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Abstract  1 

BACKGROUND: Frontotemporal dementia (FTD) is an early onset dementia that is diagnosed in 2 

~20% of the progressive dementia cases. Heterogeneity in FTD clinical presentation too often 3 

delays clinical diagnosis and calls for molecular biomarkers to assist diagnosis, including cell free 4 

microRNAs (miRNA). However, nonlinearity in the relationship of miRNAs to clinical states and 5 

underpowered cohorts has limited research in this domain.  6 

METHODS: We initially studied a training cohort of 219 subjects (135 FTD and 84 non-7 

neurodegenerative controls) and then validated the results in a cohort of 74 subjects (33 FTD and 8 

41 controls).   9 

RESULTS: Based on cell-free plasma miRNA profiling by next generation sequencing and 10 

machine learning approaches, we develop a nonlinear prediction model that accurately 11 

distinguishes FTD from non-neurodegenerative controls in ~90% of cases.  12 

DISCUSSION: The fascinating potential of diagnostic miRNA biomarkers might enable early-13 

stage detection and a cost-effective screening approach for clinical trials that can facilitate drug 14 

development.  15 
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Background 16 

Frontotemporal dementia (FTD) is a neurodegenerative disease that is characterized by frontal 17 

and temporal lobe atrophy, and typically manifests with behavioral or language deficits 1-4. The 18 

key known genetic drivers of FTD include hexanucleotide repeat expansion in the first intron of 19 

the gene chromosome 9 open reading frame 72 (C9ORF72) 5,6, and mutations in the genes 20 

encoding for microtubule associated protein Tau (MAPT) 7, Valosin-containing protein (VCP), 21 

TANK-binding kinase 1 (TBK1), progranulin (GRN), charged multivesicular body protein 2B 22 

(CHMP2B) and the RNA-binding protein TAR DNA-binding protein 43 (TDP-43) 8-12 . Relatedly, 23 

inclusions of Tau and TDP-43 are hallmarks of FTD neuropathology13,14. 24 

FTD can be difficult to diagnose, due to heterogeneity in clinical presentation 1. Three main 25 

phenotypes of FTD are described: behavioral variant frontotemporal dementia (bvFTD), 26 

characterized by changes in social behavior and conduct, semantic dementia (SD), characterized 27 

by the loss of semantic knowledge, leading to impaired word comprehension and progressive 28 

non-fluent aphasia (PNFA), characterized by progressive difficulties in speech production 1,15. 29 

Related motor variants within the FTD spectrum are corticobasal syndrome (CBS) and 30 

progressive supranuclear palsy (PSP) 16.  FTD further resides on a genetic and a clinico-31 

pathological continuum with amyotrophic lateral sclerosis (ALS) 17.  32 

Brain imaging and several biofluid proteins have been proposed as biomarkers for FTD 18-48. 33 

Among the proteins, noticeable are neurofilament light chain (NfL), TDP-43, and phospho-tau, 34 

amyloid beta and glial fibrillary acidic protein (GFAP). A recent study concluded that high NfL 35 

blood levels are indicative of the intensity of neurodegeneration or the extent of the degenerated 36 

axons in FTD 26.  37 

microRNAs (miRNAs) are a class of small, non-coding RNAs, that can be quantified in biofluids 38 

in a massively parallel fashion, yielding fine-grained profiles 49. miRNAs were suggested as 39 

biomarkers in neurodegeneration and psychiatry 50, and we too have shown their potential as cell-40 

free biomarkers in neurodegeneration, focusing on the motor neuron diseases spinal muscular 41 

atrophy (SMA) and ALS 51,52. Thus, low levels of miR-133 and miR-206 in the cerebrospinal fluid 42 

(CSF) of patients with SMA, predicted clinically meaningful response to nusinersen therapy 51, 43 

whereas low plasma levels of miR-181 predict longer survival and slower progression in patients 44 

with ALS 52.  45 

Several studies suggested plasma or CSF miRNAs as diagnostic biomarkers for FTD53-62. 46 

However, initial studies of miRNAs in diagnosis of FTD were confounded by cohort size, sample 47 
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heterogeneity biases or pre-selection of candidate miRNAs. Furthermore, these studies did not 48 

address the potential non-linear relationships between miRNAs in developing a predictor.  49 

