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Abstract 

Background: There is a need for high yield HIV testing strategies to reach epidemic control. 

We aimed to predict the HIV status of individuals based on socio-behavioural characteristics. 

Methods: We analysed over 3,200 variables from the most recent Demographic Health Survey 

from 10 countries in East and Southern Africa. We trained four machine-learning algorithms 

and selected the best based on the f1 score. Training and validation were done on 80% of the 

data. The model was tested on the remaining 20% and on a left-out country which was rotated 

around. The best algorithm was retrained on the variables which were most predictive. We 

studied two scenarios: one aiming to identify 95% of people living with HIV (PLHIV) and one 

aiming to identify individuals with 95% or higher probability of being HIV positive. 

Findings: Overall 55,151 males and 69,626 females were included. XGBoost performed best 

in predicting HIV with a mean f1 of 76·8% [95% confidence interval 76·0%-77·6%] for males 

and 78·8% [78·2%-79·4%] for females. Among the ten most predictive variables, nine were 

identical for both sexes: longitude, latitude and, altitude of place of residence, current age, age 

of most recent partner, total lifetime number of sexual partners, years lived in current place of 

residence, condom use during last intercourse and, wealth index. Model performance based on 

these variables decreased minimally. For the first scenario, 7 males and 5 females would need 

to be tested to identify one HIV positive person. For the second scenario, 4·2% of males and 

6·2% of females would have been identified as high-risk population. 

Interpretation: We were able to identify PLHIV and those at high risk of infection who may 

be offered pre-exposure prophylaxis and/or voluntary medical male circumcision. These 

findings can inform the implementation of HIV prevention and testing strategies. 

Funding: Swiss National Science Foundation. 
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Introduction 

In order to reach epidemic control by 2030, the Joint United Nations Programme (UNAIDS) 

have set fast track targets to rapidly scale up effective HIV services.1 One of the aims is to 

ensure that 95% of the approximately 38 million people living with HIV (PLHIV) are aware 

of their HIV status and that 95% of those with HIV positive diagnoses are on treatment.2 

People in East and Southern Africa are disproportionately burdened by HIV, constituting more 

than half of the global PLHIV with 20·6 million people currently estimated to be HIV positive.2 

As of 2018, 85% of PLHIV in this region were aware of their HIV status, of whom 79% were 

accessing treatment.3 In addition, 25% of new HIV infections in East and Southern Africa were 

concentrated among key populations such as female sex workers, men having sex with men, 

prisoners and, people who inject drugs.3 

HIV is transmitted within a complex network that is influenced by biological, behavioural and, 

social factors. In East and Southern Africa, there is large geographical variation in the 

distribution of the HIV epidemic.4 In order to identify populations at a high risk of infection, 

global HIV prevention efforts have shifted toward optimizing resource allocation by 

considering geographical data as a way of increasing program impact and efficiency.5 

Machine learning algorithms have the power to substantially enhance HIV prevention and 

detection, increasing the prediction capability by processing large amounts of data of a different 

nature. This methodology has been implemented to establish patterns of HIV risk behaviour, 

to optimise HIV treatment modalities and, to identify high-risk individuals for targeted 

interventions from a number of novel data sources.6–15 

As more PLHIV are diagnosed, finding persons with undiagnosed HIV becomes progressively 

more difficult and expensive. Hence, resource constraints and potential funding shortages have 

resulted in demands for differentiated high yield testing strategies in parallel to provider-

initiated HIV testing and counselling (PITC).14,16,17 We therefore aimed to compare different 

machine learning algorithms to identify new key populations based on a variety of socio-

behavioural characteristics. These insights intend to both inform targeted case-finding 

strategies as well as identify high risk HIV negative individuals eligible for prevention services 

such as voluntary medical male circumcision (VMMC) and/or pre-exposure prophylaxis 

(PrEP). 
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Methods 

Data 

Since 1984, the Demographic and Health Surveys (DHS) program has provided technical 

assistance for over 400 surveys in more than 90 countries, advancing global understanding of 

health and population trends in developing countries.18 DHS are nationally-representative 

household surveys that provide data for a wide range of monitoring and impact evaluation 

indicators on health and nutrition. Standard DHS surveys have large sample sizes (usually 

between 5,000 and 30,000 households) and are typically conducted every five years.19 We used 

the most recent DHS surveys at or after 2013 of ten East and Southern African countries (Table 

A1) with a generalised HIV epidemic: Angola, Burundi, Ethiopia, Lesotho, Malawi, 

Mozambique, Namibia, Rwanda, Zambia and, Zimbabwe. Male and female’s datasets were 

combined separately with geographic position of groups of households where the individuals 

live and HIV test results. We then merged the ten countries and obtained two datasets 

containing 68,979 males and 83,910 females with 527 and 3,213 variables, respectively. 

Data pre-processing, model validation and, algorithm selection 

We compared four machine learning algorithms for the prediction of the HIV status of an 

individual; a penalized logistic regression (Elastic Net),20 a generalized additive model (GAM), 
21 a support vector machine (SVM) and,22 a gradient boosting tree (XGBoost).23 The Elastic 

Net and the GAM are among the most widely used classification methods in biology and 

medicine, SVM is a very common machine learning algorithm and XGBoost is a decision-tree 

based ensemble which has gained a lot of attraction since its development few years ago. 

The first part of the analyses was done in several steps for each of the four algorithms, and 

separately for males and females (Figure 1). In the data pre-processing step (Figure 1, step 1), 

we first cleaned and transformed data from the ten countries into numerical values (Table A2). 

Only persons for whom the HIV status was either positive or negative were included in the 

analysis. The cleaned datasets included 55,151 males and 69,626 females with 84 and 122 

variables, respectively; 73 variables were common for both sexes (Table A3). Since we wanted 

to test the generalizability of our model, one country was left out for later testing, and the left-

out country was rotated around. We then split each of the data from nine countries combined 

in an 80% training sample and a 20% test sample. Missing values were imputed using multiple 

imputation by chained equations (MICE) (as detailed in appendix) and data were further 

harmonized and scaled.24 

Training and validation were done using five-fold cross-validation on 50 sets of 

hyperparameters randomly chosen from a grid (Figure 1, step 2). For each of these 50 sets, we 

calculated the mean f1 scores across the five validation sub-samples and selected the set of 

hyperparameters that gave the highest value. The f1 score combines the sensitivity and the PPV 

in a harmonic mean.25 Our primary interest was to find a large number of HIV positive persons 

(sensitivity or recall) with a high yield (precision or positive predictive value (PPV)). The 

probability threshold to classify if someone is considered HIV positive was set at 50%. 
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Once the best models of each algorithm were obtained, we calculated the f1 scores on the ten 

20% test and left-out country samples which were not used to train and validate the model 

(Figure 1, step 3). We averaged these f1 scores in order to compare the different algorithms 

and the maximum mean f1 on the 20% test samples allowed us to select the best one. 

