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Abstract 26 

Background. Diarrhea is one of the leading causes of childhood morbidity and mortality 27 

in lower- and middle-income countries. In such settings, access to laboratory diagnostics are 28 

often limited, and decisions for use of antimicrobials often empiric. Clinical predictors are a 29 

potential non-laboratory method to more accurately assess diarrheal etiology, the knowledge 30 

of which could improve management of pediatric diarrhea. 31 

Methods. We used clinical and quantitative molecular etiologic data from the Global 32 

Enteric Multicenter Study (GEMS), a prospective, case-control study, to develop predictive 33 

models for the etiology of diarrhea. Using random forests, we screened the available 34 

variables and then assessed the performance of predictions from random forest regression 35 

models and logistic regression models using 5-fold cross-validation. 36 

Results. We identified 1049 cases where a virus was the only etiology, and developed 37 

predictive models against 2317 cases where the etiology was known but non-viral (bacterial, 38 

protozoal, or mixed). Variables predictive of a viral etiology included age, season, height-for-39 

age z-score (HAZ), bloody diarrhea, and vomiting. Cross-validation suggests an AUC of 40 

0.825 can be achieved with a parsimonious model of 5 variables, achieving a specificity of 41 

0.85, a sensitivity of 0.59, a NPV of 0.82 and a PPV of 0.64. 42 

Conclusion. Predictors of the etiology of pediatric diarrhea can be used by providers in 43 

low-resources setting to inform clinical decision-making. The use of non-laboratory methods 44 

to diagnose viral causes of diarrhea could reduce inappropriate antibiotic prescription 45 

worldwide. 46 

 47 
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Author Summary:  50 

Diarrhea is one of the leading causes of death in young children worldwide. In low-resource 51 

settings, diarrhea testing is not available or too expensive, and the decision to prescribe 52 

antibiotics is often made without testing. Using clinical information to predict which cases 53 

are caused by viruses, and thus wouldn’t need antibiotics, would help to improve appropriate 54 

use of antibiotics. We used data from a large study of childhood diarrhea, paired with 55 

advanced statistical methods including machine learning, to come up with the top clinical 56 

factors that could predict a viral cause of diarrhea. We compared 1049 cases where a virus 57 

was the only cause, with 2317 cases where the cause was known but not a virus. We found 58 

that age, season, nutritional status defined by height, blood diarrhea, and vomiting, were the 59 

clinical factors most predictive of whether the diarrhea was caused by a virus or not. We 60 

found that, using just those 5 factors, we were able to predict a viral cause with good 61 

accuracy. Our findings can be used by doctors to guide the appropriate use of antibiotics for 62 

diarrhea in children. 63 

 64 
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Introduction 66 

Diarrhea is one of the leading causes of childhood morbidity and mortality in lower- and 67 

middle-income countries (LMICs) and is among the most common reasons for admission 68 

into a health facility [1]. Treatment of diarrhea is commonly empiric, with antibiotic 69 

prescription mostly based on clinical suspicion for a bacterial etiology. In resource-limited 70 

settings, laboratory etiological diagnosis is rarely made due to cost constraints or availability. 71 

A large number of patients with viral illness are prescribed antibiotics inappropriately, and 72 

the rate of use varies widely by country and setting [2]. This inappropriate use of 73 

antimicrobials can lead to toxicity, increased costs of care, and development of resistance [3]. 74 

Thus, methods providing clinical decision support that accurately assesses diarrhea etiology 75 

and reduces reliance on laboratory testing are needed. Recently, tools for decision making 76 

and clinical prediction have been bolstered by the exploration of machine learning methods 77 

such as random forests, neural networks, and support vector machines [4]. 78 

The availability of molecular diagnostics in recent years has enabled accurate 79 

determination of etiology for pediatric diarrhea. In several large studies in LMICs, this has 80 

been used for estimating the population-based burden of various diarrheal pathogens [5-7]. 81 

