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Abstract 
Genome-wide association studies (GWAS) have discovered numerous genomic loci 

associated with Alzheimer’s disease (AD), yet the causal genes and variants remain 

incompletely identified. We performed an updated genome-wide AD meta-analysis, which 

identified 37 risk loci, including novel associations near genes CCDC6, TSPAN14, NCK2, 

and SPRED2. Using three SNP-level fine-mapping methods, we identified 21 SNPs with 

greater than 50% probability each of being causally involved in AD risk, and others strongly 

suggested by functional annotation. We followed this with colocalisation analyses across 109 

gene expression quantitative trait loci (eQTL) datasets, and prioritization of genes using 

protein interaction networks and tissue-specific expression. Combining this information into a 

quantitative score, we find that evidence converges on likely causal genes, including the 

above four genes, and those at previously discovered AD loci including BIN1, APH1B, 

PTK2B, PILRA, and CASS4. 

Introduction 
Genome-wide association studies (GWAS) for family history of disease, known as GWAS-

by-proxy (GWAX), are a powerful method for performing genetic discovery in large, 

unselected cohort biobanks, particularly for age-related diseases1. Recent meta-analyses 

have combined GWAS of diagnosed late-onset Alzheimer’s disease (AD) with GWAX for 

family history of AD in the UK Biobank2,3, and reported a total of 12 novel disease-associated 

genomic loci. However, the causal genetic variants and genes which influence AD risk at 

these and previously discovered loci have only been clearly identified in a few cases. 

Discovering causal variants has led to deeper insight into molecular mechanisms of multiple 

diseases, including obesity4, schizophrenia5, and inflammatory bowel disease6. For AD, 

known causal variants include the 𝜀4 haplotype in APOE, the strongest genetic risk factor for 

late-onset AD, and a common nonsynonymous variant that strongly alters splicing of CD33 

exon 27. In addition, likely causal rare nonsynonymous variants have been discovered in 

TREM28, PLCG2 and ABI39. These findings have strengthened support for a causal role of 

microglial activation in AD. 

Although non-synonymous variants are highly enriched in trait associations, most human 

trait-associated variants do not alter protein-coding sequence and are thought to mediate 

their effects via altered gene expression, which is likely to occur in a cell type-dependent 

manner. A growing number of studies have mapped genetic variants affecting gene 

expression traits, known as expression quantitative trait loci (eQTLs), in diverse tissues or 
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sorted cell types10,11. While it has become common to integrate GWAS results with eQTLs, 

this is often limited to a small number of datasets thought to be relevant.  

To identify putative causal genetic variants for AD, we performed a meta-analysis of GWAX 

in the UK Biobank with the latest GWAS for diagnosed AD12, followed by fine-mapping using 

three alternative methods. Notably, this updated GWAS tested more genetic variants than 

the Lambert et al. study13 used in the meta-analyses by Jansen2,3 and Marioni2 (11.5 vs. 7.1 

million). The increased power from our meta-analysis enabled us to discover four additional 

AD risk loci at genome-wide significance, and the higher density genotype imputation 

identified new candidate causal variants at both novel and established risk loci. We also 

performed statistical colocalisation analyses with a broad collection of eQTL datasets, 

including a recent study on primary microglia14, to identify candidate genes mediating risk at 

AD loci. We find that multiple lines of evidence, including colocalisation, tissue- or cell type-

specific expression and prioritization using information propagation in gene networks, 

converge on a set of likely causal AD genes. 

Results 

Meta-analysis discovers 37 loci associated with Alzheimer’s disease risk 

We performed a GWAX in the UK Biobank for family history of AD, based on 53,042 unique 

individuals who were either diagnosed with AD or who reported at least one first-degree 

relative (parent or sibling) having dementia, and 355,900 controls. This identified 13 risk loci 

at genome-wide significance (p < 5x10-8), 10 of which have been reported previously. Three 

novel loci were located near genes NCK2, PRL, and FAM135B. Notably, PRL has been 

reported as a CSF biomarker of AD15. We next did a fixed-effects meta-analysis of these 

GWAX results with the Kunkle et al. stage 1 GWAS meta-analysis of 21,982 cases with 

diagnosed AD and 41,944 controls12, across 10,687,126 overlapping variants (Figure 1). 

This revealed 34 AD risk loci (p < 5x10-8), 22 of which were reported in the Kunkle et al. 

study, while 8 others were reported in either Jansen et al.3 or Marioni et al2. Four loci were 

novel, located near genes NCK2, TSPAN14, SPRED2, and CCDC6. Notably, the PRL and 

FAM135B regions showed no evidence of association in Kunkle et al. (p > 0.1), and hence 

were not significant in meta-analysis. Three additional loci were found at suggestive 

significance (p < 5x10-7) in the meta-analysis, near genes IKZF1, TSPOAP1, and TMEM163. 

We included these loci in our follow-up analyses, for a total of 37 loci (Figure 1, 

Supplementary Table 1). 
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Figure 1: Analysis overview. (a) Summary of AD meta-analysis and data processing steps. 
(b) Manhattan plot of the meta-analysis of GWAS for diagnosed AD and our GWAX in UK 
Biobank. Novel genome-wide significant loci are labelled in blue, sub-threshold loci in red, 
and recently discovered loci2,3,12 replicated in our analysis in black. (c) The number of 
independent signals at each locus which is either recently discovered or which has more 
than one signal. * The PLCG2 locus was significant (p < 5x10-8) when including Kunkle stage 
3 SNPs. Conditional analyses were not done at APOE due to the strength of the signal. 

Next, we applied stepwise conditioning using GCTA16, with linkage disequilibrium (LD) 

determined from UK Biobank samples, to identify independent signals at the discovered loci. 

We excluded the APOE locus from conditional analyses and fine-mapping, because the 

strength of the association made these analyses unreliable (see methods). Apart from 

APOE, 9 loci had two independent signals, while the TREM2 locus had three signals (Figure 

1c). Interestingly, a number of the loci discovered recently2,3,12 had multiple signals; 

specifically, NCK2, EPHA1, ADAM10, ACE, and APP-ADAMTS1. To extract insight from 
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both the new and established AD GWAS discoveries, we performed comprehensive 

colocalisation, annotation, fine-mapping and network analyses to identify causal genes and 

variants (Fig 1a). 

