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ABSTRACT 

Purpose: Pathological images are easily accessible data with the potential as prognostic biomarkers.             

Moreover, integration of heterogeneous data types from multi-modality, such as pathological image            

and gene expression data, is invaluable to help predicting cancer patient survival. However, the              

analytical challenges are significant.  

Experimental Design: Here we take the hepatocellular carcinoma (HCC) pathological image           

features extracted by CellProfiler, and apply them as the input for Cox-nnet, a neural network-based               

prognosis. We compare this model with conventional Cox-PH models, using C-index and log ranked              

p-values on HCC testing samples. Further, to integrate pathological image and gene expression data              

of the same patients, we innovatively construct a two-stage Cox-nnet model, and compare it with               

another complex neural network model PAGE-Net. 

Results: ​pathological image based prognosis prediction using Cox-nnet (median C-index 0.74 and            

log-rank p-value 4e-6) is significantly more accurate than Cox-PH model (median C-index 0.72 and              

log-rank p-value of 3e-4). Moreover, the two-stage Cox-nnet complex model combining           

histopathology image and transcriptomics RNA-Seq data achieves better prognosis prediction, with a            

median C-index of 0.75 and log-rank p-value of 6e-7 in the testing datasets. The results are much                 

more accurate than PAGE-Net, a CNN based complex model (median C-index of 0.67 ​and log-rank               
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p-value of 0.02). Imaging features present additional predictive information to gene expression            

features, as the combined model is much more accurate than the model with gene expression alone                

(median C-index 0.70). Pathological image features are modestly correlated with gene expression.            

Genes having correlations to top imaging features have ​known associations with HCC patient survival              

and morphogenesis of liver tissue​. 

Conclusion: This work provides two-stage Cox-nnet, a new class of biologically relevant and             

relatively interpretable models, to integrate multi-modal and multiple types of data for survival             

prediction.  

Key words: prognosis, survival, prediction, neural network, modelling, Cox proportional hazards ​,           

pathology, image, gene expression, omics, RNA-Seq, data integration 

 

I​NTRODUCTION 

Prognosis prediction is important for providing effective disease monitoring and management.           

Various biomaterials have been proposed as potential biomarkers to predict patient survival. Among             

them, hematoxylin and eosin (H&E) stained histopathological images, are very attractive materials to             

extract biomarker features. Compared to genomics materials, such as RNA-Seq transcriptomics, these            

images are much more easily accessible and cheaper to obtain, through processing archived             

formalin-fixed paraffin-embedded (FFPE) Blocks. In H&E staining, the hematoxylin is oxidized into            

phematein, a basic dye which stains acidic (basophilic) tissue components (ribosomes, nuclei, and             
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rough endoplasmic reticulum) into darker purple color. Whereas acidic eosin dye stains other protein              

structures of the tissue (stroma, cytoplasm, muscle fibers) into a pink color. As patients' survival               

information is retrospectively available in electronic medical record data and FFPE blocks are             

routinely collected clinically, the histopathology images can be generated and used for highly valuable              

and predictive prognosis models. 

Previously, we developed a neural network model called Cox-nnet to predict patient survival, using              

transcriptomics data ​[1]​. Cox-nnet is an alternative to the conventional methods, such as Cox              

proportional hazards (Cox-PH) methods with LASSO or ridge penalization. We have demonstrated            

that Cox-nnet is more optimized for survival prediction from high throughput gene expression data,              

with comparable or better performance than other conventional methods, including Cox-PH, Random            

Survival Forests ​[2] and Coxboost ​[3]​. Moreover, Cox-nnet reveals much richer biological            

information, at both the pathway and gene levels, through analysing the survival related “surrogate              

features” represented as the hidden layer nodes in Cox-nnet. However, it remains to be explored               

whether other data types that are less biologically intuitive than genomics data, such as histopathology               

imaging data, are also suitable input features for Cox-nnet. Moreover other neural network based              

models have been proposed [​15-19​], and some of them were designed to handle multi-modal data. For                

example, PAGE-Net is a complex neural network model that has a convolutional neural network              

(CNN) layer followed by pooling and a genomics model involved in transformation of the gene layer                

to pathway layer. The genomics neural network portion is followed by two hidden layers, the latter of                 

which is combined with the image neural network model to predict glioblastoma patient survival.              

