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Abstract—Transcutaneous cervical vagal nerve stimulation 

(tcVNS) devices are attractive alternatives to surgical implants, 

and can be applied for a number of conditions in ambulatory 

settings, including stress-related neuropsychiatric disorders. 

Transferring tcVNS technologies to at-home settings brings 

challenges associated with the assessment of therapy response. The 

ability to accurately detect whether tcVNS has been effectively 

delivered in a remote setting such as the home has never been 

investigated. We designed and conducted a study in which 12 

human subjects received active tcVNS and 14 received sham 

stimulation in tandem with traumatic stress, and measured 

continuous cardiopulmonary signals including the 

electrocardiogram (ECG), photoplethysmogram (PPG), 

seismocardiogram (SCG), and respiratory effort (RSP). We 

extracted physiological parameters related to autonomic nervous 

system activity, and created a feature set from these parameters 

to: 1) detect active (vs. sham) tcVNS stimulation presence with 

machine learning methods, and 2) determine which sensing 

modalities and features provide the most salient markers of 

tcVNS-based changes in physiological signals. Heart rate (ECG), 

vasomotor activity (PPG), and pulse arrival time (ECG+PPG) 

provided sufficient information to determine target engagement 

(compared to sham) in addition to other combinations of sensors. 

resulting in 96% accuracy, precision, and recall with a receiver 

operator characteristics area of 0.96. Two commonly utilized 

sensing modalities (ECG and PPG) that are suitable for home use 

can provide useful information on therapy response for tcVNS. 

The methods presented herein could be deployed in wearable 

devices to quantify adherence for at-home use of tcVNS 

technologies.  

 
Index Terms—traumatic stress, physiological biomarkers, vagal 

nerve stimulation, wearable bioelectronic medicine, wearable 

neuromodulation, wearable sensing. 

 

I. INTRODUCTION 

HE vagus nerve is a complex cranial nerve which, via 

connections to the brain, neck, heart, lungs, and abdomen, 

mediates autonomic tone within the body. Efferent vagal 

projections interface with  peripheral organs to mediate 

autonomic, endocrine, and behavioral responses [1]. Electrical 

stimulation of the vagus nerve has promising therapeutic effects 

on inflammatory, psychiatric, and cardiovascular disorders, 

either through implantable or noninvasive devices [2, 3]. The 

latter method includes transcutaneous stimulation of the 

auricular branch (in the ear) or the cervical branch (at the neck). 

Auricular and cervical VNS (taVNS and tcVNS) appear to 

activate cortical brain areas receiving vagal projections [4] 

along with limbic structures [5] which have been hypothesized 

to affect baroreception and prioprioception. Noninvasive vagal 

stimulation technologies have similar therapeutic benefits 

compared to the implanted counterparts, while avoiding the 

need for surgery. These noninvasive technologies have great 

potential for daily at-home use for rehabilitation, mood, and 

performance improvement [6, 7]. Moreover, existing research 

demonstrates their safety and tolerability for use in human 

subjects [8, 9].  

 Although taVNS and tcVNS have similar effects in imaging 

studies, they should be considered separate as the stimulation 

targets different locations of the vagus nerve -auricular branch 

through the ear and cervical branch through the neck, 

respectively. Hour-long sessions of taVNS have been shown to 

improve vagal tone [10, 11]. Favorable outcomes have been 

reported for migraine [12], epilepsy [13], major depression [14, 

15], posttraumatic stress disorder [16]. Pairing taVNS with 
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Fig. 1.  Wearable neuromodulation technologies can interface with 

noninvasive sensing. Ongoing activity acquired from one or more sensors can 

be utilized to assess cardiovascular and peripheral physiological response via 
signal processing. Events or changes in these data streams can then be decoded 

using machine learning via feature extraction, in order to dynamically trigger 

closed-loop delivery when needed, and to quantify patient adherence and 
stimulation efficacy for at-home therapy. 
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acute psychological stress was also studied: taVNS was shown 

to improve subjective fear and worry responses [17-19]. The 

newer and less common approach, tcVNS, was shown to 

decrease serum cytokines, and improve cardiac vagal tone [20, 

21]. Clinically-relevant effects of minute-long sessions of 

tcVNS have been reported for conditions such as trigeminal 

allodyna [22], and cluster headache [23]. tcVNS is particularly 

suitable for acute therapies due to short session time (two 

minutes) when stress-related neuropathways are activated. 