Variables selection, direction of association and, calibration of two scenarios 

For the second part of the analysis, where no country was left out, only the selected algorithm 

was trained and validated again using a random search over 250 sets of parameters (instead of 

50) with the same five-fold cross-validation scheme than previously. The first estimation was 

performed using all variables. We compared the f1 score, the sensitivity and, the PPV using 

MICE imputation (models M1 and F1 for males and females, respectively) with a different 

imputation method within the algorithm,23 that considerably simplified the engineering process 

(models M2 and F2). 

We then performed a sequential forward floating selection (SFFS) using the best imputation 

method on the 80% training samples and calculated the f1 scores for different number of 

variables. We selected the subset of variables for which the f1 scores plateaued and assessed 

the direction of the association between these variables and the probability of being HIV-

positive using Shapley values.26 

We retrained the best algorithm with the above defined subsets of variables (models M3 and 

F3) and also on a minimal subset common for both sexes (models M4 and F4). The f1 scores, 

the sensitivity and, the PPV were compared to the ones obtained for M1, M2, F1 and, F2. We 

computed the Precision-Recall (PR) and the Threshold-Scores curves (TS) for our preferred 

model per sex. The PR curve displays the PPV for different sensitivities. This curve is not 

influenced by imbalanced datasets and is therefore preferred over ROC curve.27 The TS curve, 

highlights the PPV, the sensitivity and, the f1 score for varying thresholds of classifying if 

someone is HIV positive. 

We then tested two scenarios: for the first scenario, the sensitivity was set to 95%, equivalent 

to 95% of PLHIV knowing their status. We selected the threshold that corresponds to this 

sensitivity and reported the corresponding precision and number of individuals to be tested. 

For the second scenario, we identified a population for which the predicted probability of being 

HIV positive was 95% or higher. We considered that these individuals are either HIV positive 

targets for high yield testing strategies or HIV negative individuals who would be ideal 

candidates for prevention services.  

All analyses were performed in Python version 3.7.4. The code is available on 

https://gitlab.com/Triphon/predicting_hiv_status. 
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Results 

Overall, 55,151 males and 69,626 females were analysed with an HIV positivity ranging from 

0·8% among males in Ethiopia to 33·3% among females in Lesotho. The overall HIV positivity 

was 8·0% (4,417 individuals) for males and 11·5% (8,011 individuals) for females. Persons 

aged 25 to 34 years represented the largest age group representing 35·9% of females and 31·9% 

of males. About two-thirds of people lived in rural areas (Table A4). 

Algorithms’ performance on the test samples 

Figure 2 shows the performance of the four algorithms. XGBoost had the highest f1 scores on 

all 20 test samples (ten per sex) with a mean f1 score of 76·8% [95% confidence interval (CI) 

76·0%-77·6%] for males and 78.8% [78·2%-79·4%] for females. For SVM, the mean f1 score 

for males was 69·2% [68·2%-70·2%] and 74·6% [73·7%-75·5%] for females and for Elastic 

Net, the mean f1 score was 32·6% [31·8%-33·4%] for males and 41·5% [40·3%-42·7%] for 

females. GAM performed worst with a mean f1 score of 26·2% [25·0%-27·4%] for males and 

39·8% [38·1%-41·5%] for females (see Table A5i to Table A5iv). 

Algorithms’ performance on the left-out country samples 

The performance of the algorithms on the ten left-out samples was substantially lower than on 

the test samples and the f1 scores varied more widely (Figure 2). The mean f1 score was best 

for Elastic Net with 21·4% [12·3%-30·5%] for males and 32·6% [21·2%-44·0%] for females 

followed by XGBoost with 20·9% [14·3%-27·5%] and 29·8% [19·0%-40·6%], respectively. 

For SVM, the mean f1 score was 15·4% [10·9%-19·9%] for males and 22·3% [14·1%-30·5%] 

for females. Again, GAM performed worst with a mean f1 scores of 6·6% [0·9%-12·1%] and 

17·1% [4·4%-29·8%] (see Table A5i to Table A5iv). The algorithms performed better in 

countries with higher HIV positivity. 

Best algorithm’s performance on the complete datasets 

We selected the best performing algorithm, XGBoost, for the second part of the analysis, where 

no country was left out. The results on all variables using the two different imputation methods 

are shown in Table 1. For both sexes, the XGBoost imputation (M2 and F2) resulted in slightly 

higher f1 scores compared to the MICE imputation (M1 and F1). The f1 scores on the validation 

samples were 75·5% [73·7%-77·3%] vs 74·9% [73·3%-76·5%] for males and 76·1% [74·9%-

77·3%] vs 75·5% [74·6%-76·4%] for females. Given the above results and the simplicity of 

the XGBoost imputation, we used this imputation for further analyses (i.e. models M3, F3, M4 

and, F4). 

Variables selection and direction of associations 

Figure 3A and 3B show the result of the SFFS procedure which was used to select a subset of 

most relevant variables. The f1 scores plateaued above 99·6% with 15 variables for males and 

above 97·6% with 27 variables for females. Figure 3C and 3D show the 15 and 27 key variables 

of individual HIV status for males and females. Among these top ten most predictive variables, 

nine were identical: geographic position (longitude, latitude and, altitude), current age, age of 

most recent partner, total lifetime number of sexual partners, years lived in current place of 

residence, condom used during last sexual intercourse with most recent partner, and, a wealth 
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index from the DHS which combines numerous wealth-related variables such as household 

assets and utility services.28 The age at first sexual intercourse ranked tenth for males and 

twentieth for females. The Rohrer’s index (an estimate of obesity) ranked sixth for females, 

but was not available for males. Among the fifteen most predictive variables, four were specific 

for either males or females (‘number of women fathered children with’ and ‘respondent 

circumcised’ for males and ‘currently breastfeeding’ and ‘fertility preference’ for females). 

Other females-specific characteristics included ‘time to get to water source’ and ‘entries in 

birth history’. 

Figure 3A and 3B highlight the direction of the association between each variable and the 

probability of HIV positivity. Among the nine common predictive variables for both sexes, 

older age, older age of most recent partner, a higher number of total lifetime number of sexual 

partners, condom used during last sexual intercourse with most recent partner and, longitude 

were positively associated with the probability of HIV positivity for most individuals. A higher 

wealth index, a larger latitude coordinate of the residence, altitude and, more years lived in 

place of residence were mainly negatively associated with HIV positivity. 