In the current study, we profiled blood plasma miRNAs, and developed miRNA-based classifier 50 

for diagnosing FTD in a training cohort of 219 subjects, that was further validated in another cohort 51 

of 74 subjects. We implemented an ensemble machine learning approach, to address biomarker 52 

nonlinearity and were able to expose unrevealed disease-associated signals. We then confirmed 53 

that these signals are similar between clinical subtypes of FTD. The diagnostic power of the study 54 

roots from unbiased miRNA signature discovered by advanced machine learning, on a large and 55 

heterogeneous cohort, and validation in an independent held-out cohort, according to the TRIPOD 56 

guidelines 63. Therefore, circulating miRNAs hold a fascinating potential as diagnostic biomarkers 57 

that may shorten diagnostic delay in FTD.   58 
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Methods 59 

Participants and Sampling 60 

Demographic data of study participants are detailed in Table 1.  61 

FTD subjects and their respective controls were enrolled in the longitudinal FTD cohort studies at 62 

UCL. Study cohort included 169 FTD patients and 56 controls. Additional controls (N=102) were 63 

obtained from the ALS biomarker study (Ethics approval 09/H0703/27) in Queen Mary Hospital, 64 

totaling 158 non-neurodegenerative controls. Controls were typically spouses or relatives of 65 

patients and were not reported to have any clinical signs of ALS or FTD. Informed consent was 66 

obtained from all participants.  Study inclusion period was from 2009 to 2018.  67 

All FTD patients were seen at the National Hospital for Neurology and Neurosurgery, a national 68 

referral center for young and genetic dementias in the UK; the clinic has high diagnostic accuracy 69 

in cases that come to post mortem; for the majority of cases seen in the clinic CSF biomarkers of 70 

amyloid and Tau are used to distinguish FTD and AD whenever there is any question over 71 

accuracy of diagnosis.  72 

Blood was collected by venipuncture in EDTA tubes, and plasma was recovered from the whole 73 

blood sample by centrifugation for 10 minutes at 3500 RPM at 4°C within 1 hour of sampling, and 74 

stored at −80°C until RNA extraction and subsequent small RNA next generation sequencing. 75 

Frozen plasma samples of FTD and controls from the UCL Biobanks were shipped to the 76 

Weizmann Institute of Science for molecular analysis.   77 

Study Design 78 

Based on power analysis calculations, we found that 150 controls and 150 cases are sufficient to 79 

obtain an ROC AUC of 0.7 with a power of 99% and a p-value of 0.0001. Phenotypic data on de-80 

identified patients was separated and blinded during steps of the molecular analysis.  81 

Small RNA Next Generation Sequencing  82 

Total RNA was extracted from plasma using the miRNeasy micro kit (Qiagen, Hilden, Germany) 83 

and quantified with Qubit fluorometer using RNA broad range (BR) assay kit (Thermo Fisher 84 

Scientific, Waltham, MA). For small RNA next generation sequencing (RNA-seq), libraries were 85 

prepared from 7.5 ng of total RNA using the QIAseq miRNA Library Kit and QIAseq miRNA NGS 86 

48 Index IL (Qiagen), by an experimenter who was blinded to the identity of samples. Samples 87 

were randomly allocated to library preparation and sequencing in batches. Precise linear 88 
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quantification of miRNA is achieved by using unique molecular identifiers (UMIs), of random 12-89 

nucleotide after 3’ and 5’ adapter ligation, within the reverse transcription primers 49. cDNA 90 

libraries were amplified by PCR for 22 cycles, with a 3’ primer that includes a 6-nucleotide unique 91 

index, followed by on-bead size selection and cleaning. Library concentration was determined 92 

with Qubit fluorometer (dsDNA high sensitivity assay kit; Thermo Fisher Scientific, Waltham, MA) 93 

and library size with Tapestation D1000 (Agilent). Libraries with different indices were multiplexed 94 

and sequenced on NextSeq 500/550 v2 flow cell or Novaseq SP100 (Illumina), with 75bp single 95 

read and 6bp index read. Fastq files were de-multiplexed using the user-friendly transcriptome 96 

analysis pipeline (UTAP) 64. Human miRNAs, as defined by miRBase 65, were mapped using the 97 

GeneGlobe pipeline (https://geneglobe.qiagen.com/us/analyze). We defined "true positive" 98 

miRNAs and reduced the likelihood of considering “false positive” miRNAs, following previous 99 

works on miRNA biomarkers in neurodegeneration58 and other conditions66-68. To this end, we 100 

included only miRNAs with an average UMI counts > 100 across all samples and with at least a 101 

single UMI across all samples, similar to our previous works51,52. Data were further corrected for 102 

the library preparation batch in order to reduce its potential bias, and normalized with DESeq2 103 

package 69 under the assumption that miRNA counts followed negative binomial distribution 104 