While etiologies of diarrhea are now better-understood, there remains a gap in knowledge 82 

regarding clinical predictors for improving clinical decision making in the setting of 83 

infectious diarrhea. In this study, we use data from the Global Enteric Multicenter Study 84 

(GEMS) [5] to examine clinical diagnostic predictors of diarrhea etiology. We provide a brief 85 

introduction to the data and data processing steps, describe our variable screening and model 86 

fitting approach, present the results of our predictive models, and discuss the implications of 87 

such models. 88 
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Methods 90 

Study Design and Settings 91 

GEMS is a prospective, case-control study that took place from 2007-2011 in 7 countries in 92 

Africa and South Asia (Figure S2). There were 9439 children with moderate-to-severe 93 

diarrhea (MSD) enrolled at local health care centers along with 1 to 3 matched non-diarrheal 94 

controls. An acute episode of diarrhea was defined as MSD if it fulfilled at least one of the 95 

following criteria: sunken eyes; loss of skin turgor; intravenous hydration administered or 96 

prescribed; visible blood in stool or parental report; or admission to hospital with diarrhea or 97 

dysentery or advising hospitalization. At enrollment, a stool sample was taken from each 98 

child to identify enteropathogens along with clinical information, including demographic, 99 

anthropometric, and clinical history. Methods for GEMS have been described in detail 100 

previously [5, 8, 9]. Because pathogen nucleic acids are frequently detected by PCR in 101 

children without diarrhea, we used the quantitative real-time PCR-based (qPCR) majority 102 

attribution models developed by Liu et al [6] to assign etiology of diarrhea. We derived site- 103 

and age- specific attributable fractions (AFe) for each episode, and used a cut-off of greater 104 

than 0.5 to indicate attribution of a pathogen to a particular episode. We defined viral 105 

etiology as majority attribution of the diarrhea episode by viral pathogen(s) only (i.e. 106 

excluding any co-infections with bacteria or protozoa). We defined other known etiologies as 107 

having a majority attribution of diarrhea episode by at least one other non-viral pathogen. 108 

Additionally, we defined a bacterial etiology as attribution of the diarrhea episode by any 109 

bacterial pathogen, including cases in which more than one pathogen was attributed (i.e. 110 

bacteria and virus, or bacteria and protozoa, or multiple bacteria). For patients with unknown 111 

etiologies, we presume there is an infectious cause to their diarrhea that we are not detecting, 112 

and excluded these cases from our predictive model. 113 

We used the patient’s clinical symptoms, epidemiologic, and anthropometric data at 114 

presentation as potential predictors of etiology. We used standard guidelines from the 115 

transparent reporting of a multivariable prediction model for individual diagnosis (TRIPOD) 116 

to develop our prediction model [10]. We focused on the prediction of a viral etiology of 117 
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acute diarrhea versus all other known etiologies since this would allow clinicians to 118 

comfortably withhold antibiotics. We additionally looked at the prediction of any bacterial 119 

pathogen as a way to determine if follow-up testing may be helpful in ambiguous cases. 120 

Data Processing 121 

We performed all data processing and analyses using R [11]. Starting with over 1000 122 

variables collected, we excluded all variables which would not be available at the time of 123 

presentation. Questions which had very few responses in certain categories (<10) were re-124 

grouped into an “other” category as appropriate. Some variables only had 1 or 2 responses in 125 

a given category and those patients were removed from the dataset when grouping into an 126 

“other” category was not possible. For instance, only 5 patients responded they “Don’t 127 