Though PAGE-Net uses CNN, the resulting predictive C-index value based on imaging data appeared              

almost random (C-index=0.509), raising the concern of overfitting. It is therefore important to test if a                

model built upon Cox-nnet, using pre-extracted, biologically informative features, can combine           

multiple types of data, eg. imaging and genomics data, and if so, how well it performs relative to                  

models such as PAGE-Net. 
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In this study, we extend Cox-nnet to take up pathological image features extracted from imaging               

processing tool CellProfiler ​[4]​, ​and compare the predictive performance of Cox-nnet relative to Cox              

proportional hazards, the standard method for survival analysis, which was also the second best              

method in the previous survival prediction study using pan-cancer datasets ​[1]​. Moreover, we propose              

a new type of two-stage complex Cox-nnet model, which combines the hidden node features from               

multiple first-stage Cox-nnet models, and then use these combined features as the input nodes to train                

a second stage Cox-nnet model. We applied the models on TCGA hepatocellular carcinoma (HCC),              

which we had previously gained domain experience on ​[5-6]​. Hepatocellular carcinoma (HCC) is the              

most prevalent type of liver cancer that accounts for 70%-90% of all liver cancer cases. It is a                  

devastating disease with poor prognosis, where the 5-year survival rate is only 12% [​20​]. And the                

prognosis prediction becomes very challenging due to the high level of heterogeneity in HCC as well                

as the complex etiologic factors. Limited treatment strategies in HCC, relative to other cancers, also               

imposes an urgent need to develop tools for patient survival prediction. As comparison, we also               

evaluated the performance of another CNN based model called PAGE-Net, and showed that Cox-nnet              

achieves higher accuracy in testing data.  

 

M​ETHODS 

Datasets 

The histopathology images and their associated clinical information are downloaded from The Cancer             

Genome Atlas (TCGA). A total of 384 liver tumor images are collected. Among them 322 samples are                 

clearly identified with tumor regions by pathology inspection. Among these samples, 290 have gene              

expression RNA-Seq data, and thus are selected for pathology-gene expression integrated prognosis            

prediction. The gene expression RNA-Seq dataset is also downloaded from TCGA, each feature was              

then normalized into RPKM using the function ​ProcessRNASeqData ​ by TCGA-Assembler [​21​].  

 

5 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.01.25.20016832doi: medRxiv preprint 

https://paperpile.com/c/dLWeto/KQ8c
https://paperpile.com/c/dLWeto/MeEc
https://paperpile.com/c/dLWeto/pCNX+guwX
https://paperpile.com/c/1TQjGf/wjiV
https://paperpile.com/c/1TQjGf/6zGP
https://doi.org/10.1101/2020.01.25.20016832
http://creativecommons.org/licenses/by-nd/4.0/


 

Tumor Image Pre-processing 

For each FFPE image stained with H&E, the tumor regions are labelled by pathologists at University                

of Michigan. The tumor regions are then extracted using Aperio software ​ImageScope ​[7]​. To reduce               

computational complexities, each extracted tumor region is divided into non-overlapping 1000 by            

1000 pixel tiles. The density of each tile is computed as the summation of red, green and blue values,                   

and 10 tiles with the highest density are selected for further feature extraction, following the guideline                

of others ​[8]​. To ensure that the quantitative features are measured under the same scale, the red,                 

green and blue values are rescaled for each image. Image #128 with the standard background color                

(patient barcode: TCGA-DD-A73D) is selected as the reference image for the others to be compared               

with. The means of red, green and blue values of the reference image are computed and the rest of the                    

images are normalized by the scaling factors of the means of red, green, blue values relative to those                  

of the reference image.  

 

Feature extraction from the images 

CellProfiler is used for feature extraction [​14​]. Images are first preprocessed by ' ​UnmixColors ​' module              

to H&E stains for further analysis. ' ​IdentifyPrimaryObjec ​t' module is used to detect unrelated tissue              

folds and then removed by ' ​MaskImage ​' module to increase the accuracy for detection of tumour cells.                

Nuclei of tumour cells are then identified by ​'IdentifyPrimaryObject' ​module again with parameters             

set by Otsu algorithm. The identified nuclei objects are utilised by ' ​IdentifySecondaryObject ​' module             

to detect the cell body objects and cytoplasm objects which surround the nuclei. Related biological               

features are computed from the detected objects, by a series of feature extraction modules, including               

'MeasureGranularity', 'MeasureObjectSizeShape', 'MeasureObjectIntensity',   

'MeasureObjectIntensityDistribution', 'MeasureTexture', 'MeaureImageAreaOccupied',   

'MeasureCorrelation', 'MeasureImageIntensity' ​and ​'MeasureObjectNeighbors ​'. To aggregate the       

features from the primary and secondary objects, the related summary statistics (mean, median,             

standard deviation and quartiles) are then calculated to summarize data from object level to image               
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level, yielding 2429 features in total. Each patient is represented by 10 images, and the median of each                  

feature is selected to represent the patient's image biological feature.  

