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Abstract  
Traveller screening is being used to limit further global spread of 2019 novel coronavirus (nCoV) 
following its recent emergence. Here, we analyze the expected impact of different travel 
screening programs given remaining uncertainty around the values of key nCoV life history and 
epidemiological parameters. Even under best-case assumptions, we estimate that screening will 
miss around half of infected travellers. Breaking down the factors leading to screening 
successes and failures, we find that most cases missed by screening are fundamentally 
undetectable, because they have not yet developed symptoms and are unaware they were 
exposed. These findings emphasize the need for measures to track travellers who become ill 
after being missed by a travel screening program. We make our model available for interactive 
use so stakeholders can explore scenarios of interest using the most up-to-date information. We 
hope these findings contribute to evidence-based policy to combat the spread of nCoV, and to 
prospective planning to mitigate future emerging pathogens.  
 
Introduction 
As of January 28, 2020, the novel 2019 coronavirus (nCoV) outbreak has been intensifying 
rapidly in China, and has demonstrated potential for international spread.  Many jurisdictions 
have imposed traveller screening and other travel restrictions (World Health Organization, 
2020).  It is widely recognized that screening measures are imperfect barriers to spread (Bitar et 
al., 2009; Gostic et al., 2015; Mabey et al., 2014), due to a range of factors including: the 
absence of detectable symptoms during the incubation period; variation in the severity and 
detectability of symptoms once the disease begins to progress; imperfect performance of 
screening equipment or personnel; or active evasion of screening by travellers. Previously we 
estimated the effectiveness of traveller screening for a range of pathogens that have emerged in 
the past, and found that arrival screening would miss 50–75% of infected cases even under 
optimistic assumptions (Gostic et al., 2015). Yet the quantitative performance of different 
policies matters for planning interventions and will influence how public health authorities 
prioritize different measures as the international and domestic context changes.  Here we use a 
mathematical model to analyse the expected performance of different screening measures for 
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nCoV, based on what is currently known about its natural history and epidemiology and on 
different possible combinations of departure and arrival screening policies.  
 
Our previous analysis considered the contributions of both departure and arrival screening 
programs, focusing on the context of international spread of infections via air travel. In the 
current context of the nCoV outbreak, both departure and arrival screening have been proposed 
and implemented in some countries, though neither approach is likely to be applied uniformly to 
all air travellers.  Traveller screening is also being applied in other contexts, including at 
roadside spot checks on major routes out of Wuhan. These are directly analogous to departure 
screens in our earlier analysis, i.e. one-off screening efforts with no delay due to travel duration.  
 
As of January 28, 2020, the Chinese government has been expanding the geographic area and 
modes of transportation subject to strong travel restrictions. If there was perfect compliance and 
the restricted area encompassed all areas with community transmission of the virus, then these 
measures could in theory eliminate the necessity of wider traveller screening.  However, multiple 
factors point to on-going risk, including the existence of substantial numbers of cases in several 
population centers outside Wuhan, and reports of citizens seeking to elude the restrictions or 
leaving before restrictions were in place. As the virus continues to spread within China, and as 
cases continue to pop up in other countries, the risk of exportation of cases from beyond the 
current travel-restricted area is likely to grow.  
 
As a result, increasing emphasis has been placed on the effectiveness of arrival screening to 
prevent importation of cases to areas without established spread.  At the same time, there is 
great concern about potential public health consequences if nCoV spreads to developing 
countries that lack health infrastructure and resources to combat it effectively.  Limited 
resources also could mean that some countries cannot implement large-scale arrival screening. 
In this scenario, departure screening would be the sole barrier -- however leaky -- to importation 
of cases into these countries. It is also important to recognize that, owing to the lag time in 
appearance of symptoms in imported cases, any weaknesses in screening would continue to 
have an effect on case importations for up to two weeks (roughly, the maximum reported 
incubation period) after changes in screening policy or epidemic context in the source region. 
Accordingly, we consider scenarios with departure screening only, arrival screening only, or 
both departure and arrival screening.  The model also considers the consequences when only a 
fraction of the traveller population is screened, due either to travel from a location not subject to 
screening, or due to deliberate evasion of screening. 
 