Colocalisation between AD risk loci and gene expression traits 

To identify genes whose expression may be altered by risk variants, we performed statistical 

colocalisation17 between each of 36 risk loci (excluding APOE) and a set of 109 eQTL 

datasets representing a wide variety of tissues, cell types and conditions (Figure 2, 

Supplementary Table 2). The eQTL datasets include a study of primary microglia from 93  

 

Figure 2: Colocalisation with eQTLs. For genes with the top overall colocalisation scores 
across AD risk loci, the colocalisation probability (H4) is shown for selected brain, microglia, 
and monocyte eQTL datasets. For three loci with multiple signals (BIN1, EPHA1, PTK2B-
CLU), scores are shown separately for the conditionally independent signals. The last 
column shows, for each gene, the number of eQTL datasets with a colocalisation probability 
above 0.8 (Supplementary Tables 2-3). 
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brain surgery donors14, a meta-analysis of 1433 brain cortex samples18, as well as 49 tissues 

from the genotype-tissue expression project (GTEx) final release10, and 57 eQTL datasets 

uniformly reprocessed as part of the eQTL catalogue11. The latter include multiple studies in 

tissues of potential relevance to AD, such as brain, as well as sorted blood immune cell 

types under different stimulation conditions19–35. 

Some studies using colocalisation have suggested that there is relatively limited overlap 

between GWAS associations and gene expression QTLs above that expected by chance6,36. 

A possible reason is that colocalisation analyses can suffer from a lack of sensitivity to 

detect shared causal variants between traits, which could occur for a number of reasons. 

First, when a locus has multiple causal variants, and not all causal effects are shared 

between a pair of studies (e.g. GWAS and eQTL study), colocalisation may not be 

detected17. Second, differences in LD patterns in a pair of studies can reduce the likelihood 

of a positive colocalisation. Third, relatively low power in either study can further reduce the 

colocalisation probability. To mitigate the first effect, we performed colocalisations separately 

for each conditionally independent AD signal, to model the case where not all causal 

variants are shared, as well as for the main AD signal at each locus. Problems relating to 

power and LD mismatch are partially mitigated by our use of a large number of the most 

highly-powered eQTL datasets currently available. 

Across the 36 loci, we found 391 colocalisations with at least 80% probability of a shared 

causal variant between AD and eQTL, representing 80 distinct genes at 27 loci 

(Supplementary Tables 3-4). The genes implicated by colocalisation include many which 

have alternative lines of evidence for roles in AD, such as PTK2B37,38, BIN139,40, PILRA41, 

CD3342,43, and TREM244,45, as well as novel candidates including FCER1G, TSPAN14, 

APH1B, and ACE. However, the presence of multiple genes with colocalisation evidence 

within individual loci suggests that additional lines of evidence are important for prioritizing 

relevant genes. 

Due to the large number of tissue datasets and colocalisation tests performed, we 

hypothesized that it would be important to upweight colocalisations in “relevant” tissues, as 

well as to accumulate colocalisation information across datasets. We therefore developed a 

weighted score which accumulates towards a maximum of 1.0 (inspired by scoring systems 

in STRING46 and Open Targets47), with higher weight on colocalisations in microglia, brain, 

and immune cell types than in other tissues (see methods). We compared this with a score 

obtained by taking the maximum colocalisation probability across all datasets. 
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To evaluate the ability of these scores to identify relevant AD genes, we considered the top 

40 genes at our AD loci that were prioritized via other lines of evidence (namely, expression, 

distance, coding variant changes, and network score, described further below; genes in 

Supplementary Table 5). The top 80 genes by weighted coloc score retrieved 18 of the 40 

genes. Surprisingly, the top 80 genes by maximum coloc score retrieved 20 genes (16 

overlapping; Supplementary Figure 1), and we therefore used this score in subsequent gene 

prioritization. These results suggest that strong colocalisations in tissues not thought to be 

relevant can still be informative for identifying likely causal genes, and that with our 

approach, upweighting “relevant” QTL datasets showed no benefit for gene prioritization. 

Fine-mapping identifies credibly causal variants 

Confirming the causal genes underlying AD risk will ultimately require experiments to identify 

the molecular mechanisms by which gene function is altered. Such experiments must be 

motivated by strong hypotheses regarding potentially causal variants and their possible 

effects. We sought to identify candidate causal variants using three distinct fine-mapping 

methods. First, we used the WTCCC Bayesian fine-mapping method48, which assumes a 

single causal variant, on each conditionally independent signal. Second, we used 

FINEMAP49 at each locus, specifying the number of independent signals determined by 

GCTA as the maximum number of causal variants per locus. Third, we used PAINTOR50, a 

method which estimates enrichments in functional genomic annotations to obtain a posterior 

probability of causality for each variant based on its annotations, and which also can account 

for multiple causal variants. For computational feasibility with PAINTOR, we only considered 

variants with at least 0.01% causal probability as determined by FINEMAP. 

We used 43 annotations individually as input to PAINTOR (Supplementary Table 6); these 

included ATAC-seq peaks from primary microglia51 or iPSC-derived macrophages52, DNase 

peaks from cell type groups in the Roadmap Epigenomics project53, variant consequence 

annotations54 and evolutionary conservation55 (Figure 3b). We also used scores from 

DeepSEA56 and SpliceAI57, deep-learning methods that predict the effects of variants on 

transcription factor binding or splicing. Missense mutations were the most enriched 

annotation, with a 19.2-fold increased odds of being causal SNPs, but they comprised only 

1% of input SNPs. Blood or immune DNase hypersensitivity peaks merged from 24 

Roadmap Epigenomics tissues provided the highest model likelihood, as these peaks 

covered 16% of SNPs, despite a lower 6.4-fold enrichment. Variants with a nonzero score 

from the SpliceAI method, which predicts changes to gene splicing, were also highly 

enriched (9.3-fold), while variants with top DeepSEA scores were more modestly enriched. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 27, 2020. ; https://doi.org/10.1101/2020.01.22.20018424doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.22.20018424
http://creativecommons.org/licenses/by/4.0/


 

 8 

 
 
Figure 3: Fine-mapping summary. (a) Number of variants with mean causal probability > 1% 
for each independent signal. Variant counts for independent signals are shown in different 
shades. (b) PAINTOR outputs, showing (left) log-likelihood (LLK) of model for each 
individual annotation; (middle) log-odds enrichments for individual genomic annotations 
determined by PAINTOR; (right) fraction of SNPs which are in each annotation (among 
those selected by FINEMAP probability > 0.01%). Annotations selected for the final model 
are shown with a black border. 