 The investigation of tcVNS applied in tandem with acute 

traumatic stress is clinically relevant. Patients with trauma-

related psychiatric disorders may experience traumatic 

flashbacks multiple times a day, triggered by, for example, 

sensory data (odor, sound, room size), cues related to the 

traumatic event, or even temporal data (incident repeated at the 

same time of the day) [24-28]. These specific triggers may be 

relevant to personal traumatic memories from sexual assault to 

combat exposure [29]. Recently, we demonstrated clinically-

relevant physiological effects of tcVNS as measured by 

downstream physiological signals [30], as a first step to 

evaluate the merit of tcVNS usage in context of traumatic stress. 

Engineering efforts to transfer tcVNS to at-home use bring 

challenges regarding the stimulation application. A 

fundamental challenge is the determination of whether 

stimulation delivered properly [31]: The electrode placement 

and stimulation intensity affect the current flow and 

distribution, hence the stimulation efficacy, as tcVNS 

electrodes are directly in contact with the skin rather than placed 

on the nerve itself (as with an implantable counterpart). Thus, 

personalized neuromodulation to provide feedback for the 

physician or for the patient on whether stimulation has been 

properly delivered to the vagus nerve is necessary for 

longitudinal treatment paradigms. As summarized in Fig. 1, 

interfacing tcVNS with noninvasive sensing modalities and 

extracting information to decode whether the stimulation 

engaged the nerve target could dramatically improve 

stimulation efficacy and provide closed-loop delivery in 

response to a detected event. Previous work from our group has 

demonstrated that certain physiological parameters appear to be 

reflective of tcVNS delivery compared to sham [30, 32, 33], but 

the ability to accurately detect whether tcVNS has been 

delivered has never been investigated. Continuous 

cardiovascular and peripheral physiological sensing offer a 

convenient tool for this investigation, due to the intimate 

relationship of the vagus with the heart and the peripheral 

physiology, and the ubiquity of noninvasive wearable 

technologies.  Previously, changes in individual features such 

as heart rate (HR) have been observed, the differences between 

groups in these individual features were not sufficient to allow 

for classifying whether or not tcVNS was properly delivered. 

Another point to consider is the optimization of the acquired 

modalities: while wearable sensing offers a convenient tool to 

quantify tcVNS, learning from the optimized modalities (i.e. 

“learning from less data”) would be favorable for hardware 

adaptations that possibly may not employ all measurement 

modalities discussed.   

In this work, we conducted a study with 26 human subjects, 

where 12 received active tcVNS and 14 received sham 

stimulation in tandem with acute traumatic stress. We collected 

continuous physiological signals related to the electrical and 

mechanical activity of the heart, peripheral blood volume, and 

respiration from electrocardiography (ECG), 

seismocardiography (SCG), photoplethysmography (PPG), 

respiratory effort (RSP) signals. Utilizing signal processing 

methods, we extracted parameters that are indicative of 

autonomic nervous system (ANS) activity, peripheral 

vasoconstriction, and respiration dynamics. Then, we employed 

machine learning techniques to determine the stimulation type, 

active or sham, from the extracted parameters and determined 

suitable sensing modalities for “in the wild” tcVNS use that 

could quantify therapy response, and ultimately enable closed-

loop tcVNS delivery when a traumatic stress trigger is detected. 

II. METHODS 

A. Human Subjects Study and tcVNS Application 

 The study focused on tcVNS effects on acute traumatic stress 

and was conducted under a protocol approved by the 

institutional review boards (IRB) of the Georgia Institute of 

Technology (#H17126), Emory University (#IRB00091171), 

and the Department of Navy Human Research Protection Office 

(HRPO), between May 2017 to October 2019 

(ClinicalTrials.gov registered trial #NCT02992899). A total of 

26 adults aged 18-65 who had experienced at least one 

psychologically traumatic event and based on Diagnostic and 

Statistical Manual-5 (DSM-5) criteria were recruited [34, 35]. 