The central aim of our analysis is to assess the expected effectiveness of screening for nCoV, 
taking account of current knowledge and uncertainties about the natural history and 
epidemiology of the virus. We therefore show results using the best estimates currently 
available, in the hope of informing policy decisions in this fast-changing environment.  We also 
make our model available for public use as a user-friendly online app, so that stakeholders can 
explore scenarios of particular interest, and results can be updated rapidly as our knowledge of 
this new viral threat continues to expand. 
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Results 
 
Model 
 
The core model has been described previously (Gostic et al., 2015), but to summarize briefly, it 
assumes infected travellers can be detained due to the presence of detectable symptoms (fever 
or cough), or due to self-reporting of exposure risk via questionnaires or interviews. Before 
screening, travellers can be classified into one of four categories: (1) symptomatic and aware 
that exposure may have occurred, (2) symptomatic but not aware of exposure risk, (3) aware of 
exposure risk but without detectable symptoms, and (4) neither symptomatic nor aware of 
exposure risk (Fig. 1). Travellers in the final category are fundamentally undetectable, and 
travellers in the third category are only detectable if aware that they have been exposed and 
willing to self report.  
 
In the model, screening for symptoms occurs prior to questionnaire-based screening for 
exposure risk, and detected cases do not progress to the next stage. This approach allows us to 
track the fraction of cases detected using symptom screening or risk screening at arrival or 
departure. Additionally, the model keeps track of four ways in which screening can miss infected 
travellers: (1) due to imperfect sensitivity, symptom screening may fail to detect symptoms in 
travellers that display symptoms; (2) questionnaires may fail to detect exposure risk in travellers 
aware they have been exposed, owing to deliberate obfuscation or misunderstanding; (3) 
screening may fail to detect both symptoms and known exposure risk in travellers who have 
both and (4) travellers not exhibiting symptoms and with no knowledge of their exposure are 
fundamentally undetectable. Here, we only consider infected travellers who submit to screening. 
However, the supplementary app allows users to consider scenarios in which some fraction of 
infected travellers intentionally evade screening (Fig. 1F). 
 
Parameters 
 
The probability that an infected traveller is detectable in a fever screen depends on: the 
incubation period (the time from exposure to onset of detectable symptoms); the proportion of 
subclinical cases (mild cases that never develop detectable symptoms); the sensitivity of 
thermal scanners used to detect fever; the fraction of cases aware they have high exposure risk; 
and the fraction of those cases who would self-report truthfully on a screening questionnaire. 
Further, the distribution of individual times since exposure affects the probability than any single 
infected traveller has progressed to the symptomatic stage. In a growing epidemic, the majority 
of infected cases will have been recently exposed, and will not yet show symptoms. We used 
methods described previously to estimate the distribution of individual times since exposure for 
different parameter regimes (Gostic et al., 2015). Briefly, the model assumes the fraction of 
cases who are recently exposed increases with R​0​. The distribution of times since exposure is 
truncated at a maximum value, which corresponds epidemiologically to the maximum time from 
exposure to patient isolation, after which point we assume cases will not attempt to travel. 
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(Isolation may occur due to hospitalization, or due to confinement at home in response to 
escalating symptoms or nCoV diagnosis).  
 
 
 
 

 
 
Fig 1. Model of traveller screening process, ​adapted from Gostic et al., eLife, 2015. Infected 
travellers fall into one of five categories: (A) Symptomatic cases aware of exposure risk are 
detectable in both symptom screening and questionnaire-based risk screening. (B) Subclinical 
and not-yet-symptomatic cases aware of exposure risk are only detectable using risk screening. 
(C)  Symptomatic cases unaware of exposure risk are only detectable in symptom screening. 
(D-E) Subclinical cases who are unaware of exposure risk, and individuals that evade 
screening, are fundamentally undetectable. 
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Parameter Best estimate 
(Analyses in Fig. 2) 

Plausible range 
(Analyses in Fig. 3) 

References and rationale 

Mean incubation 
period  

5.5 days 
Sensitivity: 4 days or 
7 days 

4-7 days 3-6 days (Chan et al., 2020) 
4.8 days (Lui et al., 2020) 
5.7 days (Backer et al., 2020) 

Incubation period 
distribution 

Gamma distribution with shape = , scale1.2
mean  

= 1.2. 