We next built a multi-annotation model in PAINTOR (v3.1) following a stepwise selection 

procedure, which identified a minimal but informative set of three annotations: blood and 

immune DNase, nonsynonymous coding variants, and variants with SpliceAI score greater 

than 0.01. We used probabilities from this PAINTOR model, and computed the mean causal 

probability per variant across the three fine-mapping methods. 

There were 21 variants with a mean causal probability above 50% across the fine-mapping 

methods, and 79 further variants with probabilities from 10 - 50% (Table 1 and 

Supplementary Table 7). These include SNPs near established AD risk genes, such as 

rs6733839 ~20 kb upstream of BIN1, which has recently been shown to alter a microglial 

MEF2C binding site14 and to regulate BIN1 expression specifically in microglia40. High- 
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Table 1: Top candidate variants. A selected list of the most likely causal variants across loci, 
based on a combination SNP fine-mapping probabilities and annotations. Column ‘SNP 
prob’ indicates the mean fine-mapping probability for the SNP; the SpliceAI score is the 
maximum splicing probability for donor gain/loss or acceptor gain/loss, with nonzero values 
highly enriched for splicing effects; the DeepSEA functional significance score represents 
the significance above expectation for chromatin feature changes, as well as evolutionary 
conservation, with lower values more significant. References for specific SNPs are 
shown2,7,9,14,40,41,60–69. 

confidence variants also include a well-known missense SNP in PILRA41, and a splice-

altering missense SNP in CD337. Missense SNP rs4147918 in ABCA7 had 55% causal 

probability, and ABCA7 harbored 5 further missense SNPs with FINEMAP probabilities 

greater than 0.01%, at varying allele frequencies. Notably, rs4147918 as well as 6 other 

variants within ABCA7, including the lead SNP rs12151021, had positive SpliceAI scores for 

predicted changes to gene splicing. This is consistent with reports of a burden of deleterious 

variants at ABCA7 associated with AD58, as well as potential changes to splicing caused by 

intronic variable tandem repeats59. 

Table 1 – Top candidate variants

Gene SNP P value Beta
Effect 
allele

Allele 
freq SNP prob SpliceAI DeepSEA Note Refs

ADAMTS4 rs2070902 1.64E-06 -0.0522 T 0.2580 0.384 0.107 0.140
Intronic in candidate gene FCER1G, with 
predicted splicing change.

ADAMTS4 rs4575098 4.30E-08 0.0609 A 0.2350 0.339 0.033 3' UTR of ADAMTS4, open chromatin 2

SPRED2 rs268120 2.08E-08 0.0612 A 0.2502 0.556 0.033
Strong DNase peak, predicted by 
DeepSEA to decrease.

NCK2 rs143080277 1.28E-12 -0.5205 T 0.9957 1.000 0.086 Enhancer (Roadmap)

BIN1 rs6733839 1.10E-54 0.1556 T 0.3915 0.998 0.027
Microglia ATAC peak. DeepSEA predicts 
decreased DNaseHS. 14,40

INPP5D rs10933431 1.41E-10 0.0770 C 0.7817 0.833 0.022 60
PILRA rs1859788 3.28E-18 -0.0897 A 0.3206 0.601 0.008 0.041 Known PILRA missense G78R. 41

ECHDC3 rs7920721 1.08E-11 -0.0669 A 0.6195 0.641 0.026
DNase peak. DeepSEA predicts changed 
binding of USF, Max, Myc. 61,62

TSPAN14 rs1870137 2.93E-09 -0.0702 C 0.2056 0.097 0.007
Top DeepSEA variant, predicting 
decreased binding of HNF4, FOXA1, SP1.

TSPAN14 rs1870138 4.51E-09 -0.0693 A 0.2057 0.068 0.004
Highlighted in text; predicted loss of 
TAL1 binding.

SORL1 rs11218343 5.59E-14 0.1864 T 0.9630 1.000 0.209 63

SORL1 rs2298813 1.52E-04 0.0850 A 0.0470 0.451 0.054 0.003
Secondary assoc. Missense; also top 
DeepSEA variant.

APH1B rs117618017 1.05E-08 0.0850 T 0.1395 0.895 0.007 0.019 Highlighted in text; missense Thr27Ile. 64

PLCG2 rs12444183 5.46E-08 -0.0533 A 0.3830 0.686 0.220
Near promoter of ncRNA AC099524.1, 
with strong microglia coloc. 2

PLCG2 rs72824905 6.35E-06 0.2703 C 0.9924 0.492 0.018 0.006
Secondary association; known missense 
Pro522Arg. Top DeepSEA score. 9

TSPOAP1 rs2632516 3.12E-07 -0.0493 C 0.4426 0.412 0.126
Overlaps ncRNA containing mir-142, 
important for hematopoietic dev't. 62,65

TSPOAP1 rs2526377 8.45E-07 0.0477 A 0.5579 0.169 0.006
Top DeepSEA variant (decreased 
DNaseHS) in microglial ATAC peak. 66

ACE rs4311 1.21E-08 -0.0543 T 0.4704 0.490 0.126 0.053 Strong predicted splicing change. 67,68

ACE rs3730025 2.58E-07 -0.1994 A 0.9828 0.416 0.002 0.021
Secondary association; low-freq
missense Tyr244Cys.

ABCA7 rs12151021 2.41E-13 0.0773 A 0.3258 0.713 0.013 0.312 Lead ABCA7 variant.

ABCA7 rs4147918 7.63E-07 0.1201 A 0.9587 0.552 0.071 0.045
Seondary association; missense 
Gln905Arg; predicted splicing change. 69

CD33 rs12459419 2.02E-08 -0.0576 T 0.3256 0.662 0.001 0.070
Known missense Ala14Val; strong 
splicing QTL. 7

CASS4 rs6014724 1.07E-10 0.1094 A 0.9122 0.548 0.083 Lead CASS4 variant.

CASS4 rs17462136 1.01E-09 -0.1038 C 0.0872 0.067 0.001
5' UTR of CASS4; global top DeepSEA
variant predicting decreased TF binding.

ADAMTS1 rs2830489 3.09E-08 -0.0590 T 0.2749 0.718 0.077 Lead variant near ADAMTS1.
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A number of newly identified AD risk genes had high-confidence fine-mapped variants. 