Personal traumatic events were recorded upon recruitment and 

presented as voice recordings during the study session. After a 

baseline resting period, the stimulation was applied to the left 

side of the neck immediately after hearing the one-minute 

traumatic stress recording. The subjects kept supine position 

throughout the protocol. The protocol included two kinds of 

TABLE I 

DEMOGRAPHICS AND BASELINE PHYSIOLOGICAL PARAMETERS 

Parameter 
Active 

(n=12) 

Sham 

 (n=14) 
P-value 

Age [years] 28.7 (6.8) 30.8 (10.6) 0.57 

Sex [F, %] 5, 41.7% 9, 64.2% 0.25 

Weight [kg] 76.8 (13.9) 78.8 (14.1) 0.86 

Height [cm] 174.7 (11.1) 170.5 (6.7) 0.47 

BMI [kg/m2] 25 (3.2) 26.9 (4.2) 0.37 

HR [bpm] 67.4 (13.9) 62.4 (9) 0.63 

PEP [ms] 66.5 (17.7) 62.4 (9) 0.98 

PPG Amplitude [a.u.] 0.3 (0.3) 0.1 (0.1) 0.11 

PATFOOT [ms] 274 (31.7) 261.2 (19.2) 0.34 

PATPEAK [ms] 450.6 (38.2) 437.1 (34.1) 0.34 

RR [breath-pm] 17.3 (5.4) 18. (3) 0.63 

RW [s] 1.8 (0.7) 1.6 (0.3) 0.66 

RP [a.u.] 0.8 (0.6) 1.3 (0.9) 0.27 

F = female; BMI = Body-mass index; bpm = beats per minute;  
breath-pm = breaths per minute, values indicate mean (SD). 
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stimuli: active tcVNS or sham stimulus (GammaCore, 

ElectroCore, Basking Ridge, NJ), both of which were 

indistinguishable in appearance and operation with the 

following waveform characteristics: 5kHz sine bursts repeating 

at a rate of 25 Hz for the active tcVNS (0-30V peak output, 

adjustable intensity), and 0.2 Hz stepped pulse (0-14V peak 

output, adjustable intensity) for the sham stimulus, both lasting 

for two minutes. The subjects, the researchers, and the clinical 

staff were blinded to the device type. As the vagus nerve is 

typically located by the carotid artery, collar electrodes were 

placed on the left neck on top of the carotid pulse using a 

conductive electrode gel (GammaCore, ElectroCore, Basking 

Ridge, NJ) and the devices were operated by the researcher.  

B. Statistical Analysis 

 Subject demographics (age, gender, height, weight, body-

mass index) and baseline physiological parameters were 

compared between the two device groups, active and sham, to 

understand whether the groups were significantly different from 

each other. Normality was assessed using Shapiro-Wilk test. 

The comparisons were made using t-tests for normal continuous 

variables, Wilcoxon rank-sum tests for non-normal continuous 

variables, and chi-squared tests for categorical variables. P-

 
Fig. 2.  (a) ECG, PPG, SCG, RSP signals were processed and HR, PAT, PEP, PPG amplitude, RR, RW, RP were extracted as physiological parameters. 
(b) Using the extracted parameters, dataset constructed after normalization, resampling, and windowing. (c) After standardization, dimensionality 

reduction methods were applied for dataset visualization. Then, feature selection and machine learning were conducted. PATF: PATFOOT; PATP: PATPEAK; 

AO: Aortic opening; PPGA: PPG amplitude, μ: mean; σ: standard deviation; p: parameters; w: windows; f: features. 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 19, 2020. ; https://doi.org/10.1101/2020.01.27.20018689doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.27.20018689
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

values lower than 0.05 were considered statistically significant. 

Table I summarizes the demographics and baseline 

physiological parameter information for the subjects, for each 

device group: active and sham. The groups were determined to 

be balanced with equivalent baseline characteristics, rendering 

the data amenable to use for further engineering purposes. 