Percent of cases 
subclinical 
(Never detectable in 
symptom screen) 

Best case scenario: 5% 
Middle case scenario: 25% 
Worst case scenario: 50% 

Of 6 cases 83% had fever and 67% had 
cough. (Chan et al., 2020) 
Of 41 cases, 98% had fever and 76% had 
cough. (Huang et al., 2020) 
The data focus on relatively severe, 
hospitalized cases. Overall prevalence of 
subclinical cases may be higher. 

R0 No effect in 
individual-level 
analysis. 

2-4 2.2 (Riou and Althaus, 2020) 
2.6 (Imai et al., 2019) 
3.9 (Read et al., 2020) 
2.9 (Liu et al., 2020)  

Percent of travellers 
aware of exposure 
risk 

20% 5-40% We assume a low percentage, as no 
specific risk factors have been identified, 
and known times or sources of exposure 
are rarely reported in existing line lists. 

Sensitivity of thermal 
scanners for fever 

70% 60%-90% Individual studies report sensitivity from 
4-89% (Bitar et al., 2009) 

Probability that 
travellers self-report 
exposure risk 

25% 5%-25% 25% is an upper-bound estimate based 
on outcomes of past screening initiatives. 
(Gostic et al., 2015) 

Time from symptom 
onset to patient 
isolation  
 
(After which we 
assume travel is not 
possible) 

Not effect in 
individual-level 
analysis. 

3-7 days Median 7 days from onset to 
hospitalization (n = 6) (Chan et al., 2020) 
Mean 2.9 days onset to patient isolation 
(n = 164) (Liu et al., 2020)  
Median 7 days from onset to 
hospitalization (n = 41) (Huang et al., 
2020) 

 
Table 1.  Parameter values estimated in currently available studies, along with 
accompanying uncertainties and assumptions.  
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At the time of this writing, nCoV-specific estimates are available for most of these parameters, 
but almost all have been derived from limited or preliminary data sources and remain subject to 
considerable uncertainty. Table 1 and the Methods summarize the current state of knowledge. 
Here, we used two distinct approaches to incorporate this uncertainty into our analysis.  
 
First, to estimate the probability that an infected individual would be detected or missed (Fig. 2), 
we considered a range of plausible values for the mean incubation time, and the fraction of 
subclinical cases. We focus on these two parameters because screening outcomes are 
particularly sensitive to their values. All other parameters used to generate Fig. 2 were fixed to 
the best available estimates listed in Table 1. 
 
Second, we considered a population of infected travellers, each with a unique time of exposure, 
and in turn a unique probability of having progressed to the symptomatic stage. Here, the model 
used a resampling-based approach to simultaneously consider uncertainty from both (1) 
stochasticity in any single individual’s screening outcome, and (2) uncertainty as to the true, 
underlying natural history parameters driving the epidemic. Details are provided in the methods, 
but briefly, we constructed 1000 plausible parameter sets, drawn using Latin hypercube 
sampling from plausible ranges for each parameter (Table 1). Using each parameter set, we 
simulated screening outcomes for a population of 100 individuals. Fig. 3A shows the distribution 
of infected travellers detected per simulation, and Fig. 3B shows the mean fraction of individuals 
with each screening outcome from across all simulations. 
 