Know” when asked if they had any blood in their stool since the illness began. We 128 

maximized the utility of the modeling process by removing highly collinear and similar 129 

variables (e.g. weight-, BMI, and BMI-for-age z-scores), while keeping variables that are 130 

clinically accessible, before observing any measurement of etiology. These steps left 156 131 

potential predictor variables for analysis. 132 

In addition to the information from the GEMS survey, we developed a season variable 133 

using temperature and rain information from NOAA weather stations close to the health 134 

centers and with data during the GEMS time period12. We defined a rainy season day as a 135 

day having a center-aligned 1-month moving rain average greater than the overall rain 136 

average within the study period. We defined a hot season day as a day having a center-137 

aligned 1-month moving temperature average greater than the overall temperature average 138 

within the study period. 139 

Statistical Modeling and Assessment 140 

We used random forests as a screening step to obtain an order of variable importance toward 141 

the goal of building a parsimonious model. The random forest method uses an ensemble 142 

approach by generating multiple decision trees (1000 trees, throughout) and approaching 143 

variable importance by determining a reduction in mean squared prediction error for each 144 
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variable on the “out-of-bag” samples (or testing samples) created while bootstrapping the 145 

data. During this step, categorical variables are treated as a single variable rather than a 146 

variable for each level. 147 

We used 5-fold cross-validation to attain an estimate of generalizable model 148 

performance. For each cross-validation iteration, we took the order of the importance 149 

measure from the screening step to determine which variables we used to fit separate logistic 150 

regression model and random forest models with various predictor subset sizes. Subsets 151 

examined were sizes 1 through 10, 15, 20, 30, 40, and 50. In each iteration of cross-152 

validation we made predictions on the test set and obtained measures of performance: the 153 

receiver operating characteristic (ROC) curve, and area under the ROC curve (AUC), also 154 

known as the C-statistic, along with AUC confidence intervals [13]. For a diagnostic 155 

threshold balancing the relative costs of false positives and false negatives, we calculated the 156 

positive predictive value (PPV) and the negative predictive value (NPV) as functions of the 157 

derived sensitivity and specificity of the prediction, using the prevalence of the 158 

corresponding etiology in GEMS. 159 

Ethics approval 160 

The GEMS study protocol was approved by ethics committees at the University of Maryland, 161 

Baltimore and at each field site. Parents or caregivers of participants provided written 162 

informed consent, and a witnessed consent was obtained for illiterate parents or caretakers.  163 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.20016725doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.27.20016725
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

Results 164 

Of the 3366 patients in the GEMS study, 9439 patients had MSD and are included in this 165 

analysis (Figure S3), 1049 had a viral etiology and 2069 had a bacterial etiology (Table 1). 166 

Using random forest screening, we found that age, season, bloody diarrhea, height-for-age z-167 

score (HAZ), and vomiting were the five variables most predictive of a viral etiology (Table 168 

2), and that top predictive variables for bacterial etiology were similar (Supplemental Table 169 

S1).  170 

When we performed 5-fold cross-validated logistic regression and random forest models, 171 

the average AUC across 100 random iterations of cross-validation ranged from 0.71 (1 172 

variable) to 0.84 (7 or more variables) for prediction of viral etiology (Figure 1) with similar 173 

results for bacterial etiology (Figure S4). To demonstrate the direction and magnitude of the 174 

effect of the top 10 variables from variable importance screening by fitting a logistic 175 

regression on the entire data set (Table 3). Lower age, a higher HAZ, more vomiting, no 176 

blood in the stool, and a dry/cold season, were associated with viral etiology. As expected, 177 

the opposite associations were found for bacterial etiology (Supplemental Table S2). We 178 

found similar results in a sensitivity analysis with rotavirus removed, though some effect 179 

magnitudes were reduced. To estimate the achievable sensitivity and specificity by each 180 

model at various predictor sizes, we generated ROC curves from cross-validation, and found 181 

that using a parsimonious model of 5 variables, we achieved a specificity of 0.85 and a 182 

sensitivity of close to 0.60 for prediction of viral etiology (Figure 2). For predicting a 183 

bacterial cause, our models achieved a sensitivity of 0.85 and a specificity of 0.63 (Figure 184 