Performance on subsets of variables 

Table 1 shows the results of the XGBoost algorithm on the 15 most important variables for 

males (M3) and 27 most important variables for females (F3). As expected from the SFFS 

procedure, the f1 scores for M3 and F3 were similar to M2 and F2. The f1 scores decreased by 

1·8 percentage points for males and by 0·5 percentage points for females. Finally, we checked 

the performance of the algorithm on the nine most predictive common variables for both sexes 

(M4 and F4). The f1 scores were 72·9% for males and 72·4% for females, decreasing 

respectively by 2·6 and 3·7 percentage points compared to M2 and F2, and by 0·8 and 3·2 

percentage points compared to M3 and F3. M4 and F4 were the models used for the calibration 

of the two scenarios. 

Scenarios: 

1) 95% PLHIV know their status 

Figures 4A and 4B show the PR-curves calculated on the test samples. For males, a sensitivity 

of 95% would require that 5,450 individuals out of 11,031 (49·4%) would need to be tested to 

identify 840 HIV positives out of the 883 PLHIV. The corresponding PPV is 15·4%; 7 

individuals would therefore need to be tested to find one HIV positive person (number needed 

to test NNT). For females, 6,696 individuals out of 13,926 (48·1%) would need to be tested to 

find 1,522 HIV positives out of the 1,602 PLHIV. The PPV is 22·7% and the NNT is 5. 

2) 95% or more probability of being HIV positive 

Figures 4C and 4D show the TS-curves calculated on the test samples. Out of the 11,031 males 

and 13,926 females, 461 males (4·2%) and 862 females (6·2%) were identified as high-risk 

population. For males, 447 would have been correctly identified HIV positive out of the 883 

PLHIV. For females, 833 would have been correctly identified HIV positive out of the 1,602 

PLHIV. 
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Discussion 

Using large representative datasets with over 120,000 persons from ten East and Southern 

African countries, we were able to accurately predict the HIV status of individuals using 

demographic and socio-behavioural characteristics. Using all variables, XGBoost performed 

better than the three other algorithms on the test samples with a mean f1 score of 76·8% [95% 

CI 76·0%-77·6%] for males and 78.8% [78·2%-79·4%] for females. Our approach allowed us 

to select the nine most important predictor variables common for both sexes: geographic 

position (longitude, latitude and, altitude), current age, age of most recent partner, total lifetime 

number of sexual partners, years lived in current place of residence, condom used during last 

sexual intercourse with most recent partner and, wealth index. The performance of the 

algorithm using only these nine variables to predict HIV positivity was similar to that of the 

total dataset. 

We also determined the direction of the association between predictor variables and HIV status. 

We confirmed a number of established HIV risk factors such as older age or older age of the 

most recent partner,29 a large number of sexual partners and, living in an urban area.30 

Additionally, circumcision and breastfeeding were associated with a lower risk of HIV 

positivity. Unlike previous findings,31 condom use during the last sexual intercourse increased 

the probability of HIV positivity in our study. This seemingly counterintuitive finding may be 

the result of increased condom use in individuals who are already aware of their positive HIV 

status. The cross-sectional nature of our study limits our ability to investigate this further. We 

also identified risk factors for HIV infection which have rarely been investigated before. For 

example, an increased distance to water was positively associated with HIV infection in some 

persons, and negatively associated in others. This is in line with a previous study which showed 

that the risk of sexual assault of women, and hence the risk of HIV infection, increased when 

the time to reach a water source increased.32 However, longer time to get to water sources are 

more common in rural areas where HIV prevalence is generally lower, hence a decrease in risk 

of HIV positivity. 

When applying these machine learning algorithms in real world settings, the trade-off between 

sensitivity (% of HIV positives identified) and PPV (yield) needs to be considered. A model 

with a sensitivity of 95% would be required to ensure that 95% of PLHIV know their status. In 

this first scenario, using a model with only nine predictors, we showed that the NNT was 5 

(PPV of 15·4%) for males and 7 (PPV of 22·7%) for females. This represents approximately 

twice the PPV that would be achieved by general population testing. A previous systematic 

review of different testing strategies showed that NNTs ranged between 3 and 86 for 

community-based testing strategies and between 4 and 154 for facility-based testing 

strategies.33 

In contrast, if targeted HIV case-finding strategies are implemented to increase the cost-

effectiveness of testing strategies, a high PPV is important to ensure that the yield is high, and 

many of those tested are HIV positive. It is currently unknown if additional behavioural-based 

testing strategies can enhance or complement current targeted case-finding strategies such as 

index testing. Acceptable cut-offs for both sensitivity and PPV would need to be adapted for 

specific settings and for the desired testing coverage. For example, we defined a second 
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scenario to simultaneously identify both high-risk HIV positive individuals for testing and 

high-risk HIV negative individuals for preventative services such as pre-exposure prophylaxis 

(PrEP).  

To our knowledge, this study is the first to use machine learning methods to predict HIV in 

generalised HIV epidemic East and Southern African countries using routinely collected survey 

data. One of the limitations of this study is the generalizability of our findings. The distribution 

of risk factors varies between countries, and the accuracy of the prediction decreased for 

countries not used to train the algorithm. It is therefore not surprising, that geographic location 

of the residence (longitude, latitude and, altitude) were among the strongest predictors, since 

they were proxies for country-level differences. We were also limited by the available variables 

in our dataset, and as a result we were unable to consider differences in viral load suppression, 

health-care expenditure, specific HIV-related interventions and conflicts and wars. 

Additionally, although HIV testing was laboratory-based and not self-reported, some results 

were inconclusive and were discarded. A number of variables were self-reported and therefore 

subject to social desirability and recall bias. Missing values were imputed using multiple 

imputation, or directly within the extreme gradient boosting algorithm. However, the 

proportion of missing values was relatively small for most variables and both imputation 

methods gave similar results. 

In conclusion, we were able to identify strong predictors of HIV positivity. Our findings may 

explain the spatial variability of HIV prevalence and can inform HIV testing strategies in 

resource-limited settings. While the implementation of a machine learning based risk score for 

targeted interventions was feasible in rural East Africa,34 the acceptability and use of 

potentially sensitive behavioural risk factors to directly identify individuals for HIV testing 

needs to be evaluated. Our algorithm performed well with only a limited number of variables, 

which do not require extensive interviews or questionnaires. This approach may be 

implemented by clinicians and community health care workers or utilised through additional 

HIV case-finding modalities such as call centres, social media and, self-testing initiatives. The 

availability of individual-level data on the association of various diseases with socio-

behavioural characteristics is rapidly increasing. Advanced methods to analyse these large 

sources of data can help to prevent, diagnose and treat HIV and other diseases more efficiently. 
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Table 1: Results per sex of the XGBoost algorithm for different imputation methods and sets of variables 

True positive (TP), False negative (FN), False positive (FP), True negative (TN), Positive Predictive Value (PPV). 