These include the NCK2 rare intronic SNP rs143080277 (>99% probability, MAF 0.4%), 

APH1B missense SNP rs117618017 (90% probability), rs2830489 at the APP-ADAMTS1 

locus (72% probability), rs61182333 intronic in SCIMP (61% probability), and rs268120 

intronic in SPRED2 (56% probability). 

 
 
Figure 4: Fine-mapped variants. (a) SNP rs1870138 in an intron of TSPAN14 disrupts an 
invariant position of a TAL1 motif. (b) Missense SNP rs117618017 in exon 1 of APH1B. (c) 
SNP rs17462136 in the 5’ UTR of CASS4 introduces a TEAD1 motif. 

Annotation-based fine-mapping highlighted a number of candidate causal variants, which 

were not always the highest probability SNPs at the locus (Figure 4). Within TSPAN14, 

rs1870137 and rs1870138 reside within a DNase hypersensitivity peak found broadly across 

tissues, which is also an ATAC peak in microglia. Of these, rs1870138 lies at the centre of a 
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ChIP-seq peak for binding of multiple transcription factors, including FOS/JUN and GATA1, 

and is within a FOS/JUN motif, albeit at a relatively low information content position. 

However, the alt allele rs1870138-G alters an invariant position of a binding motif for TAL1, a 

gene highly expressed in microglia, and which is a binding partner for GATA1. The AD risk 

allele, rs1870138-G, is also associated with increased monocyte count70 and increased risk 

for inflammatory bowel disease71, and in both cases is among the top associated variants. 

Notably, the AD signal in the region colocalises with both an eQTL and a splicing QTL for 

TSPAN14 in multiple datasets, and rs1870138-G associates with higher TSPAN14 

expression in brain and in microglia, but with lower expression in some GTEx tissues. 

Missense SNP rs117618017 in exon 1 of APH1B (T27I) is the likely single causal variant at 

its locus, with fine-mapping probability of 90% (Figure 4b). APH1B is a component of the 

gamma-secretase complex, other members of which (PSEN1, PSEN2) have rare variants 

associated with early-onset AD72. Interestingly, the AD signal colocalises with an APH1B 

eQTL in monocytes, neutrophils and T-cells, as well as numerous GTEx tissues, and the 

rs117618017-T allele associates with higher AD risk and higher APH1B expression across 

datasets. rs117618017-T introduces a motif for transcriptional regulator YY1, and is 

predicted by DeepSEA to increase YY1 binding in multiple ENCODE cell lines. Therefore, it 

is an open question whether AD risk is mediated by altered APH1B protein structure or 

altered gene expression. 

Finally, the AD association on chromosome 20 colocalises with an eQTL for CASS4 in 

Blueprint monocytes and in GTEx whole blood, as well as in fibroblasts. While lead SNP 

rs6014724 (55% probability), intronic in CASS4, shows no evidence of transcription factor 

(TF) binding in ENCODE data, rs17462136 (7% probability) lies in a region of dense TF 

binding in the 5’ UTR of CASS4 (Figure 4c). The nucleotide position is highly conserved 

(GERP score 3.46), overlaps an ATAC peak in microglia, and the rs17462136-C allele 

introduces a TEAD1 binding motif, making it the strongest functional candidate SNP. In 

addition, rs17462136 is more strongly associated with CASS4 expression in multiple eQTL 

datasets than is rs6014724. 

Network evidence prioritizes genes within and beyond GWAS loci 

As a further line of evidence, we developed a method that leverages gene network 

connectivity to prioritize genes at individual loci. We first constructed a gene interaction 

network combining information from the STRING, IntAct and BioGRID databases. Next, we 

nominated candidate genes at each AD locus (Supplementary Table 8), based on a mix of 

our other evidence sources as well as literature reports, and used these as seed genes 
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similar to the approach used in the priority index for drug discovery73. For each locus in turn, 

we used as input all seed genes except those at the locus, and propagated information 

through the network with the page rank algorithm (see methods). The “networkScore” for a 

gene thus represent the degree to which the gene is supported by its interaction with top AD 

candidate genes across all other loci, unbiased by any locus-specific features. 

Across AD loci, likely candidate genes were highly enriched for having high network-based 

gene scores (Wilcoxon rank sum test, p = 5x10-14; Supplementary Figure 2). Notably, at our 

four novel AD loci, the nearest gene (NCK2, TSPAN14, SPRED2, CCDC6) was the highest-

scoring gene among those within 200 kb, and in each case was one of the top two highest-

scoring genes within 500 kb. Many established or recently discovered AD genes were also 

the top gene within 500 kb by network score, including ACE, CASS4, CD2AP, PICALM, 

PLCG2, PTK2B, and TREM2. At the SLC24A4 locus, RIN3 was strongly supported, whereas 

SLC24A4 was not, in line with evidence from deleterious rare variants that RIN3 may be 

causal12. At the ECHDC3 locus, both USP6NL and CELF2 had high network scores, while at 

the EPHA1 locus, ZYX was the top scoring gene. Interestingly, AD candidate genes ABCA7 

and CR1 had only modest network scores, suggesting a need to integrate across 

independent lines of evidence to prioritize genes. 

Genes highly ranked by network propagation also include many outside of genome-wide 

significant AD loci (Supplementary Table 9). Consistent with their involvement in AD, genes 

ranked in the top 500 by network score tended to have SNPs with lower p values nearby 

(within 10 kb) than did remaining genes (Wilcoxon rank sum test, p = 7x10-7), suggesting 

that there remain numerous AD loci to be discovered with larger GWAS sample sizes. Top 

network-ranked genes include LILRB2 (nearby SNP p = 9.8x10-6), a leukocyte 

immunoglobulin-like receptor that recognizes multiple HLA alleles, and which may also be 

involved in amyloid-beta fibril growth74; ABCA1 (SNP p = 4x10-6), involved in phospholipid 

transfer to apolipoproteins and previously associated with AD75; SREBF1 (SNP p = 2x10-6), 

required for lipid homeostasis; AGRN (SNP p = 4x10-6), involved in synapse formation in 

mature hippocampal neurons; and CD19 (SNP p = 1x10-5), an antigen coreceptor on B-

lymphocytes. Overall, genes with high network ranks were strongly enriched in biological 

processes and pathways that have previously been associated with AD, including clathrin-

mediated endocytosis, activation of immune response, phagocytosis, Ephrin signaling, and 

complement activation (Supplementary Table 10). 
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Integrative gene prioritization from five lines of evidence 

We developed a comprehensive gene prioritization score, which incorporates quantitative 

information from multiple evidence sources, unlike binary indicator scores that have been 

used by others for GWAS gene prioritization12,76 (Figure 5, Supplementary Table 11). The 

five lines of evidence include gene distance to lead SNPs, expression level in either 

microglia or brain tissue, colocalisation score, network score, and the sum of fine-mapped 

probability for any coding SNPs within a gene (see methods for details). 

