models by decomposing it into three key quantities (the exponential growth rate
r, the mean generation interval Ḡ, and the generation-interval dispersion κ) and apply our
framework to early estimates of R0 for the 2019-nCoV outbreak. Our results emphasize the
importance of propagating uncertainties in all three quantities, in particular in the shape of
the generation-interval distribution. While rapid response during an outbreak is important,
careful consideration of methodology is also worthwhile. Modelers should work with field-
workers to develop better methods for characterizing generation intervals.
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1 Introduction

Since December 2019, a novel coronavirus (2019-nCoV) has been spreading in China and
other parts of the world (World Health Organization, 2020c). Although the virus is believed
to have originated from animal reservoirs (Centers for Disease Control and Prevention, 2020),
its ability to directly transmit between humans has posed a greater threat for its spread
(Huang et al., 2020; World Health Organization, 2020a). As of January 30th, 2020, the
World Health Organization (WHO) has confirmed 7818 cases, including 82 confirmed cases
in 18 different countries, outside China (World Health Organization, 2020b). WHO has now
declared the outbreak a Public Health Emergency of International Concern (World Health
Organization, 2020d).

As the disease continues to spread, many researchers have published analyses of the out-
break, focusing in particular on estimates of the basic reproductive number R0 (i.e., the
average number of secondary cases generated by a primary case in a fully susceptible popu-
lation (Anderson and May, 1991; Diekmann et al., 1990)). Estimating the basic reproductive
number is of interest during an outbreak because it provides information about the level of
intervention required to interrupt transmission (Anderson and May, 1991), and about the
final size of the outbreak (Anderson and May, 1991; Ma and Earn, 2006). We commend these
researchers for their timely contribution and those who made the data publicly available.
However, it can be difficult to assess the estimates of R0 (as well as the associated degrees
of uncertainty) when the estimation methods and their underlying assumptions vary widely,
especially since these assumptions can affect the estimates.

Here, we show that a wide range of approaches to estimating R0 can be understood
and compared in terms of estimates for three quantities: the exponential growth rate r,
the mean generation interval Ḡ, and the generation-interval dispersion κ. The generation
interval, which is defined as the time between when an individual becomes infected and
when that individual infects another individual (Svensson, 2007), plays a key role in shaping
the relationship between r and R0 (Wearing et al., 2005; Roberts and Heesterbeek, 2007;
Wallinga and Lipsitch, 2007; Park et al., 2019); therefore, estimates of R0 from different
models directly depend on their implicit assumptions about the shape of the generation-
interval distribution and the exponential growth rate. Early in an epidemic, information is
scarce and, inevitably, there is large uncertainty around case reports (affecting the estimates
of the exponential growth rate) and contact tracing (affecting the estimates of the generation-
interval distribution). We suggest that disease modelers should make sure their assumptions
about these three quantities are clear and reasonable, and that estimates of uncertainty
should propagate error from all three sources.

We evaluate six disparate models published online between January 24–26, 2020 that
estimated R0 for the 2019-nCoV outbreak (Imai et al., 2020; Liu et al., 2020; Majumder
and Mandl, 2020; Read et al., 2020; Riou and Althaus, 2020; Zhao et al., 2020). We use our
framework to construct pooled estimates for the three key quantities: r, Ḡ, and κ. We use
these pooled estimates to illustrate the importance of propagating different sources of error,
particularly uncertainty in both the growth rate and the generation interval. We also use
our framework to unravel which assumptions of these different models led to their different
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Basic reproductive
number R0

Mean generation
time Ḡ (days)

Generation-interval
dispersion κ

Study 1 2.5 (1.5–3.5)∗ 8.4 unspecified† Imai et al. (2020)
Study 2 2.92 (95% CI: 2.28–3.67) 8.4 0.2 Liu et al. (2020)
Study 3 3.8 (95% CI: 3.6–4.0) 7.6 0.5 Read et al. (2020)
Study 4 2.2 (90% CI: 1.4–3.8) 7–14 0.5 Riou and Althaus (2020)

Study 5 5.47 (95% CI: 4.16–7.10)‡ 7.6–8.4 0.2 Zhao et al. (2020)
Study 6 2.0–3.1 6–10 0 Majumder and Mandl (2020)

Table 1: Reported estimates of the basic reproductive number and the assump-
tions about the generation-interval distributions. Estimates of R0 and their assump-
tions about the shape of the generation interval distributions were collected from 6 studies.
∗We treat these intervals as a 95% confidence interval in our analysis. †We assume κ = 0.5
in our analysis. ‡The authors presented R0 estimates under different assumptions; we use
their baseline scenario in our analysis.

estimates and confidence intervals.