    TP FN FP TN f1 score Sensitivity PPV 

Complete with MICE imputation (Model M1) 
Validation         74·9% (± 1·6%) 71·2% (± 2·9%) 79·1% (± 0.8%) 

Test 627 256 164 9,984 74.9% 71.0% 79.3% 

Complete with MICE imputation (Model F1) 
Validation         75·5% (± 0·9%) 75·4% (± 1·6%) 75·6% (± 0·5%) 

Test 1,264 338 375 11,949 78.0% 78.9% 77.1% 

Complete with XGBoost imputation (Model M2) 
Validation         75·5% (± 1·8%) 69·6% (± 2·2%) 82·5% (± 2·2%) 

Test 617 266 122 10,026 76.1% 69.9% 83.5% 

Complete with XGBoost imputation (Model F2) 
Validation         76·1% (± 1·2%) 75·5% (± 1·7%) 76·8% (± 1·2%) 

Test 1,279 323 379 11,945 78.5% 79.8% 77.1% 

15 variables with XGBoost imputation (Model M3) 
Validation         73·7% (± 2·9%) 67·9% (± 2·5%) 80·7% (± 3·7%) 

Test 605 278 129 10,019 74.8% 68.5% 82.4% 

27 variables with XGBoost imputation (Model F3) 
Validation         75·6% (± 1·2%) 70·0% (± 1·2%) 82·2% (± 1·7%) 

Test 1,212 390 234 12,090 79.5% 75.7% 83.8% 

9 variables with XGBoost imputation (Model M4) 
Validation         72·9% (± 2·3%) 65·6% (± 1·6%) 81·9% (± 3·9%) 

Test 595 288 124 10,024 74.3% 67.4% 82.8% 

9 variables with XGBoost imputation (Model F4) 
Validation         72·4% (± 1·2%) 68·5% (± 1·4%) 76·8% (± 1·6%) 

Test 1,184 418 249 12,075 78.0% 73.9% 82.6% 

 

Multiple Imputation by Chained Equations (MICE) 

 (± %): 95% Confidence Interval 
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Figure 1: Diagram explaining the first part of the analyses 

All steps are detailed in the method section. 
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Figure 2: Boxplot of the f1 scores for the 4 algorithms on the test and left-out samples per sex 

Generalized Additive Model (GAM), Support Vector Machine (SVM). 
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Figure 3: Sequential floating forward selection (SFFS) and Shapley values 

The (SFFS) procedure was implemented (A + B) to determine the saturation point for variable selection base on 

the f1 score. This resulted in the selection of the 15 and 27 most important variables for males and females, 

respectively. The variables are displayed below (C + D) sorted by importance from top to bottom (from the highest 

Shapley value to the lowest). The blue and red colours represent the value range of the variable (e.g. blue 

represents low value range of the variable). For example, the older the age the more likely the persons will be HIV 

positive. 
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Figure 4: Precision-Recall Curves (A + B) and Threshold-Scores Curves (C+ D) for models with 9 variables 

(models M4 and F4)  

In addition, f1 iso-curves are shown for a typical range of f1 scores that we achieved with the models. Along these 

lines the f1 scores remain constant. 

 

Positive Predictive Value (PPV) 

Figure 4C and 4D: 95% Confidence Interval has been obtained using a bootstrap with n=50 
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Supplementary material 

Selection of variables 

Datasets were resampled per country using sample weights from the HIV test results. We excluded individuals 

whose HIV status was “indeterminate” or “inconclusive” and individuals who reported that they never had sexual 

intercourse. We then removed variables with no variance and the ones containing more than 30% missing values. 

Finally, after additional encoding steps (e.g. creation of new aggregated variables or dummy coding of nominal 

variables), we manually removed an additional 77 non-informative variables for males and 122 for females (e.g. 

relating to metadata or information on how the survey was conducted), resulting in a final dataset of 55,151 males 

and 69,626 females with 84 and 122 variables, respectively. Overall 73 variables were common for both sexes 

(Table A2 and Table A3). 

Stratification, MICE imputation and Standardization (Figure 1 - step 1) 

The stratification was done based on each sample HIV prevalence to ensure that the percentage of HIV positive 

individuals in the training and validation samples remained similar to the originals. We imputed missing values 

of each 80% training sample by multiple imputations using chained equations (MICE), and then applied the same 

imputation model to the corresponding test and left-out country samples. The regressions on the chained equations 

have been iterated ten times using the entire set of variables. The imputations have been performed five times and 

the results were averaged. Finally, the variables were standardized to a variance of one, ensuring that the 

penalization scheme is fair to all regressors. 
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Table A1: List of the Demographic and Health Surveys (DHS) 

Survey Year Country 

Men Women 

Individuals Variables Individuals Variables 

Standard DHS VII 2015-2016 Angola 5,684 592 14,379 5,330 

Standard DHS VII 2016-2017 Burundi 7,552 763 17,269 5,021 

Standard DHS VII 2016 Ethiopia 12,688 590 15,683 5,695 

Standard DHS VII 2014 Lesotho 2,931 627 6,621 3,748 

Standard DHS VII 2015-2016 Malawi 7,478 571 24,562 4,934 

Standard AIS DHS VII 2015 Mozambique 5,283 796 7,749 4,861 

Standard DHS VI 2013 Namibia 4,481 641 10,018 4,180 

Standard DHS VII 2014-2015 Rwanda 6,217 702 13,497 4,572 

Standard DHS VI 2013-2014 Zambia 14,773 864 16,411 4,266 

Standard DHS VII 2015 Zimbabwe 8,396 605 9,955 4,940 

  Total 75,483  136,144  
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Table A2: Pre-processing of variables 

Pre-process on the datasets 

Men Women 

# of individuals # of variables # of individuals # of variables 

concatenation 68,979 527 83,910 3,213 

30% of missing values 68,979 203 83,910 310 

no variance 68,979 178 83,910 270 

duplicate variables 68,979 173 83,910 261 

inconclusive HIV testing 68,669 173 83,678 261 

no sexual intercourse 55,151 173 69,626 261 

aggregation and removal 55,151 84 69,626 122 
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Table A3: List of variables 

Variable names correspond to the name in the Demographic and Health Survey (DHS). 