To incorporate gene distance, we used a function that decays from 1 to 0 with increasing 

log-scaled distance up to 500 kb (Supplementary Figure 3). Although it is clear that long-

distance gene regulation can occur, recent evidence from both eQTLs77 and metabolite 

GWAS78 suggests that genomic distance from the association peak is a strong predictor of 

causal target genes. For gene expression, we considered either the expression level of 

genes in microglia or brain, or the specificity of each gene’s expression in these cells / 

tissues relative to all GTEx tissues. We found that specificity of expression in microglia or 

brain was at least as informative as the absolute level of expression in these tissues, and 

that incorporating expression level did not improve a score based solely on expression 

specificity (Supplementary Figure 4). Hence, we used only expression specificity in our 

overall prioritization. 

The comprehensive prioritization score identified the majority of AD candidate genes 

previously suggested as causal (Figure 5), suggesting that our evidence sources 

complement each other. Indeed, although the network score is independent of locus-specific 

features, gene ranks based on network scores within each locus were highly correlated with 

gene ranks based on the other four evidence sources (Spearman rho=0.47; p < 2.2x10-16). 

Exemplifying the importance of integrating genetic evidence, ABCA7, SORL1, and CR1 were 

top-ranked by overall score at their respective loci, despite having only moderate network-

based scores, while SORL1, PICALM and SPI1 were top-ranked despite having limited 

eQTL colocalisation evidence. 
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Figure 5: Gene evidence summary. The top gene at each locus is shown, as well as the 
next 16 top genes by total score. Score components for each gene are indicated by coloured 
bars, and points show the distribution of scores for all genes within 500 kb at the locus. Bold 
gene names are those with evidence of causality based on rare variants from other studies. 
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While our prioritisation further supports many established AD candidate genes, it also 

implicates novel genes. Among these are FCER1G at the ADAMTS4 locus, a gene which 

negatively regulates immune cell responses79 and has been reported as a hub gene in 

microglial gene modules associated with neurodegeneration80,81. Another candidate is ZYX 

at the EPHA1 locus, which receives a top network score, is highly expressed in microglia, 

and which was recently nominated as an AD risk gene based on chromatin interactions 

between the ZYX promoter and AD risk variants in a ZYX enhancer82. Finally, at the MS4A 

locus our prioritisation nominates MS4A6A, another gene implicated in AD risk based on 

chromatin interactions82, despite this gene being relatively distal (143 kb) from the AD 

association peak. 

Discussion 
Identifying therapeutic targets for human diseases is a key goal of human genetics research, 

and is particularly important for neurodegenerative diseases such as AD, for which no 

disease-modifying therapies yet exist. However, identifying the causal genes and genetic 

variants from GWAS is challenging: association peaks span large genomic regions, and non-

coding associations can act via regulation of distal genes. We approached this challenge for 

AD by performing the largest meta-analysis to date, followed by comprehensive fine-

mapping, eQTL colocalisation, and quantitative gene prioritization. 

Our meta-analysis identified four novel associations with genome-wide significance, near 

NCK2, SPRED2, TSPAN14, and CCDC6. Each of these genes was supported by both eQTL 

colocalisation and network ranking, and in each case was the nearest gene to the 

association peak. Indeed, when distance was excluded from the priority score, for 21 of the 

37 loci the top prioritized gene was the nearest gene, and for a further 8 loci the top gene 

was within 100 kb. This is consistent with observations from eQTL studies that the majority 

of gene regulatory variants lie within 100 kb of their regulated genes83. 

Despite the large number of eQTL datasets that we used, colocalisation of likely AD risk 

genes was sometimes found in only one or a few datasets; this was the case for SPRED2 

(TwinsUK LCL coloc probability 0.99), RIN3 (GTEx frontal cortex probability 0.94), and 

PILRA (Fairfax LPS-2hr monocyte coloc probability 0.99). Many factors could account for 

dataset-specific colocalisations, such as biological differences in sample state, differences in 

LD match between the GWAS and eQTL datasets, and technical differences in the 

transcriptome annotations used for eQTL discovery. As a result, absence of colocalisation 

provides only weak evidence for lack of an effect in a given tissue type, whereas positive 
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colocalisation provides strong support for a shared genetic effect. It is therefore useful to 

look broadly across eQTL studies for colocalisation, which will be facilitated by resources 

that simplify access to these datasets, such as the eQTL catalogue11. 

Our gene prioritization incorporated multiple lines of genetic evidence to distinguish genes 

most likely to causally mediate AD risk. This analysis supported roles for many established 

AD genes, while also pointing to novel candidates. One of our most confidently prioritized 

genes was APH1B, encoding a gamma-secretase complex component involved in APP 

processing. APH1B harbors the likely causal missense variant rs117618017, yet also has 

strong colocalisation evidence that higher expression correlates with higher AD risk. One 

possibility is that impaired function of APH1B due to the missense variant leads to 

upregulation of APH1B transcription. This interpretation would be consistent with evidence 

from both mice84 and humans85 that loss of APH1B and gamma-secretase function leads to 

AD. Although APH1B loss may be associated with non-AD dementia84,86, effect sizes for 

rs117618017 on risk were similar both for diagnosed AD (Kunkle et al. OR 95% CI=[1.071, 

1.127]) and dementia in UK Biobank (OR 95% CI=[1.064, 1.104]). 