S5). Using the prevalence of viral etiology in GEMS, our prediction model had a NPV of 185 

0.82 and a PPV of 0.64. 186 

 187 

Figure 1: Average AUC and 95% CIs from 100 iterations of cross-validation for both a 188 

logistic regression (LR) and random forest (RF) as the number of variables in the model 189 

increases and inset shows zoomed in graphs of 1 through 10 variables. 190 
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 191 

Figure 2: Interpolated estimates of ROC curves from the cross-validation for logistic 192 

regression and random forest models with variable sizes of 5, 10, and 20. The faded dashed 193 

lines represent examples of how we could achieve a sensitivity of 0.6 and a specificity of 194 

0.85 for prediction of viral etiology. 195 

 196 

When we examined the predictors associated with viral etiology for each of the 7 sites in 197 

GEMS by filtering the entire dataset by site, we found all had a similar order of variable 198 

importance with some minor differences (Table 4). We then looked at the performance of the 199 

prediction model filtered for specific sites and specific continents within each cross-200 

validation iteration’s test set, and found that at Asian sites the predictions had an AUC almost 201 

0.07 better than African sites on average. Looking at individual sites, in Kenya the model 202 

predictions had the worst average AUC while Bangladesh had the best average AUC. Across 203 

all sites, the AUC of a 5-variable model was similar to a 10-variable model with less than 204 

0.02 lower average AUC. 205 

We then performed an external validation by testing the logistic regression on each site 206 

individually following training on the other sites in the same continent, and found 207 

performance metrics similar to the cross-validation results, with AUC ranging from 0.65 to 208 

0.92 across the seven sites. As with the internal cross-validation, we found 5-variable models 209 

to have similar performance to 10-variable models. We found similar results for the bacterial 210 

etiology prediction (Supplemental Table S3). 211 

  212 
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Discussion 213 

Our use of data from GEMS, which involved 3366 diarrheal episodes with known etiology in 214 

7 countries and with over 150 clinically-relevant parameters collected for each episode, 215 

allowed for a robust analysis that revealed the ability of clinical variables alone to predict 216 

diarrheal etiology with a high degree of accuracy. Using machine learning algorithms, we 217 

found that a model with just 5 variables (age, season, HAZ, bloody diarrhea, and vomiting), 218 

could accurately predict viral etiology, with a cross-validated AUC of 0.825. Translation of 219 

these findings towards clinical decision making has the potential to improve management, 220 

including appropriate antibiotic use, in LMICs.  221 

 222 

Previous studies predicting etiology of diarrheal illness14-17, have been limited by the low 223 

number of participants, amount of clinical data collected, pathogen variety, number of 224 

pathogens detected, method of detection, lack of controls without diarrhea, single center 225 

design, and the need for stool testing. Etiological prediction is particularly challenging in 226 

LMIC settings, where multi-pathogen detection is common in children with diarrhea, and 227 

presumed pathogens can be isolated from asymptomatic individuals in up to 50% of study 228 

controls18. New molecular diagnostic methods used on the GEMS samples involved a 229 

quantitative assessment of 32 potential pathogens, with matched case-control pairs, to ascribe 230 

an etiological attributable fraction (AFe) for each episode. This quantitative method, in 231 

context of a case-control study, is thus able to account for the high rate of asymptomatic 232 

detection of pathogens by molecular testing in children in LMICs, which can confound the 233 

attribution of etiology. Using these data, we built several models to evaluate the effect of 234 

clinical indicators on whether children presenting with acute diarrhea had a viral etiology (or 235 

bacterial etiology). We showed that AUCs improved for the first 7 variables but thereafter 236 

the addition of more variables did not improve the model. Notably, we found that an AUC of 237 