 

Survival prediction models 

Cox-nnet model: ​The Cox-nnet model is implemented in the Python package named Cox-nnet ​[1]​.              

Current implementation of Cox-nnet is a fully connected, two-layer neural network model, with a              

hidden layer and an output layer for cox regression. The drop-out method is used to avoid overfitting.                 

We used a hold-out method by randomly splitting the dataset to 80% training set and 20% testing set.                  

We used grid search and 5-fold cross-validation to optimise the hyper-parameters for the deep              

learning model on the selected training set. The model is then trained under the optimised               

hyperparameter setting using the training set and further evaluated on the remaining testing set, the               

procedure is repeated 20 times to assess the average performance. More details about Cox-nnet is               

described earlier in Ching et al ​[1]​.  

Cox proportional hazards Model: ​Since the number of features produced by ​CellProfiler exceeds the              

sample size, an elastic net Cox proportional hazard model is built to select features and compute the                 

prognosis index (PI) ​[9]​. Function ​cv.glmnet in the ​Glmnet R package is used to perform               

cross-validation to select the tuning parameter ​lambda​. The parameter ​alpha that controls the trade-off              

between quadratic penalty and linear penalty is selected using grid search. Same hold-out setting is               

employed by training the model using 80% randomly selected data and evaluated on the remaining               

20% testing set. The procedure is repeated 20 times to calculate the mean accuracy of the model.  

Two-stage Cox-nnet model: ​The two-stage Cox-nnet model has two phases, as indicated in the name.               

For the first stage, we construct two separate Cox-nnet models in parallel, one for the image data and                  

the other one for gene expression data. For each model, we optimize the hyper-parameters using grid                

search under 5-fold cross-validation, as described earlier. In the second stage, we extract and combine               

the nodes of the hidden layer from each Cox-nnet model as the new input features for a new Cox-nnet                   
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model. We construct and evaluate the second stage Cox-nnet model with the same             

parameter-optimisation strategy as in the first-stage. 

PAGE-Net model: ​it is another neural-network method that can combine imaging and genomics (eg.              

gene expression) information to predict patient survival [​15​]. The imaging prediction module is very              

complex, with a patch-wide pre-trained convolutional neural network (CNN) layer followed by            

pooling them together for another neural network. The genomics model involved transformation of             

gene layer to pathway layer, and then followed by two hidden layers, the latter of which is combined                  

with the image NN to predict patient survival. Due to this issue, we only repeated the step of                  

integrative layer training with different train-test splits, but we do not repeat the steps of CNN-pretrain                

or feature extraction due to the running time issue.  

 

Model evaluation 

Similar to the previous studies [​1,5,6​], we also use concordant index (C-index) and log-rank p-value               

as the metrics to evaluate model accuracy. C-index signifies the fraction of all pairs of individuals                

whose predicted survival times are correctly ordered and is based on Harrell C statistics. The equation                

is as follows: 

c​ = = ,# concordant pairs
# concordant pairs + # discordant pairs Σi=j  1{T i > T j} dj /

Σi=j  1{ηi < ηj} 1{T i > T j} dj/  

where is the predicted risk score, ​T ​is the “time-to-event” response, ​d is an auxiliary variable such η                  

that ​d​=1 if event is observed and ​d​=0 if patient is censored. A C-index of 1 means the model fits the                     

survival data perfectly, whereas a score around 0.50 means randomness. In practice, a C-index around               

0.70 indicates a good model. As both Cox-nnet and Cox-PH models quantify the patient's prognosis               

by log hazard ratios, we use the predicted median hazard ratios to stratify patients into two risk groups                  

(high vs. low survival risk groups). We also compute the log-rank p-value to test if two Kaplan-Meier                 

survival curves produced by the dichotomised patients are significantly different, similar to earlier             

reports [​5-6, 9, 22-24​]. 
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Feature evaluation 

The input feature importance score is calculated by drop-out. The values of a variable are set to its                  

mean and the log likelihood of the model is recalculated. The difference between the original log                

likelihood and the new log likelihood is considered as feature importance [​13​]. We select 100 features                

with the highest feature scores from Cox-nnet for association analysis between pathology image and              

gene expression features. We regress each selected image feature (y) over all the gene expression               

features (x) using LASSO penalization, where lamda.min is selected as the value that gives the               

minimum mean error over cross-validation. We use the R-square statistic as the correlation metric.  