Common variables for males and females 
Age at first sex (imputed) Ideal number of either sex 

Age of household head Ideal number of girls 

Age of most recent partner Know a place to get HIV test 

Beating justified Knowledge of any contraceptive method 

Cluster altitude in meters Knowledge of ovulatory cycle 

Cluster's latitude coordinate Literacy 

Cluster's longitude coordinate Number of household members (total listed) 

Cohabitation duration (grouped) Number of injections in last 12 months 

Condom used during last sex with most recent partner Number of sex partners, including spouse, in last 12 months 

Country Occupation 

Covered by health insurance Owns a house alone or jointly 

Current age Owns land alone or jointly 

Current contraceptive by method type Recent sexual activity 

Current contraceptive method Reduce risk of getting HIV 

Currently/formerly/never in union Relationship to household head 

Currently working Relationship with most recent sex partner 

Daughters at home Religion 

Daughters elsewhere Respondent worked in last 7 days 

Daughters who have died Sex of household head 

Drugs to avoid HIV transmission to baby during pregnancy Sons at home 

Ever been tested for HIV Sons elsewhere 

Ever heard of AIDS Number of sons who have died 

Ever heard of a Sexually Transmitted Infection (STI) Time since last sex (in days) 

Fertility preference Time away from home in last 12 months 

Frequency of listening to radio Time in last 12 months had sex with most recent partner 

Frequency of reading newspaper or magazine Total lifetime number of sex partners 

Frequency of watching television Total number of years of education 

Had any STI in last 12 months Type of place of residence 

Had genital discharge in last 12 months Usual resident or visitor 

Had genital sore/ulcer in last 12 months Ways of transmission from mother to child 

Heard about other STIs Wealth index combined 

Heard about family planning in newspaper/magazine during last 

few months 
Wealth index factor score combined 

Heard about family planning on radio during last few months Wife justified asking husband to use condom if he has STI 

Heard about family planning on TV during last few months Wife justified refusing sex: husband has other women 

Highest educational level Would buy vegetables from vendor with HIV 

Ideal number of boys Years lived in place of residence 

Ideal number of children  

Specific variables for females 
Age at first cohabitation Household has: electricity 

Births in last five years Household has: motorcycle/scooter 

Births in last three years Household has: radio 

Births in month of interview Household has: refrigerator 

Births in past year Household has: telephone (land-line) 

Contraceptive use and intention Household has: television 

Currently abstaining Index last child prior to maternity-health (calendar) 

Currently amenorrhoeic Menstruated in last six weeks 

Currently breastfeeding Number of children 5 and under in household (de jure) 

Currently pregnant Number of eligible women in household (de facto) 

Does not use cigarettes and tobacco Number of unions 

Entries in birth history Pattern of contraceptive use 

Entries in immunization roster Presence of other people during the sexual activity section of the interview 

Entries in pregnancy and postnatal care roster Presence of other people for 'Wife beating justified' questions 

Ever had a terminated pregnancy Record for Last Birth 

Ever used anything or tried to delay or avoid getting pregnant Respondent slept under mosquito bed net 

Fecund (definition 3) Rohrer's index 

Getting medical help for self: distance to health facility Time to get to water source 

Getting medical help for self: getting money needed for treatment Toilet facilities shared with other households 

Getting medical help for self: getting permission to go Type of mosquito bed net(s) slept under last night 

Getting medical help for self: not wanting to go alone Unmet need for contraception 

Have mosquito bed net for sleeping Visited by fieldworker in last 12 months 

Heard of oral rehydration Visited health facility last 12 months 

Household has: bicycle Years since first cohabitation 

Household has: car/truck  
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Specific variables for males 
Contraception is woman's business, man should not worry Number of women fathered children with 

Discussed Family Planning with health worker in last few months Paid for sex in last 12 months 

Employment all year/seasonal Respondent circumcised 

Have ever paid anyone in exchange for sex Type of earnings from respondent's work 

Number of eligible men in household (de facto) Women who use contraception become promiscuous 

Number of wives/partners  
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Table A4: Characteristics of Demographic and Health Survey (DHS) individuals 

  Male Female 

Total number of individuals 
 55,151 69,626 

Current age, n (% of total)    

 15-24 14,472 (26·2%) 20,506 (29·5%) 

 25-34 17,584 (31·9%) 25,020 (35·9%) 

 35-44 13,074 (23·7%) 17,164 (24·7%) 

 45-54 7,853 (14·2%) 6,203 (8·9%) 

 55-64 2,168 (3·9%) 733 (1·1%) 

Country of origin, n (% of total)   

 Angola 4,611 (8·4%) 6,020 (8·6%) 

 Burundi 5,180 (9·4%) 6,007 (8·6%) 

 Ethiopia 7,955 (14·4%) 11,162 (16·0%) 

 Lesotho 2,438 (4·4%) 2,917 (4·2%) 

 Malawi 5,657 (10·3%) 6,895 (9·9%) 

 Mozambique 4,053 (7·3%) 6,472 (9·3%) 

 Namibia 3,326 (6·0%) 4,431 (6·4%) 

 Rwanda 4,613 (8·4%) 4,948 (7·1%) 

 Zambia 11,617 (21·1%) 13,453 (19·3%) 

 Zimbabwe 5,701 (10·3%) 7,321 (10·5%) 

HIV positive by country, n (% of individuals within country)   

 Angola 48 (1·0%) 164 (2·7%) 

 Burundi 49 (0·9%) 92 (1·5%) 

 Ethiopia 66 (0·8%) 172 (1·5%) 

 Lesotho 531 (21·8%) 970 (33·3%) 

 Malawi 445 (7·9%) 837 (12·1%) 

 Mozambique 434 (10·7%) 1,002 (15·5%) 

 Namibia 433 (13·0%) 810 (18·3%) 

 Rwanda 157 (3·4%) 264 (5·3%) 

 Zambia 1,494 (12·9%) 2,235 (16·6%) 

 Zimbabwe 760 (13·3%) 1,465 (20·0%) 

Type of residence, n (% of total)   

 Urban 19,196 (34·8%) 23,501 (33·8%) 

 Rural 35,955 (65·2%) 46,125 (66·2%) 
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Table A5i: Results of the XGBoost algorithm per sex for the validation, test and, left-out samples 

  Males Females 

Country Metric f1 score Sensitivity PPV Prevalence f1 score Sensitivity PPV Prevalence 

Angola 

Validation 73·3% (± 2·3%) 70·7% (± 3·7%) 76·2% (± 2·4%) 8·6% 74·9% (± 0·9%) 72·6% (± 1·6%) 77·4% (± 0·5%) 12·3% 