0.825 could be achieved with 5 variables, enabling the translation of this predictive model to 238 

a parsimonious rule which could be used in clinical decision-support. 239 

 240 
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When considering sensitivity and specificity in the context of diarrheal etiology, we 241 

assumed a high specificity target for prediction of “viral only” etiology (Figure 2), and 242 

similarly, a high sensitivity target for bacterial etiology (Figure S4), both of which would 243 

minimize the risk of not giving antibiotics to a child with a bacterial infection. While current 244 

WHO guidelines recommend antibiotics only for children with dysentery and for children 245 

with acute water diarrhea (AWD) with severe dehydration in cholera endemic regions, there 246 

is evidence suggesting treatment of non-dysenteric Shigella infections may be beneficial [19, 247 

20]. Our prediction model showed that for predicting a viral etiology, for a desired specificity 248 

of 0.85, we achieved a sensitivity of 0.59. We found that the most significant predictors for 249 

differentiating viral from other etiologies were: age, HAZ, season, bloody diarrhea, and 250 

vomiting. Vomiting, a higher HAZ, and dry/cold season were evidence towards a viral 251 

etiology, while an older age and bloody diarrhea were evidence against a viral etiology. 252 

The predictors we identified are consistent with those of previous studies. Bloody 253 

diarrhea as a predictor of a bacterial cause of diarrhea, especially for shigellosis, has been 254 

well established14-17, 21-23 and informs the IMCI guidelines that dysentery be treated with 255 

antibiotics. Vomiting as a predictor of a viral process has similarly been shown in previous 256 

studies14, 16. It is well established that younger children have a higher incidence of diarrhea24 257 

and some studies have suggested that younger age is also more indicative of a viral process16, 258 

22, 24-26. We showed that age was the most important predictor with mean age of viral case 259 

being 13.0 months, and 22.1 months for bacterial cases.  260 

 261 

Using data gathered from NOAA weather stations proximal to our study sites during the 262 

study period, we were able to develop seasonal variables based on temperature and rainfall. 263 

We show that a viral etiology of diarrhea is associated with a drier, colder climate, consistent 264 

with observation from previous studies from the USA16 and India26. The positive association 265 

of anthropometrics (higher HAZ and MUAC) with viral etiology may suggest that improved 266 

nutrition is more protective of a bacterial than a viral process. Symptoms found in earlier 267 

studies to be predictive of etiology, but which did not improve predictive performance in our 268 

analysis, include fever, number of stools per day, duration of diarrhea, and presence of 269 
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mucous14-17, 23. Similarly, variables related to hygiene and sanitation did not help with 270 

prediction of etiology. 271 

 272 

Given that GEMS was conducted in 7 countries across Africa and Asia, we examined the 273 

model performance across sites. We found that the model attained an average AUC of about 274 

0.86 in Asian sites and about 0.79 in African sites, likely due to poor performance of the 275 

model in Kenya and good performance in Bangladesh. This suggests that additional external 276 

validation will be necessary to assess both performance and generalizability. Indeed, even 277 

within continent, countries had varying AUCs. We also found that, when externally validated 278 

against other sites from the same continent, use of five variables achieve similar AUC as use 279 

of 10 variables. Future studies should aim to capture country- or continent-specific trends so 280 

that outbreaks or volatility can be accounted for in the predictions. 281 

 282 

Our study has a number of limitations. First, our predictive model does not distinguish 283 

between different bacterial etiologies, which may require different therapy. Additionally, it 284 

does not predict for parasitic infections. In GEMS [6], a number of bacterial pathogens had 285 

few to no cases detected using AFe > 0.5, including EHEC, Yersinia, LT ETEC, EAEC, 286 

atypical EPEC, and Clostridium difficile. This was due to these organisms’ presence in 287 

control children without diarrhea, making attribution difficult. While it is possible that these 288 

could have co-occurred with a viral pathogen, there is limited evidence that antibiotic 289 

treatment of these etiologies would be beneficial in this setting. External validation is 290 

essential for this and all clinical prediction models, as demonstrated by our heterogenous 291 

result by continent. GEMS was conducted before the widespread use of rotavirus vaccine and 292 

rotavirus was the dominant viral pathogen; thus, the model will need to be validated in 293 

settings were rotavirus vaccination campaigns have had substantial impact. Finally, we note 294 

that because variable selection was used before fitting the logistic regression model, the role 295 

of the variables in terms of p-values and confidence intervals may be over-stated. 296 