Constructing Cohorts and Restricting Age and Sex Biases  105 

We observed a younger mean age in controls (53.8±14.5, 95% CI [51.5- 56.1]) than in FTD 106 

(65.6±8.4, 95% CI [64.4-67.0], Table S1). We reduced age-variance by excluding 34 participants 107 

younger than 40, which reduced differences in mean age across the remaining meta-cohort of 108 

293 subjects by 45%. Thus, 168 out of 169 FTD patients and 125 out of 158 non-109 

neurodegenerative control samples were included in the analysis (Table S1). In order to verify 110 

that a merged dataset of controls, collected in two different clinical centers, does not introduce 111 

biases, we employed the t-distributed stochastic neighbor embedding (t-SNE) algorithm and 112 

measured Kullback–Leibler divergence, the difference between probability distributions. In 113 

addition, a higher prevalence of males was observed among FTD patients (65%) than among the 114 

controls (35%). Therefore, sex and age variables were added to the prediction model as 115 

covariates, in addition to the selected 13 miRNA predictors.  116 

Gradient Boosted Trees for the Development of Disease Binary Classifiers  117 

The FTD-disease binary classifier was developed using Gradient Boosting Classifier, a machine-118 

learning algorithm that uses a gradient boosting framework. Diagnostic models were developed, 119 

validated and reported according to the TRIPOD guidelines 63  (https://www.tripod-120 
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statement.org/). Gradient Boosting trees 70,71, a decision-tree-based ensemble model, differ 121 

fundamentally from conventional statistical techniques that aim to fit a single model using the 122 

entire dataset. Such ensemble approach improves performance by combining strengths of 123 

models that learn the data by recursive binary splits, such as trees, and of “boosting”, an adaptive 124 

method for combining several simple (base) models. At each iteration of the gradient boosting 125 

algorithm, a subsample of the training data is selected at random (without replacement) from the 126 

entire training data set, and then a simple base learner is fitted on each subsample. The final 127 

boosted trees model is an additive tree model, constructed by sequentially fitting such base 128 

learners on different subsamples. This procedure incorporates randomization, which is known to 129 

substantially improve the predictor accuracy and also increase robustness. Additionally, boosted 130 

trees can fit complex nonlinear relationships, and automatically handle interaction effects between 131 

predictors as addition to other advantages of tree‐based methods, such as handling features of 132 

different types and accommodating missing data. Hence, in many cases their predictive 133 

performance is superior to most traditional modelling methods. Additional gain of these algorithms 134 

is the various loss functions that can be applied. Using the softmax loss function, we explicitly 135 

estimated the class conditional probabilities, which allow us to demonstrate the performance of 136 

each of the classifiers both as “soft-classifiers” (i.e., predicting class probabilities) and “hard-137 

classifiers” (i.e., setting a probability threshold and predicting a class). The former approximates 138 

a continuous number as output - the class conditional probabilities - and then performs 139 

classification based on these estimated probabilities. In contrast, hard classifiers output a discrete 140 

number as the decision - directly targeting the classification decision boundary, without producing 141 

the probability estimation. 142 

 

A gradient boosting classifier was developed with a feature set of 132 miRNA predictors. 143 

Dataset was partitioned to training-set (75%) and validation-set (25%) which was used as held-144 

out data. The training-set was cross-validated during training with stratified 3-fold cross 145 

validation. An ROC was generated for each of the folds and individual and mean AUCs were 146 

calculated along with 95% confidence intervals.  147 

The chosen hyper-parameters: ccp_alpha=0.0, learning_rate=0.5, max_depth=8, 148 

max_features=0.45, min_samples_leaf=14, min_samples_split=8, n_estimators=100, 149 

subsample=0.45 and tol=0.0001. 150 

 

miRNA Predictor Selection by Recursive Feature Elimination (RFE) 151 
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For selecting the most predictive features during prediction model development, we used 152 