2 Results

We gathered information on estimates of R0 and their assumptions about the underlying
generation-interval distributions from 6 articles that were published online between January
24th, 2020 and January 26th, 2020 (Table 1). As most studies do not report their estimates
of the exponential growth rate or the associated confidence intervals, we first recalculate
the exponential growth rate that correspond their model assumptions. We do so by model-
ing explicitly or implicitly reported distributions of the reproductive number R0, the mean
generation interval Ḡ, and the generation-interval dispersion parameter κ with appropri-
ate probability distributions; we used Gamma distributions to model values reported with
confidence intervals and uniform distributions to model values reported with ranges. For
example, Study 2 estimated R0 = 2.92 (95% CI: 2.28–3.67); we model this estimate as a
Gamma distribution with a mean of 2.92 and a shape parameter of 67, which has a 95%
probability of containing a value between 2.28 and 3.67 (see Table 2 for a complete descrip-
tion). We then constructed a family of parameter sets – which include r, Ḡ, and κ – for
each study and used these in a Bayesian multilevel model to build a distribution of pooled
estimates (see Methods).

Fig. 1 compares the reported values of the exponential growth rate r, mean generation
interval Ḡ, and the generation-interval dispersion κ from different studies with the pooled
estimates (µr, µG, and µκ) that we calculate from our multilevel model. We find that there is
a large uncertainty associated with the underlying parameters; many models rely on stronger
assumptions that ignore these uncertainties. Surprisingly, no studies take into account how
the variation in generation intervals affects their estimates of R0: all studies assumed fixed
values for κ, ranging from 0 to 0.5. Assuming fixed parameter values can lead to overly
strong conclusions (Elderd et al., 2006). It is also interesting that none of the six studies
explicitly or implicitly assumed an exponentially distributed generation interval (i.e., κ = 1),
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Basic reproductive
number R0

Mean generation
time Ḡ (days)

Generation-interval
dispersion κ

Study 1 Gamma(mean = 2.6, α = 28) 8.4 0.5
Study 2 Gamma(mean = 2.92, α = 67) 8.4 0.2
Study 3 Gamma(mean = 3.8, α = 1400) 7.6 0.5
Study 4 Gamma(mean = 2.2, α = 12) Uniform(7, 14) 0.5
Study 5 Gamma(mean = 5.47, α = 54) Uniform(7.6, 8.4) 0.2
Study 6 exp(rḠ)∗ Uniform(6, 10) 0

Table 2: Probability distributions for R0, Ḡ, and κ. We use these probability distri-
butions to obtain a probability distribution for the exponential growth rate r. The Gamma
distribution is parameterized by its mean and shape α. Constant values are fixed according
to Table 1. ∗Study 6 uses the IDEA model (Fisman et al., 2013), through which the authors
effectively fit an exponential curve to the cumulative number of confirmed cases without
propagating any statistical uncertainty. Instead of modeling R0 with a probability distribu-
tion and recalculating r, we use r = 0.114 days−1, which explains all uncertainty in R0 they
report, when combined with the range of Ḡ they consider.

an assumption which used to be extremely common, particularly implicitly.
Fig. 2 shows how propagating uncertainty (µr, µG, and µκ) in different combinations

would affect estimates and CIs for R0. For illustrative purposes, we use our pooled esti-
mates, which may represent a reasonable proxy for the state of knowledge as of 26 January.
Comparing the models that include only some sources of uncertainty to the “all” model, we
see that propagating error from the growth rate (which all but one of the studies reviewed
did) is absolutely crucial: the middle bar (GI mean), which lacks growth-rate uncertainty,
is far too narrow. Propagating error from the generation interval also has important effects.
Once these two are included, the impact of leaving out uncertainty in the dispersion is small,
though noticeable, in this particular example.

We also evaluate the estimates of R0 across different studies by replacing their values of
r, Ḡ, and κ with our pooled estimates (µr, µG, and µκ) one at a time and recalculating the
basic reproductive number R0 (Fig. 3). We find that incorporating uncertainties one at a
time increases the width of the confidence intervals all but three cases. We estimate slightly
narrower confidence intervals for Study 2 and Study 6 when we use our pooled estimate
of the generation-interval dispersion µκ to recalculate R0 because they assume a narrow
generation-interval distribution (compare base with GI variation in Fig. 3); when higher
values of κ are used, their estimates of R0 become less sensitive to the values of r and Ḡ,
giving narrower confidence intervals. We estimate narrower confidence intervals for Study 4
when we use our pooled estimate of the mean generation time µG to recalculate R0 (compare
base with GI mean in Fig. 3) because the range of uncertainty in the mean generation time
Ḡ they consider is much wider than the pooled range (Fig. 1).