Test 75·9% 72·2% 80·1% 8·6% 78·9% 76·1% 81·9% 12·3% 

Left-out 6·6% 16·7% 4·1% 1.0% 12·2% 12·8% 11·6% 2·7% 

Burundi 

Validation 73·8% (± 2·0%) 70·7% (± 2·3%) 77·3% (± 3·6%) 8·7% 74·5% (± 1·0%) 74·5% (± 1·6%) 74·6% (± 1·2%) 12·4% 

Test 75·6% 73·0% 78·4% 8·7% 79·0% 78·1% 79·9% 12·4% 

Left-out 17·1% 14·3% 21·2% 0·9% 17·6% 22·8% 14·3% 1·5% 

Ethiopia 

Validation 72·7% (± 2·4%) 66·3% (± 4·0%) 80·6% (± 1·3%) 9·2% 74·9% (± 0·6%) 71·8% (± 1·0%) 78·3% (± 1·1%) 13·4% 

Test 78·9% 74·8% 83·4% 9·2% 80·0% 78·1% 81·9% 13·4% 

Left-out 12·5% 7·6% 35·7% 0·8% 5·3% 3·5% 11·1% 1·5% 

Lesotho 

Validation 72·9% (± 1·7%) 68·4% (± 3·6%) 78·1% (± 2·3%) 7·4% 74·7% (± 1·1%) 71·0% (± 2·7%) 78·9% (± 1·5%) 10·6% 

Test 76·4% 71·9% 81·4% 7·4% 78·0% 74·8% 81·6% 10·6% 

Left-out 32·8% 22·6% 60·0% 21·8% 47·5% 37·5% 64·8% 33·3% 

Malawi 

Validation 73·4% (± 2·7%) 69·5% (± 2·3%) 77·7% (± 3·8%) 8.0% 75·9% (± 1·5%) 73·2% (± 1·4%) 78·9% (± 1·8%) 11·4% 

Test 77·3% 73·4% 81·7% 8.0% 78·6% 76·1% 81·3% 11·4% 

Left-out 24·9% 18·9% 36·7% 7·9% 32·8% 30·1% 36·1% 12·1% 

Mozambique 

Validation 74·1% (± 1·7%) 68·3% (± 2·6%) 81·0% (± 3·3%) 7·8% 76·6% (± 1·0%) 75·4% (± 1·1%) 78·0% (± 1·3%) 11·1% 

Test 75·5% 68·4% 84·4% 7·8% 80·5% 79·2% 81·9% 11·1% 

Left-out 18·9% 12·9% 35·4% 10·7% 31·2% 25·8% 39·2% 15·5% 

Namibia 

Validation 73·6% (± 1·7%) 69·6% (± 1·2%) 78·1% (± 3·3%) 7·7% 75·4% (± 0·9%) 73·4% (± 0·9%) 77·5% (± 1·4%) 11.0% 

Test 77·4% 73·8% 81·3% 7·7% 78·2% 77·8% 78·6% 11.0% 

Left-out 31·2% 27·9% 35·3% 13.0% 41·8% 41·5% 42·1% 18·3% 

Rwanda 

Validation 72·9% (± 2·5%) 69·7% (± 2·7%) 76·4% (± 2·6%) 8·4% 75·5% (± 1·2%) 74·7% (± 1·6%) 76·3% (± 1·1%) 12.0% 

Test 78·0% 75·6% 80·6% 8·4% 79·3% 79·7% 78·9% 12.0% 

Left-out 11·3% 6·4% 50·0% 3·4% 20·8% 16·7% 27·5% 5·3% 

Zambia 

Validation 72·8% (± 2·3%) 69·4% (± 2·0%) 76·6% (± 3·5%) 6·7% 74·2% (± 2·1%) 73·7% (± 1·9%) 74·8% (± 2·6%) 10·3% 

Test 76·7% 73·0% 80·7% 6·7% 77·7% 77·0% 78·5% 10·3% 

Left-out 22·3% 14·1% 53·0% 12·9% 41·5% 37·1% 47·0% 16·6% 

Zimbabwe 

Validation 73·2% (± 1·4%) 66·9% (± 1·6%) 80·7% (± 1·6%) 7·4% 75·0% (± 0·7%) 73·1% (± 1·6%) 77·1% (± 1·1%) 10·5% 

Test 76·3% 70·7% 82·9% 7·4% 78·2% 77·4% 79·0% 10·5% 

Left-out 31·3% 27·2% 36·9% 13·3% 47·0% 41·3% 54·5% 20.0% 

 

Positive Predictive Value (PPV) 

(± %): 95% Confidence Interval 
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Table A5ii: Results of the Support Vector Machine (SVM) algorithm per sex for the validation, test and, left-out samples 

  Males Females 

Country Metric f1 score Sensitivity PPV Prevalence f1 score Sensitivity PPV Prevalence 

Angola 

Validation 64·1% (± 2·2%) 66·4% (± 2·0%) 62·0% (± 2·9%) 8·6% 70·3% (± 1·2%) 69·3% (± 1·1%) 71·4% (± 1·8%) 12·3% 

Test 70·1% 71·6% 68·7% 8·6% 74·3% 73·3% 75·3% 12·3% 

Left-out 10·2% 22·9% 6·5% 1.0% 4·9% 7·9% 3·5% 2·7% 

Burundi 

Validation 64·9% (± 0·6%) 66·4% (± 1·6%) 63·6% (± 2·6%) 8·7% 71·0% (± 1·2%) 68·5% (± 1·2%) 73·7% (± 2·8%) 12·4% 

Test 68·5% 69·5% 67·5% 8·7% 75·3% 72·1% 78·9% 12·4% 

Left-out 11·2% 22·4% 7·4% 0·9% 8·0% 12·0% 6·0% 1·5% 

Ethiopia 

Validation 63·8% (± 2·7%) 64·5% (± 3·9%) 63·1% (± 2·4%) 9·2% 70·1% (± 1·2%) 67·7% (± 1·1%) 72·8% (± 1·8%) 13·4% 

Test 70·4% 73·2% 67·8% 9·2% 75·1% 74·4% 75·8% 13·4% 

Left-out 3·2% 7·6% 2·0% 0·8% 18·9% 23·8% 15·6% 1·5% 

Lesotho 

Validation 64·5% (± 0·9%) 65·6% (± 2·2%) 63·5% (± 2·0%) 7·4% 69·7% (± 1·3%) 67·4% (± 1·6%) 72·1% (± 1·9%) 10·6% 

Test 69·4% 70·5% 68·3% 7·4% 73·3% 71·2% 75·4% 10·6% 

Left-out 22·3% 15·4% 39·8% 21·8% 43·9% 37·3% 53·3% 33·3% 

Malawi 

Validation 65·2% (± 2·3%) 65·5% (± 3·3%) 65·0% (± 1·5%) 8.0% 70·8% (± 1·2%) 68·8% (± 1·5%) 72·9% (± 1·2%) 11·4% 