Recursive Feature Elimination (RFE) algorithm, an efficient recursive approach for eliminating 153 

features from a training dataset with 3-fold cross validation. ExtraTreesClassifier algorithm is used 154 

in the cross-validated RFE procedure, with hyper-parameters: criterion="entropy", 155 

max_features=0.9, and n_estimators=20. RFE works by iteratively removing features and using 156 

model accuracy to identify which features contribute the most to prediction. Tree-based 157 

importance scores of 132 miRNAs were used in order to rank features, and thus reduced the 158 

dimension of miRNA measurements needed for prediction by ~90% (13 miRNA features in a 159 

model in total). Additionally, the final model included age and sex as predictors (resulting in a of 160 

total 15 predictors). 161 

Feature Importance and SHAP Analysis  162 

Although gradient boosting tree models are complex models, they can automatically provide an 163 

approximation of feature importance from the trained boosted trees. A miRNA predictor is 164 

assigned with an importance score in every single tree, where the Gini purity index is used to 165 

assess split points in the tree. The score of a feature is calculated based on the amount of 166 

improvement in the Gini index achieved by split points that include the feature, weighted by the 167 

number of observations in that node. The final importance score of a feature is calculated by an 168 

average across all decision trees within the final model.  169 

 170 

For local interpretability of the predictive model, we used SHapley Additive exPlanations (SHAP) 171 
72, the current state of the art in Machine Learning explainability tools. SHAP provides estimates 172 

and visualizations to infer what decisions the model is making. This is achieved by quantifying the 173 

contribution that each feature brings to each prediction made by the model.   174 

Linear regression model 175 

A linear classifier (Logistic Regression) was developed with a feature set of 95 miRNA predictors, 176 

that were differentially expressed (adjusted p-value ≤ 0.05) between FTD cases and controls. 177 

Each miRNA was binarized by its mean value. Training and validation were identical as in the 178 

gradient boosting classifier: Dataset was partitioned to training-set (75%) and validation-set (25%) 179 

which was used as held-out data. The training-set was cross-validated during training with 180 

stratified 3-fold cross validation. An ROC was generated for each of the folds and individual and 181 

mean AUCs were calculated along with 95% confidence intervals. The chosen hyperparams for 182 

Logistic Regression: L2 penalty, tol=1e-4, fit_intercept=True, solver='lbfgs', max_iter=500. 183 
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Results 184 

We sought to determine the overall diagnostic capability of miRNA measurements in FTD. To this 185 

end, we based our study on analysis of plasma miRNA expression and the development of 186 

computational diagnostic models. The cohort included a total of 293 participants, enrolled 187 

between 2009 and 2018. Summary of participants’ basic characteristics is shown in Table 1. Since 188 

the non-neurodegenerative controls were collected in two centers, we first verified that they could 189 

have been sampled from a single population and can therefore be considered a single cohort. We 190 

estimated the Kullback–Leibler divergence, a measure of the difference between two probability 191 

distributions. This analysis indicated only a small difference between the two sets in question (KL 192 

= 0.293, Figure S1), that is further visualized by t-distributed stochastic neighbor embedding (t-193 

SNE) analysis of the cohorts. 194 

Differential expression of miRNAs 195 

Out of the >2000 miRNA species that were aligned to the human genome, only 132 fulfilled QC 196 

criteria of an average UMI count ≥ 100 across all samples and non-zero counts in all samples 197 

(see Methods). Next, we quantified the differential miRNAs that may distinguish FTD from 198 

controls. Ninety-five miRNAs were differentially expressed between plasma of patients with FTD 199 

and controls, with an adjusted p-value<0.05 (Figure 1A). Additional analysis of only subsets of 200 

C9ORF72-FTD cases (Figure 1B), FTD females (Figure 1C) or FTD males (Figure 1D) vs. 201 

relevant controls revealed that the miRNA signature was comparable between the full FTD cohort 202 

and subcategories (Table S2: Source Data Fig. 1). This was also true for subsets of FTD patients 203 

with predicted TDP or Tau pathology (Figure S2).  204 

Development of machine learning classifier for the diagnosis of FTD 205 

We established a diagnostic prediction model for FTD on a randomly selected training set of 135 206 

FTD cases and 84 controls, comprising 75% of the total cohort (168 cases, 125 controls). For 207 

model validation, the remaining 25% of the data were held out as a replication cohort (33 FTD, 208 

41 control samples).  209 

The 132 miRNAs were tested as potential predictors, using an ensemble machine learning 210 

approach for ranking miRNAs predictive value in the diagnosis of FTD vs. individuals that did not 211 

suffer from neurodegeneration and were considered healthy. For selecting the most predictive 212 

features during model development, we used Recursive Feature Elimination (RFE), an efficient 213 

multivariate approach that iteratively removes miRNAs (features) and identifies those that 214 
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contribute the most to prediction accuracy. Cross validated RFE on the training set with Extra 215 

Tree classifiers, obtained a set of 13 miRNAs with highest feature importance (Figure 2A). Age 216 

and sex were added as predictors in the model, in addition to the selected 13 miRNAs features.  217 