 
Individual probabilities of a given screening outcome 
 
Our model outputs the probability of different screening outcomes through time, including the 
overall likelihood of detecting the infected traveller and the different contributions to success or 
failure. First, we explored the probability that any particular infected individual would be detected 
by a screening program, as a function of the time between exposure and the initiation of travel 
(Fig. 2).  A crucial driver of the effectiveness of traveller screening programs is the duration of 
the incubation period, particularly since infected people are most likely to travel before the onset 
of symptoms.  Here we considered three scenarios with different mean incubation periods: 5 
days is most consistent with most existing estimates, while 3 and 7 days provide a sensitivity 
analysis within the plausible range (Backer et al., 2020; Chan et al., 2020; Liu et al., 2020).  For 
longer incubation periods, we found that larger proportions of departing travellers would not yet 
be exhibiting symptoms – either at departure or arrival – which in turn reduced the probability 
that screening would detect these cases, especially since we assume few infected travellers will 
realize they have been exposed to nCov. 
 
A second crucial uncertainty is the proportion of cases that will develop detectable symptoms. 
We considered scenarios in which  5%, 25% and 50% of cases are subclinical, representing a 
best, middle and worst-case scenario, respectively. The middle and worst-case scenarios have 
predictable and discouraging consequences for the effectiveness of traveller screening, since 
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they render large fractions of the population undetectable by fever screening (Fig. 2). 
Furthermore, mild cases who are unaware of their exposure risk are never detectable, by any 
means. This is manifested as the bright red ‘undetectable’ region which persists well beyond the 
mean incubation period.  
 
For a screening program combining departure and arrival screening, as shown in Fig. 2, the 
greatest contributor to case detection is the departure fever screen.  The arrival fever screen is 
the next greatest contributor, with its value arising from two factors: the potential to detect cases 
whose symptom onset occurred during travel, and the potential to catch cases missed due to 
imperfect instrument sensitivity in non-contact infrared thermoscanners (Table 1).  Considering 
the effectiveness of departure or arrival screening only (Fig 2 - Supplementary figure 1-2), we 
see that fever screening is the dominant contributor in each case, but that the risk of missing 
infected travellers due to undetected fever is substantially higher when there is no redundancy 
from two successive screenings. 
 
 

 
Fig 2. Individual outcome probabilities for travellers who screened at given time since 
infection. ​Columns show three possible mean incubation periods, and rows show three 
plausible probabilities that an infected person is subclinical. ​ ​Here, we assume screening occurs 
at both arrival and departure; see Fig. 2 - supplementary figure 1 and Fig. 2 - supplementary 
figure 2 for departure or arrival screening only. Here, we assume flight duration = 24 hours, the 
probability that an individual is aware of exposure risk is 0.2, the sensitivity of fever scanners is 
0.7, and the probability that an individual will truthfully self-report on risk questionnaires is 0.25. 
The black dashed lines separate detected cases (below) from missed cases (above). 
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Fig 3. Population-level outcomes of screening programs in a growing epidemic. ​(A) Violin 
plots of the fraction of infected travellers detected, accounting for current uncertainties by 
running 1000 simulations using parameter sets randomly drawn from the ranges shown in Table 
1. Dots and vertical line segments show the median and central 95%, respectively. Text above 
each violin shows the median fraction detected. (B) Mean fraction of travellers with each 
screening outcome. The black dashed lines separate detected cases (below) from missed 
cases (above). 
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Overall screening effectiveness in a population of infected travellers during a growing epidemic 
 
We next aimed to compute population-level estimates of the effectiveness of different screening 
programs, as well as the uncertainties arising from the current partial state of knowledge about 
this recently-emerged virus.  To do so, we modeled plausible population-level outcomes by 
tracking the fraction of infected travellers detained, given a growing epidemic and current 
uncertainty around parameter values. We separately consider the best, middle and worst-case 
scenarios for the proportion of infections that are subclinical, and for each scenario we compare 
the impact of departure screening only, arrival screening only, or programs that include both.  
 
The striking finding is that even under the best-case assumptions, with just one infection in 
twenty being subclinical and all travellers passing through departure and arrival screening, the 
median fraction of infected travellers detected is only 0.31, with 95% interval extending from 
0.17 up to 0.48 (Fig. 3A).  The total fraction detected is lower for programs with only one layer of 
screening, with arrival screening preferable to departure screening owing to the possibility of 
symptom onset during travel. Considering higher proportions of subclinical cases, the overall 
effectiveness of screening programs is further degraded, with a median of just one in five 
infected travellers detected by departure screening in the worst-case scenario.  
 