 

Code availability 

The code for two-stage Cox-nnet, including integration of hidden nodes, feature extraction, and             

feature analysis are all available at github: ​https://github.com/lanagarmire/two-stage-cox-nnet 

 

R​ESULTS 

Overview of Cox-nnet model on pathological image data 

In this study, we tested if pathological images can be used to predict cancer patients. The initial task is                   

to extract image features that can be used as the input for the predictive models. As described in the                   

Methods, pathological images of 322 TCGA HCC patients are individually annotated with tumor             

contents by pathologists, before being subject to a series of processing steps. The tumor regions of                

these images then undergo segmentation, and the top 10 tiles (as described in section 2.2) out of 1000                  

by 1000 tiles are used to represent each patient. These tiles are next normalized for RGB coloring                 

against a common reference sample, and 2429 image features of different categories are extracted by               

CellProfiler. ​Summary statistics (mean, median, standard deviation and quartiles) are calculated for            
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each image feature, and the median values of them over 10 tiles are used as the input imaging features                   

for survival prediction.  

We applied these imaging features on Cox-nnet, a neuron-network based prognosis prediction method             

previously developed by our group. The architecture of Cox-nnet is shown in ​Figure 1A. Briefly,               

Cox-nnet is composed of the input layer, one fully connected hidden layer and an output “proportional                

hazards” layer. We use 5-fold cross-validation (CV) to find the optimal regularization parameters.             

Based on the results on RNA-Seq transcriptomics previously, we use dropout as the regularization              

method. Additionally, to evaluate the results on pathology image data, we compare Cox-nnet with              

Cox-PH model, the previously 2nd-best prognosis model on   RNA-Seq data.  

Comparison of prognosis prediction between Cox-nnet and Cox-PH over pathology imaging           

data 

We use two accuracy metrics to evaluate the performance of models in comparison: C-index and               

log-rank p-values. C-index measures the fraction of all pairs of individuals whose predicted survival              

times are correctly ordered by the model. The higher C-index, the more accurate the prognosis model                

is. On the other hand, log-rank p-value tests if the two Kaplan-Meier survival curves based on the                 

survival risk-stratification are significantly different (log-rank p-value <0.05). In this study, we            

stratify the patients by the median score of predicted prognosis index (PI) from the model. As shown                 

in ​Figure 2, on the testing datasets, the median C-index score from Cox-nnet (0.74) is significantly                

higher (p<0.001) than Cox-PH (0.72). Additionally, the discrimination power of Cox-nnet on patient             

Kaplan-Meier survival difference (​Figure 3 B and D ​) is much better than Cox-PH model (​Figure 3 A                 

and C​), using median PI based survival risk stratification. In the training dataset, Cox-nnet achieves a                

log-rank p-value of 1e-12, compared to 5e-9 for Cox-PH; in the testing dataset, Cox-nnet gives a                

log-rank p-value of 4e-6, whereas Cox-PH has a log-rank p-value of 3e-4.  
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We next investigate the top 100 image features according to Cox-nnet ranking (​Supplementary             

Figure 1 ​). Interestingly, the most frequent features are those involved in textures of the image,               

accounting for 48% of raw input features. Intensity and Area/Shape parameters make up the 2nd and                

3rd highest categories, with 18% and 15% features. Density, on the other hand, is less important (3%).                 

It is also worth noting that among the 47 features selected by the conventional Cox-PH model, 70%                 

(33) are also found in the top 100 features selected by Cox-nnet, showing the connections between the                 

two models. 