The prediction model presented a mean receiver operating characteristic area under the curve 218 

(ROC AUC) of 0.94 under internal cross validation on training dataset (Figure 2B). Furthermore, 219 

the 13-miRNA-based predictor was capable of predicting the diagnosis of FTD in an independent 220 

held-out (replication) cohort of 74 individuals with an ROC AUC of 0.88 (Figure 2C). Additional 221 

analysis reveals that the model is well calibrated and satisfactorily performs on held-out data 222 

(Figure 2D). At a defined probability threshold (0.6), the classifier exhibits a 0.81 precision (PPV) 223 

over 0.92 negative predictive value (NPV) with a 0.91 recall (sensitivity), a 0.83 specificity and a 224 

0.08 false omission rate over 0.19 false discovery rate values (Figure 2E). Furthermore, a family 225 

of models trained with only a subset of the 15 most predictive features, displays a stable AUC 226 

ROC performance and reassures that the selected final features are suitable (Figure 2F). In 227 

summary, we determined 13 miRNAs that are able to call the diagnosis of FTD with high accuracy. 228 

We have further compared the non-linear machine-learning strategy (with 13 miRNA features 229 

selected by multivariate RFE, Figure 2) to a logistic regression model with univariate feature 230 

selction (Figure S3).  A subset of 95 miRNAs out of the 132 passing QC, were differentially 231 

expressed between FTD and controls (passing a threshold of p<0.05 after correction for multiple 232 

hypotheses) and therefore were used in the logostic regression as features. Similarly, age and 233 

sex were also included as predictors. The linear model with 95 differentially-expressed miRNAs, 234 

age and sex was inferior to the gradient boosting classifier model, particularly by sensitivity (0.73 235 

vs 0.91) and negative predictive value (0.8 vs 0.92) (Figure S3). Moreover, the non-linear 236 

approach showed better robustness in the different training folds and also outperforms the linear 237 

model in utilizing a significantly smaller number of miRNA features (15 vs. 97), to obtain its 238 

accuracy.  239 

We then sought to better understand the machine-learning-based non-linear prediction model by 240 

investigating the relative effect of each individual miRNA. Therefore, we utilized post-hoc SHapley 241 

Additive exPlanations (SHAP) feature importance analysis to uncover the contribution of 242 

individual miRNAs to the FTD diagnostic predictor (Figure 3A, B). Extreme SHAP values inform 243 

that the model predicts a more likely FTD (positive values) or healthy control (negative values). 244 

The key predictors revealed by SHAP, which contribute the most to calling FTD vs controls, are 245 

multiple sclerosis-associated miR-629 73,74, brain enriched miR-125b 75 and the astrocyte-derived 246 

exosomal miR-361 76. We further tested each individual miRNA as a single predictor of FTD 247 
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diagnosis. A model with only miR-423-5p or miR-125b-5p presented the highest AUC values of 248 

~0.69 (Table 2). Boxplots depicting the underlying distribution of each of the 13 miRNA predictors, 249 

along with scatter plots of the expression values of individual subjects in these miRNAs, confirm 250 

the non-linear relationship between miRNA expression and the phenotype, for some miRNAs 251 

(e.g., miR-107 and miR-26a), while other miRNAs can be divided to low/high values predominated 252 

by either controls or FTD cases (e.g., miR-629-5p, Figure 4). These observations emphasize the 253 

power of a model, which is able to take into account non-linear relationship between features 254 

(miRNAs).   255 

Significant pairwise differences were noted in miR-107 levels in both bvFTD and SD vs other FTD 256 

subtypes (primary progressive aphasia, corticobasal syndrome, progressive supranuclear palsy 257 

and FTD with motor neuron disease. ANOVA: p=0.009, bvFTD vs other FTD subtypes: p=0.01, 258 

SD vs other FTD subtypes: p=0.02, Figure S4C). In addition, significant pairwise differences in 259 

miR-26a levels were found in both bvFTD (p=0.04) and PNFA (p=0.02) vs other FTD subtypes 260 

(ANOVA: p=0.024, bvFTD vs other FTD subtypes: p=0.04, PNFA vs other FTD subtypes: p=0.02, 261 