The key driver of these poor outcomes is that, even in the best-case scenario, nearly half of 
infected travellers will not be detectable (as shown by the red regions in Fig. 3B). This is 
because in a growing epidemic, the majority of travellers will have been recently infected and 
hence will not yet have progressed to the symptomatic stage, and because we assume that few 
are aware of their exposure risk.  As above, the dominant contributor to successful detections is 
fever screening.  

 
 

Interactive online app for public use 
 
We have developed an interactive web application using Shiny in which users can replicate our 
analyses using parameter inputs that reflect the most up-do-date information. The app can be 
accessed at ​https://faculty.eeb.ucla.edu/lloydsmith/screeningmodel ​. Please note that while the 
results in Fig. 3 consider a range of plausible values for each parameter, the outputs of the 
Shiny app are calculated using fixed, user-specified values only. 
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Discussion  
 
The international expansion of nCoV cases has led to travel screening measures being 
proposed and implemented in numerous countries. Given the rapid growth of the epidemic in 
China, emphasis on these measures is likely to rise in an attempt to prevent community spread 
of the virus in new geographic areas.  Using a mathematical model of screening with preliminary 
estimates of nCoV epidemiology and natural history, we found that screening will in the best 
case only detect around half of infected travellers. We found that two main factors influenced 
the effectiveness of screening. First, symptom screening depends on the natural history of an 
infection: individuals are increasingly likely to show detectable symptoms with increasing time 
since exposure. A fundamental challenge of screening is that many infected individuals will 
travel during their incubation period, a point at which they still feel healthy enough to travel but 
are simultaneously most difficult to detect. This effect is amplified when the incubation period is 
longer; infected individuals have a longer window in which they may travel with low probability of 
detection. Second, screening depends on whether exposure risk factors exist that would 
facilitate specific and reasonably sensitive case detection by questionnaire. For nCoV, there is 
so far limited evidence for specific risk factors; we therefore assumed that at most 40% of 
travellers would be aware of a potential exposure, and that a minority would self-report their 
exposure honestly, which led to limited effectiveness in questionnaire-based screening. The 
confluence of these two factors led to many infected travellers being fundamentally 
undetectable. Even under our most generous assumptions about the natural history of nCoV, 
the presence of undetectable travellers made the greatest contribution to screening failure. 
Correctable failures, such as missing fever or risk awareness that is present, played a more 
minor role. 
 
There are some limitations to our analysis. Parameter values for nCoV, such as the incubation 
period, are based on the limited data currently available. For such parameters, the tail of the 
distribution is important for understanding the potential for long delays until symptoms, but the 
tails of skewed distributions are notoriously difficult to characterize using limited data. In 
general, current parameter estimates may also be affected by bias or censoring, particularly in 
the early stages of an outbreak when most cases have been recently infected, and when data is 
primarily available for relatively severe, hospitalized cases. Another crucial uncertainty 
highlighted by our analysis is the frequency of cases too mild or non-specific to be detected as 
nCoV infections. At least one asymptomatic case has been confirmed in a child (Chan et al., 
2020), and young people (<25 years old) have been conspicuously underrepresented among 
hospitalized cases (Huang et al., 2020). The possibility cannot be ruled out that large numbers 
of subclinical cases are occurring, especially in young people. If an age-by-severity interaction 
does indeed exist, then the mean age of travellers should be taken into account when 
estimating screening effectiveness. A follow-on question, with major implications for the risk of 
establishing on-going spread in new locales, is whether subclinical cases are as infectious as 
the severe cases studied to date.  
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As country-specific screening policies can change rapidly in real-time, we focused on a general 
screening framework rather than specific case studies. We also assumed traveller adherence 
and no active evasion of screening. However, there are informal reports of people taking 
antipyretics to beat fever screening (Mahbubani, 2020), which would further reduce the 
effectiveness of these methods. With travel restrictions in place, individuals may also take 
alternative routes (e.g. road rather than air), which would in effect circumvent departure and/or 
arrival screening as a control measure. Our quantitative findings may overestimate screening 
effectiveness if many travellers evade screening. 
 