C. Physiological Monitoring 

 ECG, SCG, PPG, RSP signals were collected continuously 

throughout the protocol using wireless amplifiers for 3-lead 

ECG, RSP, and transmissive PPG signals (Bionomadix 

RSPEC-R and PPGED-R, Biopac Systems, Goleta, CA). SCG 

was measured in the dorsoventral direction using a low noise 

accelerometer placed on the middle of the sternum (356A32, 

PCB Electronics, Depew, NY). RSP measurement was taken 

using a respiration belt and the PPG measurement was taken 

from the index finger. All data were simultaneously recorded 

using a 16-bit data acquisition system at 2kHz (MP150, Biopac 

Systems, Goleta, CA). 

D. Signal Processing and Parameter Extraction 

Fig. 2a summarizes signal processing and parameter 

extraction paradigm, conducted in MATLAB (R2017b, Natick, 

MA). The physiological parameters related to ANS and 

peripheral physiological activity were extracted from four 

sensing modalities: ECG, PPG, SCG, RSP. First, the signals 

ECG, PPG, SCG were band-pass filtered with finite impulse 

response filters with cut-off frequencies 0.6-40Hz for ECG, 0.4-

8Hz for PPG and 0.5-25Hz for SCG [36]. PPG and SCG signals 

were beat-by-beat segmented with beat lengths of 150ms and 

600ms, respectively, with reference to the R-peaks of the ECG 

signal that are located by thresholding. These beat lengths were 

selected as they were adequate to capture the fiducial points in 

each beat. Exponential moving averaging was implemented for 

some of the parameter extraction tasks listed below to reduce 

motion artifacts [37]. The extracted parameters are listed below.  

Heart rate (HR): HR was extracted for multiple reasons. First, 

it is a basic vital sign used in clinical studies. Second, and more 

importantly, HR is regulated by both branches of the vagus-

regulated ANS, the sympathetic (SNS) and parasympathetic 

nervous systems (PNS) [38]. Multiple implantable (direct) and 

noninvasive VNS studies noted changes in HR [23, 39, 40]. 

Therefore, instantaneous HR was computed from the R-R 

intervals of the ECG signals (in beats per minute) as a complex 

indicator of ANS balance.  

PPG amplitude and pulse arrival time (PAT): The PPG signal 

is a rich and complex source of information about arterial tone 

(vasodilation or vasoconstriction), peripheral sympathetic 

activity, and relative changes in pulse pressure [41]; therefore, 

multiple parameters were extracted from this signal. The beat-

by-beat amplitude of the PPG waveform, computed as the 

difference between the maxima and minima of each beat, was 

extracted as a measure of the amplitude of the peripheral blood 

volume pulse, and indirectly reflects sympathetic activity. PAT, 

a measure of relative changes in blood pressure and the pre-

ejection period (PEP), was extracted as the time difference 

between R-peak of ECG to two different reference points of 

each PPG beat, named as PATFOOT (computed from through) 

and PATPEAK (computed from peak). A five-beat time constant 

for exponential moving averaging was used for PAT 

calculation. 

PEP: PEP is a systolic time interval measured from ECG and 

SCG beats as an acute indicator of contractility and cardiac 

sympathetic activity [42]. It is computed as the time delay from 

ECG R-peak to the second peak in SCG signal, with a three-

beat time constant for exponential moving averaging. 

Respiratory measures: As the vagus nerve is heavily involved 

in parasympathetic control, we also extracted measures that 

indicate respiratory variations and are documented to dominate 

the parasympathetic function from the RSP waveform [43]. 

These measures include respiratory rate (RR), width (RW), 

prominence (RP). The RSP signal was detrended to avoid 

undesired DC offset using a sixth order polynomial for each 

one-minute signal segment. The rate of the inspiration peak 

appearance was extracted as RR (in breaths per minute). After 

finding the peaks, the width and prominence of each peak were 

also extracted as RW and RP. 

E. Dataset Construction  

 Machine learning techniques were utilized for detecting 

target engagement using the continuously obtained 

physiological parameters. The approach consisted of 

determining if the physiological features could be used to 

correctly classify the stimulus type: active tcVNS or sham. Fig. 