Consistent with our previous observations (Fig. 2), we find that accounting for uncertain-
ties in the estimate of r has the largest effect on the estimates of R0 (Fig. 3). For example,
recalculating R0 for Study 6 by using our pooled estimate of r gives R0 = 3.9 (95% CI:
2.3–9.8), which is much wider than the uncertainty range they reported (2.0–3.1). There
are two explanations for this result. First, even though the exponential growth rate r and
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Figure 1: Comparisons of the reported parameter values with our pooled esti-
mates. We inferred point estimates (black), uniform distributions (orange) or confidence
intervals (purple) for each parameter from each study, and combined them into pooled esti-
mates (red; see text). Open triangle: we assumed κ = 0.5 for Study 1 as they do not report
their generation interval dispersion.

the mean generation time Ḡ have identical effects on R0 under the gamma approximation
framework (Eq. 2 in Methods), r has a greater overall effect on R0 because it is associated
with more uncertainty (Fig. 1). Second, assuming a fixed generation time (κ = 0) makes the
estimate of R0 too sensitive to r and Ḡ as discussed previously.

Finally, we incorporate all uncertainties by using posterior samples for µr, µG, and µκ to
recalculate R0 and compare it with the reported R0 estimates. Our estimated R0 from the
pooled distribution has a median of 3.1 (95% CI: 2.1–5.7). While the point estimate of R0 is
similar to other reported values from this date range, the confidence intervals are wider than
those of other studies. This result does not imply that assumptions based on the pooled
estimate are too weak; we believe that this confidence interval more accurately reflects the
level of uncertainties present in the information that was available when these models were
fitted. In fact, because the pooled estimate does not account for overlap in data sources
used by the models, we feel that it is more likely to be over-confident than under-confident.
Our median estimate averages over the various studies, and therefore particular studies have
higher or lower median estimates. Here, our focus is on certainty, not on the reason for these
discrepancies.

3 Discussion

Estimating the basic reproductive number R0 is crucial for predicting the course of an
outbreak and planning intervention strategies. Here, we used a simple framework (Park
et al., 2019) to compare estimates of R0 for the novel coronavirus outbreak. Our results
demonstrate the importance of accounting for uncertainties associated with the underlying
generation-interval distributions, including with the amount of dispersion in the genera-
tion intervals: although our pooled estimates are relatively insensitive to the estimated
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Figure 2: Effects of r, Ḡ, and κ on the estimates of R0. We compare estimates of
R0 under five scenarios that propagate different combinations of uncertainties. base: R0

estimates based on the median estimates of µr, µG, and µκ. growth rate: R0 estimates
based on the the posterior distribution of µr while using median estimates of µG and µκ.
GI mean: R0 estimates based on the the posterior distribution of µG while using median
estimates of µr and µκ. growth rate + GI mean: R0 estimates based on the the joint
posterior distributions of µr and µG while using a median estimate of µκ. all: R0 estimates
based on the joint posterior distributions of µr, µG, and µκ. Vertical lines represent the 95%
confidence intervals.

uncertainty, our analysis of individual studies shows that assuming too narrow a generation-
interval distribution can make the estimate of R0 too sensitive to the estimates of the expo-
nential growth rate r.

In this study, we focused on propagating errors arising from implicit or explicit estimates
of growth rate and generation intervals. Other key issues underlying early estimates of R0

include statistical independence and types of noise.
Of the six studies that we reviewed, two of them directly fit their models to cumulative

number of confirmed cases. This approach can be appealing because of its simplicity and
apparent robustness, but fitting a model to cumulative incidence instead of raw incidence
can both bias parameters and give overly narrow confidence intervals, if the result non-
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Figure 3: Sensitivity of the reported R0 estimates with respect to our pooled
estimates of the underlying parameters. We replace the reported parameter values
(growth rate r, GI mean Ḡ, and GI variation κ) with our corresponding pooled estimates
(µr, µG, and µκ) one at a time and recalculate R0 (growth rate, GI mean, and GI
variation). The pooled estimate of R0 is calculated from the joint posterior distribution
of µr, µG, and µκ (all); this corresponds to replacing all reported parameter values with
our pooled estimates, which gives identical results across all studies. Horizontal dashed
lines represent the 95% confidence intervals of our pooled estimate of R0. The reported
R0 estimates (base) have been adjusted to show the approximate 95% confidence interval
using the probability distributions that we defined if they had relied on different measures
for parameter uncertainties.

independent error structures are not taken into account (Ma et al., 2014; King et al., 2015).
Naive fits to cumulative incidence data should be avoided.