Our results have several implications for the design and implementation of control measures. 
Arrival screening could delay the introduction of cases if the infection is not yet present, or 
reduce the initial rate of spread by limiting the number of parallel chains of transmission initially 
present in a country. But because screening is inherently leaky, it is crucial to also have 
measures in place to identify cases missed at arrival screening. For example, travellers could be 
provided with an information card to self-screen and self-report (Public Health England, n.d.), 
alongside increased general surveillance/alertness in healthcare settings. We should not take 
false confidence from reports that infected travellers are being detected by existing screening 
programs. Our findings indicate that for every case detected by travel screening, there are likely 
one or two other infected travellers that were not caught, and must be found and isolated by 
other means.  
 
The expected high miss rate of screening programs also has implications for assessing when 
different programs are worthwhile investments. For areas yet to experience community-based 
transmission of the virus, and subject to substantial traveller inflows from affected areas, arrival 
screening can delay importation of cases and build awareness among incoming travellers. 
Even once there is some early-stage community transmission in a specific location, arrival 
screening may still reduce the chance of multiple independent transmission chains and ease the 
work of contact tracing teams, although the relative benefit of such screening for overall case 
prevention with decline as local transmission increases. Once there is generalized spread which 
has outpaced contact tracing, departure screening to prevent export of cases to new areas will 
be more valuable than arrival screening to identify additional incoming cases.  However the 
cost-benefit tradeoff for any screening policy should be assessed in light of past experiences, 
where few or no infected travellers have been detected by such programs (Bitar et al., 2009; 
Gostic et al., 2015). 
 
Several factors could potentially strengthen the screening measures described here. With 
improved efficiency of thermoscanners or other symptom detection technology, we would 
expect a smaller difference between the effectiveness of arrival-only screening and combined 
departure and arrival screening in our analysis. Alternatively, the benefits of redundant 
screening (noted above for programs with departure and arrival screens) could be gained in a 
single-site screening program by simply having two successive fever-screening stations that 
travellers pass through. As risk factors become better known, questionnaires could be refined to 
identify more potential cases. Alternatively, less stringent definition of high exposure risk (e.g. 
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contact with anyone with respiratory symptoms) would be more sensitive. These approaches 
would boost sensitivity of screening, but could also incur a large cost in terms of false positives 
detained, especially during influenza season.  
 
The availability of rapid PCR tests would also be beneficial for case identification at arrival, and 
would address concerns with false-positive detections. If such tests were fast, there may be 
potential to test suspected cases in real time based on questionnaire responses, travel origin, or 
borderline symptoms. However, such measures could prove highly expensive if implemented at 
scale. There is also scope for new tools to improve the ongoing tracking of travellers who pass 
through screening, such as smartphone-based self-reporting of temperature or symptoms in 
incoming cases.  Recent travellers could even be asked to maintain a diary of close contacts for 
14 days following arrival, to expedite contact tracing in the event they become ill with nCoV. 
This would be cheaper and more scalable than intense follow-up, but is likely to be limited by 
user adherence. 
 
Our analysis underlines the reality that respiratory viruses are difficult to detect by travel 
screening programs, particularly if a large fraction of infected people show mild or indistinct 
symptoms, and if incubation periods are long.  Quantitative estimates of screening effectiveness 
will improve as more is learned about this recently-emerged virus, and will vary with the precise 
design of screening programs. However, we present a robust qualitative finding: in any situation 
where there is widespread epidemic transmission in source populations from which travellers 
are drawn, travel screening programs can slow but not stop the importation of infected cases. 
By decomposing the factors leading to success or failure of screening efforts, our work supports 
decision-making about program design, and highlights key questions for further research. We 
hope that these insights may help to mitigate the global impacts of nCoV by guiding effective 
decision-making in high- and low-resource countries, and may contribute to prospective 
improvements in travel screening policy for future emerging infections.  
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Materials and Methods 
 
Modeling strategy 
 
The model’s structure is summarized above (Fig. 1), and detailed methods have been described 
previously (Gostic et al., 2015). Here, we summarize relevant extensions, assumptions and 
parameter inputs. 
 