2b depicts the dataset construction paradigm. The physiological 

parameters were extracted from stimulation and post-

stimulation intervals, which correspond to the data from the last 

minute of stimulation and one-minute data from three minutes 

after the stimulation ended, respectively. Then, these 

parameters were divided by the mean values obtained from the 

rest period to normalize inter-subject variability, as in our prior 

physiological sensing work [44]. The rest data were obtained 

before the stimulation protocol started, at the same body 

position the stimulation was carried out. The dataset for 

machine learning was constructed from the time-series data 

obtained from the normalized intervals. The extracted 

parameters were resampled to the length of the parameter that 

has the maximum length to equalize the length of each 

parameter within an interval for further usage of the resampled 

data in windowing (to obtain equal length of arrays for 

windowing), using an antialiasing FIR lowpass filter and 

compensating for the delay introduced by the filter [45]. 

Resampling was necessary as the length of respiratory features 

are approximately half of the beat-by-beat features per unit 

time, as human respiration and heartbeat frequency are different 

TABLE II 
ROC AUC SCORES OF CLASSIFIERS DERIVED USING LOSO-CV USING ALL 

FEATURES 

Naïve 

Bayes 

Random 

Forest 
k-NN 

Logistic 

Regression 
MLP 

0.52 0.76 0.56 0.80 0.71 

Decision 

Trees 

SVM 

(Linear) 

SVM 

(Polynomial) 

SVM 

(RBF) 

SVM 

(Sigmoid) 

0.62 0.80 0.66 0.65 0.98 

ROC AUC = Receiver operator characteristics area under curve; k-NN = 
k-Nearest Neighbors; MLP = Multilayer Perceptron; SVM (Kernel) = 

Support Vector Machine (Kernel Function); RBF = Radial Basis Function. 
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(12-20 breaths per minute respiratory rate versus 70-100 beats 

per minute heart rate). Then, instances were created by using 

10-sample sliding windows with 9-sample overlap (90% 

overlap). The features consisted of the mean, standard deviation 

(std), maximum (max), minimum (min), area under curve (auc) 

and slope (slp) of the extracted physiological parameters in each 

window. The approximate first order derivatives (differences 

between the adjacent elements) were also computed to generate 

additional parameters. The same feature calculation 

methodology was applied to the difference matrices (except 

slope). The multi-dimensional feature matrix was constructed 

from all extracted features and the corresponding labels as 

device types (tcVNS, sham). This matrix included features as 

columns and instances as rows, consisting of 176 features and 

1780 instances (827 tcVNS, 953 sham). Overall, these features 

were derived from 16 time-series data (HR, PEP, PPG 

Amplitude, PATFOOT, PATPEAK, RR, RW, RP in two intervals), 

with 11 mathematical properties derived from each of them and 

their differences. Later, the data were standardized across each 

feature to have a mean of zero (subtracting the mean in the 

numerator in Fig. 2c) and a standard deviation of one (unit 

variance, by dividing by the standard deviation of the data as 

seen in Fig. 2c). Standardization is necessary because some 

parameters respond differently for the same level of stress due 

to the physiological nature of the measurement. (i.e., 5% 

decrease in PEP or 80% decrease in PPG amplitude might both 

indicate similar levels of stress).  

F. Visualization, Feature Selection, Machine Learning 

 Fig. 2c summarizes the visualization, feature selection, and 

machine learning approach. For demonstration purposes, t-

distributed Stochastic Neighbor Embedding (t-SNE) was 

applied to the high-dimensional standardized feature matrix to 

visualize the dataset in two dimensions [46, 47].  For the 

machine learning paradigm, our primary concerns were 1) 

minimizing the number of features/sensing modalities used in 

classification to optimize the computational power and to 

determine which sensing modalities are necessary for a 

wearable implementation (note that there are a total of 176 

features from four sensors with unknown contributions to the 

classification task), 2) developing a realistic validation 

paradigm for a new subject who has just started undergoing 

stimulation. To address 1, we implemented a univariate feature 

selection paradigm based on sorting ANOVA F-statistics of 

features to eliminate redundant data without incurring 

significant loss of information [48].  Note that this feature 

selection step is not mandatory but optional. Assuming no need 

for optimization, not applying this step (simply using all 

features) did not cause a dramatic decrease in performance (See 

Table II, SVM with sigmoid kernel, which was used as our 

classifier). To address 2, we wanted to ensure that the training 

dataset are not biased for a new, incoming subject by using 

leave-one-subject-out cross validation (LOSO-CV). Typical 

methods such as K-fold cross validation would not guarantee 

that the training dataset does not have data from the incoming 

subject. The fact that there is data from the incoming subject in 

both the training and testing datasets will likely make the model 

know more about the target subject than it should. With an 

entirely new subject (not in the training dataset), the K-fold 

trained model will potentially perform poorly because it did not 

include data from the new subject in the training set before. 