 297 
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In conclusion, utilizing a large number of cases and quantitative molecular methods of 298 

pathogen detection with etiologic attribution based on a case-control study, we showed that 299 

etiology prediction could be attained for episodes of acute diarrhea with as few as 5 300 

variables. Our findings confirm previously considered predictors of viral etiology including 301 

lack of bloody diarrhea, vomiting, younger age, and a dry and cool climate, and reveal 302 

additional predictors of viral etiology associated with anthropometric measures. These 303 

findings have the potential to provide clinicians in lower-resource settings with better 304 

informed clinical decision making, including identification of the subset of children from 305 

whom antibiotics may be safely withheld and a group who may benefit from antimicrobials 306 

and/or adjunctive microbiologic testing.  307 
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Supplementary Figure Legends  

S1 Checklist: STROBE Checklist 

Figure S2: The left map shows the locations of the 4 study sites in Africa. Right map shows 

the locations of 3 study sites in South Asia. The map was generated using the get_map and 

ggmap functions in R version 3.6.1.  

 

Figure S3: Average AUC and 95% CIs from 100 iterations of cross-validation for both a 

logistic regression (LR) and random forest (RF) as the number of variables in the model 

increases and inset shows zoomed in graphs of 1 through 10 variables. 

 

Figure S4: Consort diagram of the reduction of patients from 22567 in the GEMS dataset to 

the 3366 cases in our study. Note that we only filtered out non-responses for response variables 

that were in the top 50 of our screening step. 

 

Figure S5: Interpolated estimates of ROC curves from the cross-validation for logistic 

regression and random forest models with variable sizes of 5, 10, and 20. The faded dashed 

lines represent examples of how we could achieve a sensitivity of 0.85 and a specificity of 0.60 

for any bacteria. 
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Tables 

Table 1: Number of cases attributed to each pathogen with an attributable fraction above 0.5. 

Pathogen Cases 

Adenovirus 40/41 222 

Aeromonas 59 

Astrovirus 111 

C. jejuni/C. coli 85 

Cryptosporidium 301 

Cyclospora cayetanensis 16 

Entamoeba histolytica 29 

Helicobacter pylori 131 

Isospora 3 

Norovirus GII 70 

Rotavirus 967 

Salmonella 67 

Sapovirus 75 

Shigella/EIEC 1376 

Vibrio cholerae 152 

EAEC 1 

ST-ETEC (STh) 407 

Typical EPEC (bfpA) 43 

Occurrences Cases 

Protozoal 218 

Viral 1049 

Viral-Protozoal 30 

Bacterial 1664 

Bacterial-Protozoal 92 

Bacterial-Viral 307 

Bacterial-Viral-Protozoal 6 
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Table 2: Rank of variable importance by reduction in residual sum of squares (RSS) using random 

forest regression. 

 
Viral Etiology 

 Variable Name RSS Reduction 

Age 51.6 

Season 29.0 

Blood in stool 26.1 

HAZ 24.7 

Vomiting 23.0 

Breastfed 22.0 

MUAC 20.9 

Resp. Rate 18.5 

Wealth Index 18.3 

Temperature 16.7 
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Table 3: The odds ratios, 95% confidence interval, and p-value from a logistic regression model. 