Extensions 
 
Previously, we kept track of all the ways in which infected travellers can be detected by 
screening (fever screen, or risk factor screen at arrival or departure). Here, we additionally keep 
track of the many ways in which infected travellers can be missed (missed given fever present, 
missed given exposure risk present, missed given both present, or missed given undetectable). 
Cases who have not yet passed the incubation period are considered undetectable by fever 
screening, even if they will eventually develop symptoms in the future. In other words, no 
traveller is considered “missed given fever present” until they have passed the incubation period 
and show detectable symptoms. If arrival screening occurs, cases who progress to symptoms in 
flight are considered detectable by fever screening. Additionally, in the supplementary user 
interface, we implemented the possibility that some fraction of infected travellers deliberately 
evade screening. 
 
Fraction of subclinical cases 
Our best-case scenario, in which only 5% of cases are subclinical, is consistent with the fact that 
the vast majority of nCoV cases detected to date have shown fever or other detectable 
symptoms (Chan et al., 2020; Huang et al., 2020).  But so far the data have primarily captured 
severe, hospitalized cases, so the true fraction of subclinical nCoV cases remains a crucial 
unknown.  Particularly given the conspicuous under-representation of children and young adults 
among hospitalized patients (Huang et al., 2020), our medium and worst-case scenarios (75% 
and 50% subclinical) remain plausible. 
 
Incubation period distribution 
 
Numerous recent studies have estimated that the incubation period lasts around five days on 
average (Chan et al., 2020; Liu et al., 2020), and the Chinese National Health Commission has 
stated that incubation periods can be as long as 14 days (Reuters, 2020). Consistent with these 
observations, a recent study by Backer, Klinkberg and Wallinga (2020) characterized the 
incubation period distribution for nCoV, concluding that a Weibull distribution provided the best 
fit to data, but that a gamma distribution performed almost as well. We proceed by adopting 
their best-fit gamma distribution (mean 5.7 days, s.d. 2.6, or alternatively, shape = 4.8, scale = 
1.2), as the gamma form is more computationally convenient within our model. In order to vary 
the mean incubation period in our uncertainty analyses while maintaining the shape of this 
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two-parameter distribution, we fix the scale parameter to 1.2, and set the shape parameter 
equal to (Fig. 3 - supplementary figure 1).1.2

mean   
 
Effectiveness of exposure risk questionnaires 
 
The probability that an infected traveller is detectable using questionnaire-based screening for 
exposure risk will be highest if specific risk factors are known. Other than close contact with a 
known nCoV case, or contact with the Hunan seafood wholesale market in the earlier phase of 
the outbreak in Wuhan, we are not aware that any specific risk factors have been identified. 
Given the relative anonymity of respiratory transmission, we assume that a minority of infected 
travellers would realize that they have been exposed before symptoms develop (20% in Fig. 2, 
range 5-40% in Fig. 3). Further, relying on a previous upper-bound estimate (Gostic et al., 2015) 
we assume that only 25% of travellers would self-report truthfully if aware of elevated exposure 
risk.  
 
Table 1 summarizes the state of knowledge about additional key natural history parameters, as 
of January 28, 2020. 
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Supplementary Figures 
 

 
Fig 2-Supplementary figure 1. Departure screening only. 
 
 

 
Fig 2-Supplementary figure 2. Arrival screening only. 
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Fig 3 - Supplementary figure 1. Plausible incubation period distributions underlying the 
analyses in Fig. 3 ​. The black line shows the probability density function of the best-fit gamma 
distribution reported by (Backer et al., 2020).  Other lines show the probability density functions 
for different assumptions regarding the mean incubation period.  Each is a gamma distribution 
with scale = 1.2, and shape = .1.2

mean  
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