LOSO-CV, on the other hand, guarantees there is no data from 

the incoming subject in the training dataset in model evaluation 

process already, hence this is a conservative approach to assess 

an expected performance for an incoming subject. Feature 

selection and LOSO-CV were implemented as follows: For 

each LOSO-CV loop, one subject was left out of the feature 

selection and classification model training, then used for 

testing. The procedure was repeated for each of the 26 subjects.  

 We determined the number of top features by implementing 

the feature selection and LOSO-CV and swiping the number of 

top features from 1 to 176. For each case, we computed the area 

under curve obtained from the receiver operator characteristics 

(ROC AUC) and plotted ktopfeatures versus ROC AUC. Then, we 

determined a range for ktopfeatures where ROC AUC is high (>0.9) 

and robust enough to ensure good performance and ktopfeatures is 

low enough to reduce processing time. 

 Following the determination of feature selection and the 

needs for model evaluation, we explored the most effective 

classification architecture for predicting stimulation presence 

from physiological signals. Using LOSO-CV, we used the 

following classifiers: Naïve Bayes (for predicting baseline 

performance), Random Forest, k-Nearest Neighbors (k-NN), 

Logistic Regression, Multilayer Perceptron, Decision Trees, 

and Support Vector Machine (SVM) with linear, polynomial, 

radial bases function (RBF), and sigmoid kernels. Table II (see 

Results section below) lists the ROC AUC values for each 

classifier. We observe that SVM with a sigmoid kernel 

performs the best among different classifiers used, hence we 

decided to use this classifier.  

III. RESULTS 

 We performed multiple classification runs with a sigmoid 

SVM classifier using features from different sensors alone and 

their combinations. Figure S1 shows the number of features 

versus ROC AUC, plotted from one feature to the maximum 

number of features based on the sensors chosen. It is apparent 

that ROC AUC>0.8 could be obtained from different sensor 

combinations.  

 By using the described feature selection and machine 

learning methodologies, we obtained the highest ROC AUC 

(>0.90) and highest accuracy, precision, recall (>0.90) for four 

cases: By using: 1) all sensors, at least 140 top features out of 

176 (Figure S1-i); 2) ECG and PPG sensors, at least 70 top 

features out of 88 (Figure S1-vi); 3) ECG, SCG, and PPG 

sensors, at least 99 top features out of 110 (Figure S1-x), and 4) 

ECG, PPG, and RSP sensors, at least 84 features out of 154 

(Figure S1-xi). As our aim was to minimize the number of 

sensing modalities and features to reduce complexity for a 

future wearable implementation, we focused on the 

classification results for the second case, the combination of 

ECG and PPG. The features in this dataset contain HR, PPG 

amplitude, and PAT. 

 Our next goal was to analyze the results obtained from ECG 

and PPG. Fig. 3 details the outcomes for the features obtained 

from ECG and PPG. Fig. 3a shows the dimensionality reduction 

(t-SNE) plot grouped by tcVNS and sham clusters. A nonlinear 

separation exists between the device groups. Fig. 3b shows how 

the number of selected top features change the ROC area. A 
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ROC area of >0.9 can be obtained by using 70 top features out 

of 88 (and beyond). Fig. 3c-d summarize the machine learning 

outcomes for the classification using top 71 features out of 88 

(note that outcomes are similar between 70 to 88). The 

classification resulted in 25 correctly classified subjects out of 

26 total subjects (12 active tcVNS, 14 sham) with LOSO-CV. 