Test 69·9% 70·5% 69·2% 8.0% 75·0% 73·0% 77·1% 11·4% 

Left-out 21·7% 17·8% 27·8% 7·9% 25·9% 21·7% 32·0% 12·1% 

Mozambique 

Validation 66·6% (± 1·2%) 67·7% (± 1·7%) 65·6% (± 1·5%) 7·8% 72·4% (± 1·9%) 70·2% (± 2·1%) 74·7% (± 2·3%) 11·1% 

Test 68·7% 69·8% 67·7% 7·8% 77·1% 74·2% 80·2% 11·1% 

Left-out 11·4% 8·5% 17·4% 10·7% 24·9% 21·6% 29·5% 15·5% 

Namibia 

Validation 66·4% (± 1·5%) 66·8% (± 3·1%) 66·0% (± 0·6%) 7·7% 70·1% (± 1·9%) 67·5% (± 2·1%) 72·8% (± 2·1%) 11.0% 

Test 69·8% 70·1% 69·5% 7·7% 74·1% 71·7% 76·7% 11.0% 

Left-out 15·5% 11·1% 25·9% 13.0% 29·6% 27·8% 31·7% 18·3% 

Rwanda 

Validation 65·2% (± 2·4%) 65·9% (± 3·0%) 64·6% (± 2·7%) 8·4% 70·8% (± 1·2%) 68·7% (± 1·4%) 73·1% (± 2·0%) 12.0% 

Test 71·1% 73·6% 68·8% 8·4% 75·0% 73·7% 76·4% 12.0% 

Left-out 19·5% 22·9% 17·0% 3·4% 15·8% 13·6% 18·8% 5·3% 

Zambia 

Validation 65·0% (± 2·2%) 64·8% (± 2·0%) 65·2% (± 2·4%) 6·7% 70·2% (± 1·5%) 67·1% (± 1·6%) 73·7% (± 2·2%) 10·3% 

Test 66·9% 67·2% 66·6% 6·7% 74·0% 71·0% 77·4% 10·3% 

Left-out 21·1% 15·5% 33·2% 12·9% 31·3% 23·5% 47·0% 16·6% 

Zimbabwe 

Validation 63·7% (± 1·8%) 64·5% (± 1·9%) 62·8% (± 1·9%) 7·4% 70·4% (± 1·0%) 67·8% (± 2·1%) 73·2% (± 2·1%) 10·5% 

Test 67·3% 67·6% 66·9% 7·4% 72·6% 70·1% 75·3% 10·5% 

Left-out 18·3% 14·6% 24·4% 13·3% 19·7% 12·5% 46·8% 20.0% 
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Table A5iii: Results of the Elastic Net algorithm per sex for the validation, test and, left-out samples 

  Males Females 

Country Metric f1 score Sensitivity PPV Prevalence f1 score Sensitivity PPV Prevalence 

Angola 

Validation 33·3% (± 1·6%) 76·8% (± 3·4%) 21·2% (± 1·1%) 8·6% 42·2% (± 0·7%) 77·0% (± 1·6%) 29·0% (± 0·5%) 12·3% 

Test 33·7% 77·6% 21·5% 8·6% 43·1% 77·8% 29·8% 12·3% 

Left-out 3·5% 56·2% 1·8% 1.0% 10·1% 65·2% 5·5% 2·7% 

Burundi 

Validation 33·7% (± 1·0%) 76·8% (± 3·3%) 21·6% (± 0·6%) 8·7% 42·1% (± 1·8%) 76·4% (± 2·7%) 29·1% (± 1·4%) 12·4% 

Test 33·1% 77·1% 21·1% 8·7% 41·8% 76·2% 28·8% 12·4% 

Left-out 6·8% 63·3% 3·6% 0·9% 13·1% 75·0% 7·2% 1·5% 

Ethiopia 

Validation 34·4% (± 0·7%) 75·3% (± 1·6%) 22·3% (± 0·6%) 9·2% 43·2% (± 1·3%) 75·0% (± 2·4%) 30·3% (± 1·0%) 13·4% 

Test 33·3% 72·2% 21·6% 9·2% 43·6% 75·9% 30·6% 13·4% 

Left-out 4·7% 47·0% 2·5% 0·8% 19·2% 57·6% 11·5% 1·5% 

Lesotho 

Validation 30·3% (± 0·9%) 78·1% (± 2·2%) 18·8% (± 0·5%) 7·4% 38·8% (± 0·8%) 77·7% (± 1·7%) 25·9% (± 0·6%) 10·6% 

Test 29·8% 77·3% 18·5% 7·4% 38·6% 78·1% 25·6% 10·6% 

Left-out 37·0% 30·7% 46·7% 21·8% 60·7% 85·7% 46·9% 33·3% 

Malawi 

Validation 32·9% (± 0·6%) 79·1% (± 1·1%) 20·8% (± 0·5%) 8.0% 41·9% (± 1·6%) 78·9% (± 2·6%) 28·5% (± 1·1%) 11·4% 

Test 33·2% 80·5% 20·9% 8.0% 41·9% 79·0% 28·5% 11·4% 

Left-out 31·1% 49·9% 22·6% 7·9% 37·8% 58·9% 27·8% 12·1% 

Mozambique 

Validation 32·4% (± 0·4%) 78·5% (± 1·3%) 20·4% (± 0·2%) 7·8% 42·2% (± 0·6%) 79·1% (± 1·6%) 28·8% (± 0·5%) 11·1% 

Test 33·9% 78·7% 21·6% 7·8% 42·2% 79·7% 28·7% 11·1% 

Left-out 23·6% 29·0% 19·9% 10·7% 30·1% 80·5% 18·5% 15·5% 

Namibia 

Validation 32·2% (± 0·6%) 78·4% (± 1·4%) 20·3% (± 0·5%) 7·7% 41·6% (± 1·3%) 79·0% (± 1·0%) 28·2% (± 1·1%) 11.0% 

Test 32·3% 76·9% 20·4% 7·7% 41·0% 78·0% 27·8% 11.0% 

Left-out 32·2% 59·8% 22·0% 13.0% 37·2% 83·1% 24·0% 18·3% 

Rwanda 

Validation 32·9% (± 0·6%) 78·3% (± 2·0%) 20·8% (± 0·4%) 8·4% 41·9% (± 1·0%) 78·1% (± 1·1%) 28·6% (± 0·9%) 12.0% 