 

Two-stage Cox-nnet model to predict prognosis on combined histopathology imaging and gene            

expression RNA-Seq data 

Multi-modal and multi-type data integration is challenging, particularly for survival prediction. We            

next ask if we can utilize Cox-nnet framework for such purpose, exemplified by pathology imaging               

and gene expression RNA-Seq based survival prediction. Towards this, we propose a two-stage             

Cox-nnet complex model, inspired by other two-stage models in genomics fields [​10-12​]. The             

two-stage Cox-nnet model is depicted in ​Figure 1B ​. For the first stage, we construct two Cox-nnet                

models in parallel, using the image data and gene expression data of HCC, respectively. For each                

model, we optimize the hyper-parameters using grid search under 5-fold cross-validation. Then we             

extract and combine the nodes of the hidden layer from each Cox-nnet model as the new input                 

features for the second-stage Cox-nnet model. We construct and evaluate the second-stage Cox-nnet             

model with the same parameter-optimisation strategy as in the first-stage.  

As shown in ​Figure 2, ​the resulting two-stage Cox-nnet model yields very good performance, judging               

by the C-index values. The median C-index scores for the training and testing sets are 0.89 and 0.75,                  

respectively. These C-index values are significantly improved, compared to the Cox-nnet models that             

are built on either imaging (described earlier) or gene expression RNA-Seq data alone. For example,               

on the testing datasets, the median C-index score from two-stage Cox-nnet (0.75) is significantly              
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higher (p<0.0005) than the Cox-nnet model built on gene expression data (0.70). It is also               

significantly higher (p<0.005) than the Cox-nnet model built on image data (0.74). The superior              

predictive performance of the two-stage Cox-nnet model is also confirmed by the log-rank p-values in               

the Kaplan-Meier survival curves (​Figure 4 ​). It achieves a log-rank p-value of 6e-7 in testing data                

(​Figure 4A ​), higher than the Cox-nnet models based on pathological image data (​Figure 4B ​) or gene                

expression RNA-Seq data (​Figure 4C ​), which have log-rank p-values of 4e-6 and 0.01, respectively. 

 

Comparing two-stage Cox-nnet model with other imaging and gene expression based prognosis            

models 

We compare two-stage Cox-nnet with PAGE-Net, another neural-network method that combines           

imaging and genomics information to predict patient survival [​15​]. The imaging prediction module of              

pagenet is very complex, with a patch-wide pre-trained convolutional neural network (CNN) layer             

followed by pooling them together for another neural network. The genomics model involves             

transformation of gene layer to pathway layer, and then followed by two hidden layers, the latter of                 

which is combined with the image NN to predict patient survival. For a fair comparison, we use the                  

same image inputs, tumor-selected images, for both PAGE-Net and Cox-nnet models. We also use the               

same pathway data used in PAGE-Net paper to construct the gene-pathway layer. We perform the               

same train-test splits for two models; 290 samples are split into 80% training and 20% testing data.                 

For PAGE-Net, the training set is further split into 90% training and 10% validation, used for                

selecting hyperparameters and avoiding overfitting, following its code. We repeat the experiment 20             

times with different train-test splits.  

As shown in ​Figure 5A ​, on the testing datasets, the median C-index score of 0.75 from the two-stage                  

Cox-nnet model is significantly higher (p-value < 3.7e-6) than that of PAGE-Net (0.67). The C-index               

values from the PAGE-Net model are much more variable (less stable), compared to those from               

two-stage Cox-nnet. Moreover, PAGE-Net model appears to have an overfitting issue: the median             
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C-index score of PAGE-Net model on the training set is very high (0.97), however, its predictability                

on hold-out testing data is much poorer. Moreover, impractical running time is another concern for               

PAGE-Net. Even on Graphic Processing Unit (GPUs) of Nvidia V100-PCIE with 16GB of memory              

each, it takes over a week to pretrain CNN and extract image features from only 290 samples,                 

prohibiting its practical use. Confirming the results in C-index metric, the Kaplan-Meier survival             

difference on testing data based on two-stage Cox-nnet prediction (​Figure 5D ​) is also much better               

than that of PAGE-Net model (​Figure 5E ​). Using median PI based survival risk stratification,              

Cox-nnet achieves a much better log-rank p-value of 6e-7 compared to 0.02 for PAGE-Net, despite               

that PAGE-Net has higher log-rank p-value of 9e-24 in training data (​Figure 5C ​). 