There was one false negative subject. Macro-averaged 

accuracy, precision, recall, and F-1 scores of 96% with 0.96 

ROC AUC were obtained as the performance outcomes. Due to 

the feature selection method applied in each LOSO-CV loop, 

the features used in the classification slightly differed for each 

subject. Fig. 4 shows the top 5 features obtained by applying 

the feature selection method to the whole dataset of 88, sorted 

by ANOVA F-values. PPG and HR features resulted in the 

largest F-values. Lastly, we calculated the time complexity (the 

time elapsed encompassing all tasks ranging from signal 

processing to machine learning) for each subject as measured 

on a Core i7-6500U CPU @2.5GHz 12GB RAM personal 

laptop. We found that 2.6 (1.1) seconds (mean (SD)) were 

required to generate an output class for an incoming subject.  

IV. DISCUSSION  

 In this work, we investigated methods for detecting target 

engagement for tcVNS by using cardiovascular and peripheral 

signals from a double-blinded study. The dataset constructed 

from ECG and PPG signals yielded sufficient information to 

detect whether therapy response occurred (active device), 

resulting in 25 correctly classified subjects out of 26. The false 

negative subject (active subject classified as sham) was a 

female aged 24 years. The combination of other sensing 

modalities resulted in similar classification outcomes, slightly 

changing the confusion matrix. Single sensors/features do not 

offer the same performance as the combinations. Thus, there is 

not a single biomarker or pattern that could be easily recognized 

by the human eyes; there is likely a complex, high-dimensional 

relation between multiple features that requires multiple 

modalities.  

 The investigation of the most salient features reveals that 

features related to PPG and HR perform favorably compared to 

others. HR is regulated by both SNS and PNS activity [38]. 

Stimulation of the vagus nerve typically decreases SNS activity 

or increases PNS activity, also observed in the clinical portion 

of this study [30]. Moreover, increase in PPG amplitude was 

noted when tcVNS was paired with traumatic stress, compared 

to sham. From Fig. 4b-f, PPG features increased and mean HR 

decreased for the tcVNS group. Both of these changes indicate 

a decrease in sympathetic tone, which perhaps makes the 

separation between the classes possible by these features.  

 The analysis of machine learning performance outcomes is 

essential to gain an understanding regarding the translation of 

the methods to at-home settings: with our classifier, the 

accuracy, precision, recall, F-1 scores were 0.96. Thus, the 

classifier could provide a binary (e.g., red or green) indicator to 

the user following stimulation regarding whether the nerve 

target was successfully engaged. Among 100 stimulation 

administrations upon traumatic stress triggers, we would be 

able detect whether the stimulation happened correctly 96 

times.  

 The methods described in this study leverage physiological 

signals that are convenient to obtain with wearable sensing 

modalities, such as the smartwatches that measure ECG and 

PPG. The framework presented herein could remain the same 

and could be generalized to include other types of sensory data. 

Note that although the measured computation time was 2.6 

seconds on average to generate an output class for an incoming 

subject, this was computed with a personal laptop. A final 

implementation of this pipeline would not require a fully 

embedded platform as no precision timing is necessary. The 

collected signals could be transferred to a Cloud-based 

distributed system that employs parallel processing capabilities 

to further reduce this 2.6-second computation time if needed.  

 Among the modalities we used, HR and respiratory effort 

information are typically collected in clinical practice, in a non-

continuous manner. Therefore, we explored using only these 

features. Using the features obtained from HR (Figure S1-ii), 

RSP (Figure S1-v), and their combination (Figure S1-viii) for 

the classification task do not outperform the reported results. 

 Other measures that might indicate stimulation presence 

from the literature are the use of microneurography, pupil size, 

serum cytokines (anti-inflammatory effects as quantified by 

tumor necrosis alpha, interleukin-6), heart rate variability 

(HRV), or evoked potentials resulting from stimulation [10, 20, 

49, 50]. Microneurography and serum cytokines are not non-

invasive, not pursuant to the goal of real-time identification, and 

are confined to clinical settings, electroencephalogram [51] 

requires bulky multi-channel equipment, while pupil size was 

not found to give favorable results for stimulation in prior work. 