There are many sources of noise in real-world incidence data, including both dynamical,
or “process”, noise (randomness that directly or indirectly affects disease transmission);
and observation noise (randomness underlying how many of the true cases are reported).
Disease modelers face the choice of incorporating one or both of these in their data-fitting
and modeling steps. This is not always a serious problem, particularly if the goal is inferring
parameters rather than directly making forecasts (e.g., Ma et al. (2014)). Modelers should
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be aware of the possibility that ignoring one kind of error can give overly narrow confidence
intervals (e.g., King et al. (2015)).

Here, we focused on the estimates of R0 that were published within a very short frame
of time (January 24th–26th). Although our analysis only reflects a snapshot of a fast-
moving epidemic, our lessons will hold: confidence intervals must combine different sources
of uncertainty. In fact, as epidemics progress and more data becomes available, it is likely
that inferences about exponential growth rate will become more precise; thus the risk of
over-confidence when uncertainty about the generation-interval distribution is neglected will
become greater.

We strongly emphasize the value of attention to accurate characterization of the trans-
mission chains via contact tracing and better statistical framework for inferring generation-
interval distributions from such data (Britton and Scalia Tomba, 2019). A combined effort
between public-health workers and modelers in this direction will be crucial for predicting
the course of an epidemic and controlling it. We also emphasize the value of transparency
from modelers. Model estimates during an outbreak, even in pre-prints, should include code
links and complete explanations. Ideally, the code should not rely on closed-source programs.

We have provided a basis for evaluating and comparing exponential-growth based es-
timates of R0 in terms of three simple components: the exponential growth rate, mean
generation interval, and generation interval dispersion. We are hopeful that this will provide
a guide to understanding and reconciling different estimates early in an epidemic.

4 Methods

4.1 Gamma approximation framework for linking r and R0

Early in an outbreak,R0 is difficult to estimate directly; instead,R0 is often inferred from the
exponential growth rate r, which can be estimated reliably from incidence data (Mills et al.,
2004; Nishiura et al., 2009; Ma et al., 2014). Given an estimate of the exponential growth rate
r and an intrinsic generation-interval distribution g(τ) (Champredon and Dushoff, 2015),
the basic reproductive number can be estimated via the Euler-Lotka equation (Wallinga and
Lipsitch, 2007):

1/R0 =

∫
exp(−rτ)g(τ)dτ. (1)

In other words, estimates of R0 must depend on the assumptions about the exponential
growth rate r and the shape of the generation-interval distribution g(τ).

Here, we use the gamma approximation framework (McBryde et al., 2009; Nishiura et al.,
2009; Roberts and Nishiura, 2011; Park et al., 2019) to (1) characterize the amount of
uncertainty present in the exponential growth rates and the shape of the generation-interval
distribution and (2) assess the degree to which these uncertainties affect the estimate of R0.
Assuming that generation intervals follow a gamma distribution with the mean Ḡ and the
squared coefficient of variation κ, we have

R0 =
(
1 + κrḠ

)1/κ
. (2)
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This equation demonstrates that a generation-interval distribution that has a larger mean
(higher Ḡ) or is less variable (lower κ) will give a higher estimate of R0 for the same value
of r.

4.2 Description of the studies

We reviewed 6 modeling studies of the novel coronavirus outbreak that were published online
between January 24th, 2020 and January 26th, 2020 (Table 1). Five studies (Liu et al.,
2020; Majumder and Mandl, 2020; Read et al., 2020; Riou and Althaus, 2020; Zhao et al.,
2020) were uploaded to pre-print servers (bioRxiv, medRxiv, and SSRN), and one report
was posted on the website of Imperial College London (Imai et al., 2020). There is a wide
variation in their statistical methods and the amount of data they used to infer R0. Imai
et al. (2020) and Riou and Althaus (2020) simulated branching process models and compared
the predicted number of cases from their models with the estimated number of total cases by
January 18th. Read et al. (2020) fitted a deterministic, metapopulation Susceptible-Exposed-
Infected-Recovered (SEIR) model to incidence data between January 1st and January 21st
from major cities in China and other countries. Zhao et al. (2020) and Liu et al. (2020)
fitted exponential growth models to incidence data up to January 22nd and January 23rd,
respectively, and inferred R0 via the Euler-Lotka equation (Eq. 1). Majumder and Mandl
(2020) fitted the Incidence Decay and Exponential Adjustment (IDEA) model (Fisman et al.,
2013) to incidence data up to January 26th, which is equivalent to fitting an exponential
growth model and assuming a fixed generation-interval distribution.