Among our novel associations, TSPAN14 has a role in defining the localisation of 

ADAM1087, another recently discovered AD gene which is a key component of the gamma-

secretase complex, and which could thus mediate AD risk via processing of amyloid 

precursor protein. However, ADAM10 also cleaves the microglia-associated protein TREM2 

to generate its soluble ligand-binding domain88. Our fine-mapping showed that the risk SNP 

rs1870138 is also associated with higher risk for inflammatory bowel disease (IBD), an 

immune-mediated disease, and with higher monocyte count in UK Biobank individuals. Since 

TSPAN14 is expressed more highly in immune cell types, including microglia, than in brain 

tissue, it is also plausible that AD risk is mediated by its effect on either immune cell count or 

activation. SPRED2 is a negative regulator of ERK/MAPK signalling, and its loss in mice 

leads to increased macrophage activation and tissue inflammation89. The AD-associated 

SNPs in SPRED2, rs268134 and rs268120, are also associated with increased neutrophil 

percentage and decreased lymphocyte percentage in the UK Biobank. 

Recently proposed AD candidate genes supported by our analyses include RIN3, HS3ST1, 

and FCER1G. As noted above, FCER1G is a negative regulator of immune cell responses79; 

RIN3 interacts with both BIN1 and CD2AP in the early endocytic pathway90; HS3ST1 is 

involved in cellular uptake of tau91 and was recently been associated with AD in an 

independent Norwegian sample61.  
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In summary, our study reports fine-mapping SNP probabilities for 36 AD-associated regions, 

including 4 novel loci. By combining evidence from eQTL colocalisations across 109 

datasets, functional annotations and gene network analysis, we generate a quantitative 

prioritization score and provide a comprehensive map of AD candidate genes. Our genetic 

findings highlight the presence of diverse mechanisms in AD pathogenesis, suggesting 

different possible entry points for interventions to treat AD or to reduce risk of the disease, 

and identify candidate targets for therapeutic development.  
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Methods 
Code for analyses described here can be found at github.com/jeremy37/AD_finemap. 

GWAS on family history of AD 
Sample QC, variant QC and imputation was performed on all UK Biobank participants as 
described in Bycroft et al.92. After genotype imputation, 93,095,623 variants across 487,409 
individuals were available for analysis. To exclude individuals of non-European ancestry, we 
first extracted the “White British” ancestry subset of participants as described in Bycroft et al. 
2018. These individuals self-reported their ethnic background as “British” have similar 
genetic ancestry based on principal components (PC) analysis. To extract additional 
individuals of European ancestry, we followed a similar approach to Bycroft et al. and 
applied Aberrant93 on PCs 1v2, 3v4 and 5v6 across the individuals who self-reported as 
“Irish” or “Any other white background”. Pairs of first-degree relatives were identified using 
KING v2.094. We applied KING to 147,522 UK Biobank individuals who had at least one 
relative identified in Bycroft et al. (UK Biobank Field 22021). For each first-degree relative 
pair, we prioritized AD cases and proxy-cases (see below) for inclusion, and otherwise 
excluded one of the pair at random. We also excluded variants with low imputation quality 
(INFO < 0.3) and/or those with minor allele frequencies below 0.0005, resulting in 
25,647,815 variants available for analysis. 

AD cases were extracted from UK Biobank self-report (field 20002), ICD10 diagnoses (fields 
41202 and 41204) and ICD10 cause of death (fields 40001 and 40002) data. UK Biobank 
participants were asked whether they have a biological father, mother or sibling who suffered 
from Alzheimer’s disease/dementia (UK Biobank fields 20107, 20110 and 20111 
respectively). We extracted all participants with at least one affected relative as proxy-cases. 
Participants who answered “Do not know” or “Prefer not to answer” were excluded from 
analyses. All remaining individuals were denoted as controls. 

There were 3,046 AD cases, 52,791 AD proxy cases and 355,900 controls in the combined 
white British and white non-British cohorts. For association analyses, we lumped the true 
and proxy-cases together (53,042 unique affected individuals) and used the linear-mixed 
model implemented in BOLT-LMM95. 

AD meta-analysis 
To enable meta-analysis combining the UK Biobank cohorts with external case-control 
studies, we first transformed the AD proxy BOLT-LMM summary statistics from the linear 
scale to a 1/0 log odds ratio: 

𝑙𝑜𝑔𝑂𝑅	 ≈ 	𝛽*++	/	(𝑓(1 − 𝑓)) 
with standard error: 

𝑠𝑒	 ≈ 	 𝑠𝑒*++	/	(𝑓(1 − 𝑓)) 
where βLMM and seLMM are the SNP effect sizes and standard errors respectively from BOLT-
LMM, and f is the fraction of cases in the sample96. Since the affected individuals in our 
analysis include both true and proxy-cases, we then multiplied the transformed logORs and 
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standard errors by 1.897 so that it approximates the logORs obtained from a true 
case/control study1. 

We combined the transformed UK Biobank white British cohort, the transformed UK Biobank 
white non-British cohort and the Stage 1 summary statistics from Kunkle et al. using a fixed-
effects (inverse variance weighted) meta-analysis across 10,687,126 overlapping variants. 
For display purposes (Supplementary Table 7), we used CrossMap97 to convert variant 
positions from GRCh37 to GRCh38. 

Conditional analysis and statistical fine-mapping 
To run GCTA, we prepared plink input files with genotypes from 10,000 randomly sampled 
UK Biobank individuals at variants within +/- 5 Mb from each lead SNP. We excluded 
variants with INFO < 0.85, or which had a p-value from Cochran’s Q test for study 
heterogeneity < 0.001. We also excluded variants with allele frequency in UK Biobank below 
0.1%, as LD estimates are unreliable at low allele counts. We ran GCTA --cojo-slct with a p-
value threshold of 10-5 to identify secondary signals at each locus, and then retained only 
loci with a lead p-value below 5x10-8. For the HLA locus we used a GCTA p-value threshold 
of 5x10-8. We also retained the loci TSPOAP1, IKZF1, and TMEM163 since they had p < 
5x10-8 in an earlier version of our analysis. We excluded the APOE locus from conditional 
analysis and fine-mapping because the strength of association in the region would require a 
more perfect LD panel match to avoid spurious signals. 

We then ran FINEMAP at each locus, with --n-causal-snps given as the number of 
independent SNPs determined by GCTA. For FINEMAP, we excluded variants with allele 
frequency below 0.2%, since we found that otherwise FINEMAP sometimes selected 
implausible causal variants, such as pairs of very weakly associated rare variants to explain 
a common variant signal. For loci with multiple signals, we also used GCTA --cojo-cond to 
condition on each independent SNP identified in the previous analysis, and retained SNPs 
within 500 kb of any conditionally independent SNP at the locus. To compute SNP causal 
probabilities based on GCTA conditional signals, we converted effect size (beta) and 
standard error values to approximate Bayes Factors (BF)98 using a prior of W=0.1 (in 
Wakefield notation), and used the WTCCC single-causal variant method48, probability = SNP 
BF / sum(all SNP BFs).  