 

Relationship between histology and gene expression features in the two-stage Cox-nnet model 

We also investigate the correlations between the top imaging features with those RNA-Seq gene              

expression features. For this we performed two types of correlation analysis. We first examined the               

pairwise correlations between top histopathology features and top gene expression features. The            

bipartite graph shows the Pearson’s correlations between top 10 histopathology features and top 50              

gene expression features (​Figure 6 ​). Top genes that are associated with top 10 histopathology features               

include long intergenic non-protein coding RNA 1554 (LINC01554), MAP7 domain containing 2            

(MAP7D2), homeobox D9 (HOXD9), mucin 6 (MUC6), keratin 17 (KRT17) and matrix            

metalloproteinase 7 (MMP7). Gene Set Enrichment (GSEA) analysis on top 1000 genes correlated to              

each image feature shows that image feature correlated genes are significantly (false discovery rate,              

FDR<25% as recommended) enriched in pathways-in-cancer (normalized enrichment score,         

NES=1.41, FDR=0.18) and focal-adhesion (NES=1.22, FDR=0.21) pathways, which are upregulated          

in HCC patients with poor prognosis. Pathways-in-cancer is a pan-pathway that covers multiple             

important cancer-related signalling pathways, such as PI3-AKT signaling, MAPK signaling and p53            

signaling. Focal-adhesion pathway includes genes that involve cell-matrix adhesions, which play           
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essential roles in important biological processes including cell motility, cell proliferation, cell            

differentiation, and cell survival. These two pathways play important roles in the survival of HCC               

patients [​25​]. We also regress each selected image feature (y) over all the gene expression features                

(x) using LASSO penalization. Nine image features have R-squares > 0.10 with the gene expression               

features (​Supplementary Table 1 ​). The one feature with the best fitted linear relationship is related               

to nuclei intensity (​StDev_Nuclei_Intensity_MeanIntensity_MaskedHWithoutOverlap) with ​R-square=0.19.      

This result shows that imaging features extracted using ​CellProfiler have modest correlations with the              

RNA-Seq gene expression features. Most of the image features can provide additional predictive             

values to prognosis, supporting the observed significant increase in C-index (​Figure 2 ​) and log-rank              

p-values (​Figure 4 ​), after adding RNA-Seq features to imaging features. 

 

4 CONCLUSIONS 

Driven by the objective to build a uniform workframe to integrate multi-modal and multi-type data to                

predict patient survival, we extend Cox-nnet model, a neural-network based survival prediction            

method, on pathology imaging and transcriptomics data. Using TCGA HCC pathology images as the              

example, we demonstrate that Cox-nnet is more robust and accurate at predicting survival, compared              

to Cox-PH the standard method which was also the second-best method in the original RNA-Seq               

transcriptomic study ​[1]​. Moreover, we propose a new two-stage complex Cox-nnet model to             

integrate imaging and RNA-Seq transcriptomic data, and showcase its superior accuracy on HCC             

patient survival prediction, compared to another neural network PAGE-Net. The two-stage Cox-nnet            

model combines the transformed, hidden node features from the first-stage of Cox-nnet models for              

imaging or gene expression RNA-Seq data respectively and uses these combined hidden features as              

the new inputs to train a second-stage Cox-nnet model.  

Rather than using convolutional neural network (CNN) models that are more complex, such as              

PAGE-Net, we utilized a less complex but more biologically interpretable approach, where we extract              
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imaging features defined by the tool ​CellProfiler ​. These features are then used as input nodes in                

relatively simple, two-layer neural network models. Hidden features extracted from each Cox-nnet            

model can then be combined flexibly to build new Cox-nnet models. On the other hand, PAGE-Net                

uses a pretrained CNN for images and a gene-pathway layer to handle gene expression data. Despite                

great efforts, image features extracted by CNN in PAGE-Net are not easily interpretable, the model               

appears to be over-fit given the limited sample size, and requires very long training time. The                

significantly higher predictive performance of two stage Cox-nnet model argues for the advantages to              

use a relatively simple neural network model with input nodes of biological relevance, such as those                

extracted by imaging processing tools and gene expression input features. 

Besides the interpretability of histopathology image features themselves, correlation analysis between           

top gene features and top image features identified genes known to be related to survival of HCC                 

patients and/or morphology of the tissue, such as LINC01554, HOXD9, MUC6, and MMP7.             

LINC01554 is a long non-coding RNA that is down-regulated in HCC and its expression              

corresponded to good survival of HCC patients previously [​26]. HOXD9 is a highly conserved              

transcription factor which was reported to promote the epithelial–mesenchymal transition [​27​] of            

HCC cells and associated with poor survival of HCC patients [​28​]. MUC6 is a mucin protein that                 

participates in the remodeling of the ductal plate in the liver [​29​], which was also involved in the                  

carcinogenesis of HCC [​30​]. MMP7, also known as matrilysin, is an enzyme that breaks down               

extracellular matrix by degrading macromolecules including casein, type I, II, IV, and V gelatins,              

fibronectin, and proteoglycan [​31​]. MMP7 participates in the remodeling of extracellular matrix [​32​]             

and impacts the morphology of liver tissue [​33], ​which may explain its link to histopathology features.                