4.3 Statistical framework

For each study i, we construct a family of parameter sets by drawing 100,000 random samples
from the probability distributions (Table 2) that represent the estimates of R0i and the
assumed values of Ḡi and κi and calculating the exponential growth rate ri via the inverse
of Eq. 2:

ri =
R0i

κi − 1

κiḠi

. (3)

This allows us to approximate the probability distributions of the estimated exponential
growth rates by each study; uncertainties in the probability distributions that we calculate
for the estimated exponential growth rates will reflect the methods and assumptions that
the studies rely on.

We construct pooled estimates for each parameter (r, Ḡ, and κ) using a Bayesian mul-
tilevel modeling approach, which assumes that the parameters across different studies come
from the same gamma distribution:

ri ∼ Gamma(mean = µr, shape = αr),

Ḡi ∼ Gamma(mean = µG, shape = αG),

κi ∼ Gamma(mean = µκ, shape = ακ).

(4)
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We account for uncertainties associated with ri, Ḡi and κi (and their correlations), by drawing
a random set from the family of parameter sets for each study at each Metropolis-Hastings
step; this approach is analogous to Bayesian methods for analyzing phylogenetic data, which
often rely on drawing random samples of phylogenetic trees from a discrete set to account
for phylogenetic uncertainty (Pagel et al., 2004; Bedford et al., 2014). Since the gamma
distribution does not allow zeros, we use κ = 0.02 instead for Study 6. We note that this
approach does not account for non-independence between the parameter estimates made
by different modelers. As we add more models, we expect the pooled estimates to become
sharper even when the models no longer add more information. Thus, the pooled estimator
should be interpreted with care.

Weakly informative priors are assumed on the hyperparameters:

µr ∼ Gamma(mean = 1 week−1, shape = 0.1)

µG ∼ Gamma(mean = 1 week, shape = 0.1)

µκ ∼ Gamma(mean = 0.5, shape = 0.1)

(αr, αG, ακ) ∼ Gamma(mean = 1, shape = 0.1).

(5)

We run 4 parallel Markov Chain Monte Carlo (MCMC) chains that consist of 200,000
burnin steps and 200,000 sampling steps. Posterior samples are thinned every 400 steps.
Convergence is assessed by ensuring that the Gelman-Rubin statistic is below 1.01 for all
hyperparameters (Gelman et al., 1992). 95% confidence intervals are calculated by taking
2.5% and 97.5% quantiles from the posterior distribution. R code is available in GitHub
(https://github.com/parksw3/nCoV framework).
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Svensson, Å. (2007). A note on generation times in epidemic models. Mathematical bio-
sciences 208 (1), 300–311.

Wallinga, J. and M. Lipsitch (2007). How generation intervals shape the relationship between
growth rates and reproductive numbers. Proceedings of the Royal Society of London B:
Biological Sciences 274 (1609), 599–604.

Wearing, H. J., P. Rohani, and M. J. Keeling (2005). Appropriate models for the management
of infectious diseases. PLoS medicine 2 (7).

World Health Organization (2020a). Novel Coronavirus (2019-nCoV) Situation Report
- 6. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200126-
sitrep-6-2019–ncov.pdf?sfvrsn=beaeee0c 4. Accessed January 26, 2020.

World Health Organization (2020b). Novel Coronavirus (2019-nCoV) Situation Report
- 8. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200128-
sitrep-8-ncov-cleared.pdf?sfvrsn=8b671ce5 2. Accessed January 28, 2020.

World Health Organization (2020c). Pneumonia of unknown cause – China.
https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/.
Accessed January 30, 2020.

World Health Organization (2020d). Statement on the second meeting of the international
health regulations (2005) emergency committee regarding the outbreak of novel coron-
avirus (2019-ncov). https://www.who.int/news-room/detail/30-01-2020-statement-on-
the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-
regarding-the-outbreak-of-novel-coronavirus-(2019-ncov). Accessed January 30, 2020.

Zhao, S., J. Ran, S. S. Musa, G. Yang, Y. Lou, D. Gao, L. Yang, and D. He (2020).
Preliminary estimation of the basic reproduction number of novel coronavirus (2019-
nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the
outbreak. https://www.biorxiv.org/content/10.1101/2020.01.23.916395v1. Accessed 26,
January, 2020.

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 3, 2020. ; https://doi.org/10.1101/2020.01.30.20019877doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.30.20019877
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	Discussion
	Methods
	Gamma approximation framework for linking r and R0
	Description of the studies
	Statistical framework