Test 32·7% 78·5% 20·7% 8·4% 43·0% 80·1% 29·4% 12.0% 

Left-out 15·3% 84·7% 8·4% 3·4% 26·2% 54·9% 17·2% 5·3% 

Zambia 

Validation 31·7% (± 1·5%) 80·5% (± 1·3%) 19·8% (± 1·1%) 6·7% 40·5% (± 0·9%) 80·0% (± 1·1%) 27·1% (± 0·7%) 10·3% 

Test 31·7% 79·7% 19·8% 6·7% 40·3% 79·1% 27·0% 10·3% 

Left-out 32·5% 70·5% 21·2% 12·9% 43·8% 72·8% 31·4% 16·6% 

Zimbabwe 

Validation 31·1% (± 0·6%) 78·2% (± 1·5%) 19·4% (± 0·4%) 7·4% 39·3% (± 1·1%) 78·1% (± 1·7%) 26·3% (± 1·0%) 10·5% 

Test 32·2% 80·3% 20·2% 7·4% 39·4% 77·8% 26·4% 10·5% 

Left-out 27·1% 63·4% 17·2% 13·3% 47·8% 68·2% 36·8% 20.0% 

 

Positive Predictive Value (PPV) 
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Table A5iv: Results of the Generalized Additive Model (GAM) algorithm per sex for the validation, test and, left-out samples 

  Males Females 

Country Metric f1 score Sensitivity PPV Prevalence f1 score Sensitivity PPV Prevalence 

Angola 

Validation 26·1% (± 2·6%) 16·9% (± 2·1%) 57·8% (± 6·0%) 8·6% 40·1% (± 1·0%) 29·5% (± 0·7%) 62·8% (± 2·4%) 12·3% 

Test 26·4% 16·9% 57·8% 8·6% 39·5% 28·6% 64·2% 12·3% 

Left-out 0·0% 0·0% 0·0% 1.0% 1·2% 0·6% 25·0% 2·7% 

Burundi 

Validation 27·3% (± 2·8%) 17·7% (± 2·2%) 60·2% (± 4·6%) 8·7% 39·3% (± 2·6%) 28·7% (± 2·6%) 62·9% (± 2·6%) 12·4% 

Test 24·1% 15·0% 61·2% 8·7% 37·9% 27·3% 62·2% 12·4% 

Left-out 2·4% 2·0% 3·0% 0·9% 6·2% 3·3% 60·0% 1·5% 

Ethiopia 

Validation 26·7% (± 1·7%) 17·1% (± 1·3%) 59·1% (± 2·5%) 9·2% 39·5% (± 1·4%) 28·8% (± 1·1%) 62·9% (± 2·5%) 13·4% 

Test 26·7% 17·1% 60·1% 9·2% 41·1% 29·9% 65·5% 13·4% 

Left-out 0·0% 0·0% 0·0% 0·8% 0·0% 0·0% 0·0% 1·5% 

Lesotho 

Validation 23·4% (± 3·8%) 14·6% (± 2·6%) 59·7% (± 5·6%) 7·4% 34·5% (± 1·3%) 24·1% (± 1·6%) 61·4% (± 4·6%) 10·6% 

Test 23·1% 14·4% 58·3% 7·4% 36·1% 25·8% 60·3% 10·6% 

Left-out 12·6% 13·9% 11·5% 21·8% 47·5% 37·5% 64·5% 33·3% 

Malawi 

Validation 27·5% (± 4·3%) 18·0% (± 3·2%) 59·2% (± 5·6%) 8.0% 41·0% (± 1·4%) 30·3% (± 1·4%) 63·5% (± 1·9%) 11·4% 

Test 28·4% 18·1% 65·2% 8.0% 41·9% 30·5% 67·2% 11·4% 

Left-out 0·0% 0·0% 0·0% 7·9% 14·6% 8·2% 65·7% 12·1% 

Mozambique 

Validation 28·5% (± 3·3%) 18·6% (± 2·4%) 61·0% (± 4·8%) 7·8% 42·2% (± 1·7%) 31·4% (± 1·5%) 64·3% (± 1·8%) 11·1% 

Test 25·5% 16·1% 62·1% 7·8% 43·3% 32·1% 66·6% 11·1% 

Left-out 4·3% 2·3% 29·4% 10·7% 16·6% 13·7% 21·0% 15·5% 

Namibia 

Validation 27·3% (± 0·8%) 17·6% (± 0·9%) 60·3% (± 4·2%) 7·7% 39·2% (± 1·2%) 28·5% (± 1·1%) 63·3% (± 3·1%) 11.0% 

Test 27·8% 17·7% 64·4% 7·7% 41·3% 30·3% 65·1% 11.0% 

Left-out 8·9% 5·1% 34·9% 13.0% 17·0% 9·9% 61·1% 18·3% 

Rwanda 

Validation 25·1% (± 1·6%) 16·0% (± 1·3%) 59·3% (± 4·9%) 8·4% 40·1% (± 0·8%) 29·3% (± 0·7%) 63·3% (± 3·2%) 12.0% 

Test 26·4% 16·5% 64·7% 8·4% 41·1% 30·4% 63·4% 12.0% 

Left-out 0·0% 0·0% 0·0% 3·4% 5·9% 3·4% 21·4% 5·3% 

Zambia 

Validation 26·6% (± 2·3%) 17·2% (± 2·0%) 58·8% (± 5·8%) 6·7% 40·6% (± 2·8%) 29·9% (± 2·6%) 63·3% (± 2·0%) 10·3% 

Test 27·9% 17·9% 62·9% 6·7% 39·0% 28·3% 62·5% 10·3% 

Left-out 15·0% 8·8% 50·2% 12·9% 46·7% 44·8% 48·7% 16·6% 

Zimbabwe 

Validation 24·6% (± 1·5%) 15·7% (± 1·2%) 57·5% (± 2·8%) 7·4% 36·7% (± 1·7%) 26·3% (± 1·2%) 60·9% (± 3·3%) 10·5% 

Test 26·0% 16·4% 62·5% 7·4% 37·0% 26·3% 62·7% 10·5% 

Left-out 22·9% 56·1% 14·4% 13·3% 27·5% 38·6% 21·4% 20.0% 

 

Positive Predictive Value (PPV) 
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Python libraries 

- Matplotlib 3.1.1 

- Mlxtend 0.17.0 

- Numpy 1.16.5 

- Pandas 0.25.1 

- Pathlib 1.0.1 

- Pyshp 2.1.0 

- Pygam 0.8.0 

- Scikit-learn 0.21.3 

- Scipy 1.3.1 

- Seaborn 0.9.0 

- Shap 0.30.1 

- Xgboost 0.90 

- Yellowbrick 1.0.1 

Some of the computations were done on the Baobab cluster of the University of Geneva. 
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