  Viral Only 

Variable Name Odds Ratios (95% CI) P-value 

Intercept 1.975 (0.053 – 72.894) 0.7117 

Age (mo.) 0.956 (0.944 – 0.967)  <0.0001 

Season     

    Dry/Cold Reference  
    Rainy/Cold 0.197 (0.145 – 0.268) <0.0001 

    Dry/Hot 0.304 (0.244 – 0.379) <0.0001 

    Rainy/Hot 0.338 (0.268 – 0.426) <0.0001 

Blood in stool 0.129 (0.096 – 0.173)  <0.0001 

HAZ 1.168 (1.081 – 1.262) 0.0001 

Vomiting 2.383 (1.995 – 2.847)  <0.0001 

Breastfed     

    None Reference  
    Partially 2.359 (1.827 – 3.046)  <0.0001 

    Exclusively 2.400 (1.554 – 3.705) 0.0001 

MUAC 1.031 (0.963 – 1.105) 0.3773 

Resp. Rate (per 

min.) 0.990 (0.979 – 1.000) 0.0541 

Wealth Index 1.066 (0.976 – 1.164) 0.1559 

Temperature (◦C) 0.988 (0.897 – 1.088) 0.8022 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.20016725doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.27.20016725
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Table 4: The table contains both site-specific variable importance ordering and a cross-validated average overall AUC, AUC by country, and AUC by 

continent and confidence intervals from a 5 (bold) and 10 (ital.) variable logistic regression model for predicting a viral etiology with variables based on the 

overall variable importance. Lastly, it shows the AUC and a 95% confidence interval resulting from testing the logistic regression with variables based on 

the overall variable importance on each site individually following its training on the other countries in the same continent 

 
  

Africa 
   

                    Asia 
 

               Country 

  Variable 
The Gambia Mali Mozambique Kenya India Bangladesh Pakistan 

1 Age Age Age Age Age Age Age 

2 Season Season Season HAZ MUAC Blood in stool Breastfed 

3 HAZ Vomiting Breastfed MUAC HAZ Season HAZ 

4 Blood in stool MUAC HAZ Resp. Rate Season Sunken Eyes Resp. Rate 

5 MUAC HAZ Temp. Breastfed Resp. Rate Vomiting MUAC 

6 Temp. Resp. Rate MUAC Temp. Blood in stool MUAC Temp. 

7 Resp. Rate Breastfed Resp. Rate Wealth Index Wealth Index Rectal Straining Wealth Index 

8 Wealth Index Wealth Index Wealth Index # Share Facility # Share Facility Temp. Vomiting 

9 People in House Temp. Vomiting People in House Temp. HAZ People in House 

10 Vomiting People in House People in House Days of Episode People in House Wealth Index Blood in stool 

Cntry AUCs 0.850 (0.841-0.858) 
0.847 (0.838-0.855) 

0.792 (0.780-0.803) 
0.796 (0.785-0.807) 

0.833 (0.823-0.843) 
0.839 (0.828-0.848) 

0.686 (0.674-0.698) 
0.693 (0.681-0.705) 

0.812 (0.805-0.820) 
0.813 (0.806-0.821) 

0.927 (0.922-0.933) 
0.923 (0.918-0.929) 

0.788 (0.778-0.798) 
0.801 (0.791-0.811) 

Cont. AUCs  0.791 (0.786-0.796) 
0.793 (0.788-0.798) 

  0.856 (0852-0.860) 
0.862 (0.858-0.866) 

 

Overall AUC   0.825 (0.822-0.828) 
0.831 (0.827-0.834) 

   

Cont. Ext. Val. 0.809 (0.766-0.852) 
0.803 (0.760-0.846) 

0.789 (0.737-0.841) 
0.796 (0.745-0.846) 

0.830 (0.786-0.874) 
0.826 (0.781-0.870) 

0.671 (0.617-0.724) 
0.670 (0.616-0.724) 

0.811 (0.776-0.846) 
0.813 (0.778-0.847) 

0.924 (0.899-0.949) 
0.922 (0.896-0.948) 

0.790 (0.747-0.834) 
0.795 (0.751-0.838) 
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