Colocalisation with eQTLs 
For eQTL colocalisation, we downloaded summary statistics for the eQTL datasets 
mentioned in the main text, as well as the xQTL dataset19 based on dorsolateral prefrontal 
cortex brain samples. QTL calling for primary microglia was performed with RASQUAL99 with 
the --no-posterior-update option. We determined eQTL genes at FDR 5% for each dataset in 
a uniform manner, first using Bonferroni correction of lead SNP nominal p values based on 
the number of variants within 500 kb of the gene, and using the Benjamini-Hochberg method 
to compute FDR. We matched variants between eQTL and GWAS based on chromosomal 
position; for datasets in GRCh38 coordinates, we first used CrossMap97 to convert back to 
GRCh37 coordinates. We used the coloc package17 with default priors to perform 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 27, 2020. ; https://doi.org/10.1101/2020.01.22.20018424doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.22.20018424
http://creativecommons.org/licenses/by/4.0/


 

 20 

colocalisation tests between GWAS and eQTL signals where the lead variants were within 
500 kb of each other, and passed to coloc all variants within 200 kb of each lead variant. We 
also performed colocalisation tests using GWAS p-values for each conditionally independent 
GWAS signal, obtained with GCTA as described above. 

Functional annotations 
All functional annotations used were in GRCh37 coordinates, as was the AD meta-analysis. 
We used the Ensembl VEP online Web tool (www.ensembl.org/vep)54 to predict variant 
consequences, and to add selected annotations (Supplementary Table 6). We downloaded 
bed files based on imputed data for Roadmap Epigenomics DNase, histone peaks, and 25-
state genome segmentations for 127 epigenomes53. We grouped these into groups “all”, 
“brain” (epigenomes 7, 9, 10, 53, 54, 67, 68, 69, 70, 71, 72, 73, 74, 81, 82, 125), and “blood 
& immune” (epigenomes 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 62, 29, 30, 31, 32, 
35, 36, 46, 50, 51, 116). For genome segmentations, we considered 9 states to represent 
enhancers: TxReg, TxEnh5, TxEnh3, TxEnhW, EnhA1, EnhA2, EnhAF, EnhW1, EnhW2. We 
used bedtools100 to determine overlaps, and counted the number of overlaps for each variant 
with peaks in the above groups. We downloaded FANTOM5101 permissive enhancer 
annotations from fantom.gsc.riken.jp/5/data. We downloaded pre-computed SpliceAI 
scores57 for variants within genes from github.com/Illumina/SpliceAI. We merged filtered 
whole-genome and exome scores together to obtain the most comprehensive predictions, 
and for each AD variant we annotated the maximum predicted score across splice donor 
gain, donor loss, acceptor gain, acceptor loss. We used the DeepSEA56 online tool 
(deepsea.princeton.edu) to annotate variants selected for functional fine-mapping with 
DeepSEA’s “functional significance” score. BigWig files with PhastCons, PhyloP and GERP 
RS scores in hg19 (GRCh37) coordinates were downloaded from UCSC. We downloaded 
microglial ATAC-seq based on the study by Gosselin et al.51, aligned reads to GRCh37 with 
bwa 0.7.15102, and called multisample peaks across all 15 datasets using MACS2103. We 
prepared bigWig files from alignments by using bedtools genomecov, followed by 
bedGraphToBigWig. To visualise microglia ATAC-seq tracks we adapted code from 
wiggleplotr104. 

Annotation-based fine-mapping 
For fine-mapping with PAINTOR, we selected 3,207 variants which had (a) FINEMAP 
probability >= 0.01% based on the GCTA-identified number of causal variants at the locus, 
or (b) had FINEMAP probability >= 1% when run with either 1 or 2 causal variants, even if 
this was not the number identified by GCTA, or (c) were among the top 20 variants at the 
locus by FINEMAP probability. We defined binary annotations for input to PAINTOR based 
on the features described above, which included thresholding certain scores at multiple 
levels (e.g. CADD >= 5, 10, 20). For Roadmap DNase and enhancer annotations, we 
included a category based on whether a variant was in a peak or enhancer in >= 10 
epigenomes. We next ran PAINTOR v3.1 once for each of the 43 annotations (Figure 2; 
Supplementary Table 6), allowing 2 causal variants per locus. (In addition to excluding 
APOE, we excluded the CLNK locus because PAINTOR failed to run when this locus was 
input.) 
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To build a multi-annotation model, we performed forward stepwise selection. We selected 
the best annotation by model log-likelihood (LLK), Blood & immune DNase, and then ran 
PAINTOR again for each combination of this annotation and the 42 remaining annotations. 
We continued adding an annotation at each iteration from among those top-ranked by model 
LLK until the model LLK improvement was less than 1. This occurred at iteration 4, and so 
we kept the first 3 annotations in the combined model. We computed the mean causal 
probability for each SNP as the mean of the 3 fine-mapping methods at loci with two or more 
signals, or as the mean of the FINEMAP and PAINTOR probabilities for loci with one signal, 
since FINEMAP gives approximately the same results as WTCCC fine-mapping for a single 
causal variant. 

Network analysis 
For network analysis, we created a gene interaction network based on selecting all edges 
between protein-coding genes from systematic studies (>1000 interactions) in the IntAct105 
and BioGRID databases106, as well as edges from the STRING database version 10.546 with 
edge score > 0.75. This combined network included 18,055 genes and 540,421 edges. We 
identified 36 top candidate genes across AD loci (Supplementary Table 8) to use as seed 
genes, and assigned weight to these according to the -log10(p value) of the lead SNP at the 
locus. 33 of the candidate genes were present in the network, while 3 were not (ECHDC3, 
TMEM163, SCIMP). For each locus, we used all seed genes as input except those at the 
same locus, and propagated information through the network with the personalized 
PageRank algorithm107, included in the igraph R package108. We found that a gene’s 
resulting PageRank was highly correlated with its node degree, and this made PageRank 
itself less informative. We therefore compared the PageRank of each gene at the locus to 
the distribution of PageRanks obtained for the same gene in 1,000 iterations of network 
propagation, where the same number of seed genes were randomly selected. We computed 
the percentile of a gene’s true PageRank relative to the 1,000 network propagations with 
randomized inputs. To determine gene set enrichment, we used the top 1,000 genes by 
network rank as input to gProfiler109 with default settings, with the set of all genes ranked by 
the network as a background set. 