 

Fig. 3.  Dimensionality reduction and classification outcomes for separating 

the stimulus types: active tcVNS and sham. (a) Dimensionality reduction 
applied to the high-dimensional feature matrix using t-SNE constructed from 

features from ECG and PPG. (b) Number of Top features selected using 

ANOVA F-score-based feature selection versus receiver operator 
characteristics (ROC) area under curve (AUC). ROC AUC is robust to Top 

Features from 70 to 88. c) Confusion matrix for the classifier, obtained with 

LOSO-CV and minimum number of features (71). (d) Receiver operator 
characteristics (ROC) for the classifier. A ROC area under curve (AUC) of 

0.96 was obtained. Classification outcomes vary minorly with Top Features 

from 70 to 88.  
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As for HRV, this measure does not have a continuous nature 

and requires a long-term clean recording to compute a single 

number based on the variability in R-R intervals. An auricular 

stimulation study noted changes in HRV with long-term 

recordings [10], while some studies did not note changes in 

HRV [17, 52].  

 A number of limitations exist for the study described here. 

First, this study employs a reactive approach. Traumatic stress 

requires a flashback occurrence: the subjects should remember 

their memories to be stressed, which requires some time starting 

from the introduction of the traumatic recording. We applied 

stimulation immediately after the traumatic stress recording as 

our prior brain imaging studies demonstrated that the arousal 

persists following rumination of the traumatic script recording 

[53, 54]. Future studies should consider sweeping the timing of 

the stimulation, which might possibly downregulate the 

autonomic reactivity even before reaching a peak stressed state, 

based on prior preclinical studies [55, 56]. Second, this study 

did not have continuous blood pressure recordings, hence we 

could not use blood pressure-related measures except pulse 

arrival time (PAT) obtained from ECG and PPG, which is a 

measure related to both continuous blood pressure and cardiac 

contractility [57]. Nevertheless, analyses on the effects of 

auricular or cervical stimulation on cardiovascular and 

autonomic function have produced mixed outcomes throughout 

many studies that use basic vital signals such as HR, HRV, or 

BP [10, 17, 18, 21, 23, 52], hence these basic measures are not 

likely to be sufficient for monitoring stimulation presence. 

Lastly, in the current study, we obtained a transmissive PPG 

signal that requires the photodiode (PD) and light emitting 

diode (LED) combination to be at the opposite sides of the skin. 

A reflective PPG sensor (both PD and LED on the same side of 

the skin) might be more appropriate for a comfortable and 

minimally obtrusive wearable device. 

V. CONCLUSION 

 This study demonstrates the first effort to provide real-time 

inputs that could be used in tcVNS therapy response, and 

further for closed-loop modulation for at-home tcVNS 

technologies. Multimodal signal fusion might be a viable 

approach in determining whether the stimulation occurred as 

expected. In addition to the investigation of individual 

parameters, sensor fusion could be instrumental in translating 

tcVNS to unsupervised settings to improve therapy response in 

a home-based setting. ECG and PPG sensing appear to provide 

relevant information regarding the stimulation delivery, and 

both signals could be obtained noninvasively, and are also 

prevalent in commercially available wearable sensing devices. 

The methods presented herein could thus be deployed in 

wearables allowing for a convenient home-based approach to 

supporting accurate and effective delivery of noninvasive vagal 

nerve stimulation therapies.  

 Future studies should focus on the following to facilitate 

successful translation to clinical practice. Continuous blood 

pressure should be measured as an additional physiological 

parameter to be studied as it includes important vascular 

information; effects of the time of stimulation (before or during 

traumatic stimuli) on efficacy should be determined; and the 

ability of indices derived from reflective PPG sensors to capture 

 

Fig. 4.  Top 5 features sorted by ANOVA F-values, their histograms, and kernel density estimates grouped by classes. The top features were calculated from 

the full feature set obtained from ECG and PPG sensors. The dashed lines indicate the mean of the class. 
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the key physiological information should be quantified. 

Additionally, stimulation induces parameter-specific changes 

in physiology [11]. Therefore, regression models of stimulation 

parameters onto the changes in cardiovascular and peripheral 

measures could provide a better understanding for inter-patient 

variability in noninvasive VNS studies. 
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