MMP7 expression was also associated with poor prognosis in patients with HCC [​34​]. 

In summary, we extend the previous Cox-nnet model to process pathological imaging data, and              

propose a new class of two-stage Cox-nnet neural network model that creatively addresses the general               

challenge of multi-modal data integration, for patient survival prediction. Using input imaging            
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features extracted from CellProfiler, Cox-nnet models are biologically interpretable. Some image           

features are also correlated with genes of known HCC relevance, enhancing their biologically             

interpretability. 
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FIGURES AND LEGENDS 

 

Figure 1: the architectures of Cox-nnet model and two-stage Cox-nnet model: ​A. The sketch of Cox-nnet                

model for prognosis prediction, based on a single data type. B. the architectures of two-stage Cox-nnet complex                 

model for prognosis prediction, which integrates multiple data types (eg. pathology image and gene expression). 
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Figure 2: Comparison of prognosis prediction with different models and data types. ​The boxplots shown               

are on training (red) and testing (blue) data, on 20 repetitions. 

 

 

Figure 3: Comparison of Kaplan-Meier survival curves resulting from Cox-PH and Cox-nnet models,             

based on pathological images.  

A. coxph image - training    B. Cox-nnet image - training   C. coxph image - test    D. Cox-nnet image - test 
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Figure 4: Comparison of Kaplan-Meier survival curves on testing datasets, among two-stage Cox-nnet             

model combining pathological images and gene expression RNA-Seq data, the Cox-neet model on image              

only, and the Cox-nnet model on gene expression RNA-Seq data only. (A) two-stage Cox-nnet model               

combining images and gene expression data. (B) Cox-nnet model on imaging data only. (C) Cox-nnet model on                 

gene expression data only.  
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Figure 5: Comparison of two-stage Cox-nnet and PAGE-Net, based on combined pathological images and              

gene expression. ( ​A) C-index of the two methods on training (red) and testing (blue) datasets, on 20 repetitions.                  

(B-E) Kaplan-Meier survival curves resulting from the Cox-nnet (B, D) and PAGE-NET model (C, E) using                

training and testing datasets, respectively. 

A. 
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B.       C.  

 

D.                                    E. 

 

 

 

Figure 6: Relationship between top imaging and gene features. ​Rectangle nodes are image features and               

circle nodes are gene features. Node sizes are proportional to importance scores from Cox-nnet. Two gene                

nodes are connected only if their correlation is greater than 0.5; an image node and a gene node are                   

connected only if their correlation is greater than 0.1. Green nodes represent features with positive               

coefficients (hazard ratio) in univariate Cox-PH regression, indicating worse prognosis. Blue nodes            

represent features with negative coefficients (hazard ratio) in univariate Cox-PH regression, indicating            

protection against bad prognosis.  
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SUPPLEMENTARY MATERIALS 

 
Supplementary Figure 1: Categories of the top 100 most important image features in Cox-nnet.  
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Supplementary Table 1 : ​R-square correlations of top image features ( R^2>0.10) , by regressing each of them                  

on all gene features 

 

feature R-square 

StDev_Nuclei_Intensity_MeanIntensity_MaskedHWithoutOverlap 0.1938 

Median_Tissue_Location_Center_Y 0.1525 

Texture_SumAverage_MasedHWithoutOverlap_3_45 0.1476 

Texture_SumAverage_MasedHWithoutOverlap_3_135 0.1473 

StDev_Cells_Neighbors_PercentTouching_Expanded 0.1472 

Median_Nuclei_Texture_SumEntropy_MaskedHWithoutOverlap_3_45 0.1343 

Median_Nuclei_Texture_SumEntropy_MaskedHWithoutOverlap_3_135 0.1267 

Mean_Nuclei_Texture_SumEntropy_MaskedHWithoutOverlap_3_0 0.1103 

Mean_Nuclei_Texture_SumEntropy_MaskedHWithoutOverlap_3_90 0.1074 

 

 

 

26 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.01.25.20016832doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.25.20016832
http://creativecommons.org/licenses/by-nd/4.0/