Gene expression 
Gene expression values for all tissues were determined in units of transcripts per million 
(TPM). Both GTEx v8 and the eQTL catalogue provide tables of the median TPM expression 
across samples for each tissue and gene. For primary microglia we obtained a table of read 
counts per gene, computed using FeatureCounts 1.5.3 as described in14, from which we 
computed median TPM. 

Gene prioritization 
The combined score for each gene is the sum of five scores: 
   geneScore = codingScore + exprScore + distScore + colocScore + networkScore 

The coding score is twice the sum of the mean fine-mapping probability for missense or 
LoF variants in a gene. 
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The expr(ession) score is determined by first computing the percentile of expression 
(measured in TPM) for a gene in microglia relative to all GTEx tissues, and for GTEx brain 
(mean of brain tissues) relative to all other GTEx tissues. The score is then normalised to be 
in the range [0, 1], and rewards genes with expression percentile above the 50th: 
   exprScore = max(microglia pctile - 50, gtex pctile - 50) / 50 

The dist(ance) score is defined as: 
   distScore = (log10(maxDist) - log10((abs(x)+distBias))) / (log10(maxDist) - log10(distBias)) 

where x is the minimum distance of any portion of the gene footprint to the region defined by 
independent lead SNPs at a GWAS locus, maxDist is 500,000 and distBias is 6,355, chosen 
to give reasonable scores over the main range of interest of 0 - 200 kb (Supplementary 
Figure 3). 

The coloc score used as part of the combined score is defined as the maximum value of 
the “H4” hypothesis probability output by the coloc R package. The weighted coloc score this 
was compared to was designed to accumulate evidence across datasets, prioritizing those 
most relevant, and is inspired by the Open Targets47 and StringDB46 evidence scoring 
systems. Each QTL dataset was assigned to one of the categories “relevant”, “possibly 
relevant”, and “not relevant”, which receive weights of 1.0, 0.8, and 0.5. Within each 
category, the score accumulated by ordering coloc H4 probabilities in descending order, and 
adding incrementally: 
 categoryScore1 = H41 

 categoryScore2 = categoryScore1 + (1 - categoryScore1) * H42 / 2 
 … 
 categoryScoren = categoryScoren-1 + (1 - categoryScoren-1) * H4n / n 

Within a category, then, a small number of strong colocs will receive a higher score than 
many weak colocs. The score was then accumulated across categories as: 
 colocScore1 = 1.0 * categoryScorerelevant + 
 colocScore2 = colocScore1 + 0.8*(1 - colocScore1) * categoryScorepossbly_relevant 
 colocScorefinal = colocScore2 + 0.5*(1 - colocScore2) * categoryScorenot_relevant 

For example, if there were two “relevant” coloc H4 values of 0.4, and a “not relevant” H4 
value of 0.9, the colocScore would be: 
 1.0 * (0.4 + (1 - 0.4) * 0.4 / 2) + 0.5 * (1 - (0.4 + (1 - 0.4) * 0.4 / 2)) * 0.9 = 0.736 

In contrast, with one “relevant” H4 value of 0.9 and two “not relevant” H4 values of 0.4, the 
colocScore would be: 
 1.0 * 0.9 + 0.5 * (1 - 0.9) * (0.4 + (1 - 0.4) * 0.4 / 2) = 0.926 

The network score is determined based on the page rank percentile for a gene relative to 
permutations: 
 networkScore = (page_rank_pctile - 50) / 50 
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Data availability 
Summary statistics from the UK Biobank GWAX for AD and from the meta-analysis will be 
made available through the NHGRI-EBI GWAS Catalog: 
www.ebi.ac.uk/gwas/downloads/summary-statistics 
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Supplementary Figures 

 

Supplementary Figure 1: Maximum coloc probability (“maxH4”) outperformed a weighted 
coloc score that prioritises relevant cell types. We compared the performance of each score 
in identifying the top 40 AD candidate genes based on total score without coloc. (a) Barplot 
showing the number of candidate genes retrieved by either maxH4 or weighted coloc score 
at three score thresholds. In each case maxH4 retrieved more candidate genes. (b) 
Precision-recall curves, showing comparable F1 score between the two methods. (c) Scatter 
plot of gene ranks for top 40 genes relative to all genes, for weighted or maxH4 score. (d,e) 
Receiver operator characteristic partial area under the curve (AUC) at 90% specificity for (d) 
weighted coloc score and (e) maxH4 score. The maxH4 score showed slightly higher 
sensitivity at high specificity. 

a b
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Supplementary Figure 2: Network scores are higher for AD candidate genes. 
(a) Scatterplot of network score vs. the total score excluding network information (coloc + 
fine-mapping + expression + distance) for genes at 36 AD loci included in the main text. (b) 
Violin plot showing the distribution of scores for AD candidate genes (highlighted in part a) 
and all others. Note that genes not present in the network (TMEM163, ECHDC3, SCIMP) 
receive a score of zero by default. 
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Supplementary Figure 3: The gene distance score decreases with increasing log-scaled 
distance to the lead SNP.  
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Supplementary Figure 4: (a) Violin plots showing the distribution of the total gene score, 
excluding the expression component, in different groups of genes defined by variants of the 
expression score. Only protein-coding genes were included. For each of the expression 
scores, the top 100 or top 40 genes were selected. The expression scores compared were: 
expression level (log10(TPM) / 3); specificity of gene expression in brain or microglia relative 
to all GTEx tissues (described in methods); combined expression score (0.5 * 
exprLevelScore + 0.5 * specificityScore). (b) The score based on expression specificity in 
microglia or brain had slightly higher correlation with the total (non-expression) score than 
did the expression level score. A score combining both components showed similar 
correlation to that based on expression specificity alone.  

Spearman correlations 
between different 
expression scores and total 
score (without expression)

Expression level:
⍴ = 0.137, p = 9.1x10-4

Expression specificity:
⍴ = 0.160, p = 1.0x10-4

Combined (spec. + level):
⍴ = 0.162, p = 8.5x10-5
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