Figure S4F). 262 

None of the other miRNAs showed differences between clinical subtypes (Figure S4), between 263 

different mutation carriers, or between mutations carriers and patients with no known FTD 264 

mutations (Figure S5). In conclusion, a non-linear signature based on only 13 miRNAs is able to 265 

call the diagnosis of FTD with high accuracy and generalizability, for all FTD subtypes and 266 

independent of the underlying genetic background. 267 

Finally, we tested the performance of plasma miRNA classifiers that were reported in previous 268 

works 56,58, relative to the classifier we have reported here. We replicated the logistic regression 269 

model (with L2 regularization77,78) from the study of Kmetzsch et al. 58 on our data. Taking miR-270 

34a-5p, miR-345-5p, miR-200c-3p and miR-10a-3p as features, displayed inferiority to our model. 271 

Moreover, these miRNAs were not differentially expressed between cases and controls in our 272 

study. Next, we replicated the "microRNA pair" approach from the study of Sheinerman et al. 56: 273 

miR-335/let-7e, miR-99b/let-7e and miR-9-3p/miR-181a and assessed the ROC curves, showing 274 

they are inferior to our non-linear classifier in distinguishing between FTD and controls (Figure 5).  275 

Thus, when tested in comparison to reported miRNA classifiers from the literature, our panels of 276 

miRNA and non-linear classifier perform better, with AUC values of 0.9.  277 
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Discussion 278 

The need to facilitate the diagnosis of FTD in the face of clinical heterogeneity raises the hope for 279 

new effective biomarkers. Circulating miRNAs hold a fascinating potential as diagnostic 280 

biomarkers that were not fully explored, including for brain disorders 50. We recently demonstrated 281 

the power of miRNAs in prognosis and prediction of clinical response to therapy in motor neuron 282 

diseases 51,52. In the present work, we sought to discover diagnostic biomarkers for FTD. By using 283 

an unbiased, next generation sequencing approach and advanced computation in a discovery 284 

cohort of 219 subjects and 74 additional subjects for a replication study, we overcame limitations 285 

of past works in developing biomarkers for FTD. A recursive non-linear approach was utilized to 286 

find the smallest set of miRNA features that obtain the highest accuracy of the prediction model, 287 

leading to a signature of 13 miRNAs only. Thus, our miRNA-based binary classifier is more 288 

accurate and robust than published miRNA-based predictors 56,58.  289 

 

The use of gradient boosting trees, an ensemble learning approach, allows discovering nonlinear 290 

relationships between miRNAs and disease status that gained affirmation by cross validation in 291 

the training dataset. Furthermore, our model is externally validated on held-out data, which was 292 

not used during feature selection and model development, according to the TRIPOD guidelines 293 
63. SHAP analysis 72 further unfolds the relative contribution of individual features to the predictive 294 

model. Of note, the performance of the ensemble learning was superior to that of a logistic 295 

regression model, and enabled the use of only 15 features, instead of 97, for prediction.  296 

According to the human miRNA tissue atlas 75, most of the selected miRNAs are CNS-enriched 297 

(let-7c-5p, miR-26a-5p, miR-107, miR-125b-5p), suggesting that they might be directly involved 298 

in the disease state of the CNS. miR-26a, miR-326, miR-484 and miR-361 were associated with 299 

FTD diagnosis in our data and with cognitive deficits or Alzheimer’s disease (AD) in other analyses 300 
79-85. In mice, miR-326 inhibited Tau phosphorylation80, a hallmark of FTD as well as AD, 301 

supranuclear palsy (PSP), conticobasal syndrome (CBD) and chronic traumatic encephalopathy 302 

(CTE)86. Brain-enriched miR-107 was also implicated in AD 87-92.  Changes in blood levels of miR-303 

326, miR-26a, and miR-629 are associated with multiple sclerosis (MS), a condition characterized 304 

by demyelination 93-100. Moreover, serum miR-629 was negatively correlated with MS patient brain 305 

volume and lesion severity, respectively 101. Thus, some of the miRNA predictors proposed here 306 

are associated directly or indirectly with other degenerative brain diseases.  307 
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Conclusion 308 

Strengths and Limitations 309 

We have found specific molecular miRNA patterns that can contribute to the diagnosis of FTD. 310 

Therefore, the work encourages testing if circulating miRNAs biomarkers can establish a cost-311 

effective screening approach to increase speed or precision in the diagnosis of suspected FTD. 312 

Early-stage diagnosis may be useful towards design of prospective clinical trials. More broadly, 313 

the findings demonstrate the importance of integrating machine learning into clinical biomarker 314 

studies, addressing nonlinearity and exposing otherwise cryptic disease-associated signals. 315 

Finally, while ongoing biomarker studies in FTD highlight protein markers such as NfL and Tau, 316 

combined protein-RNA markers may present increased accuracy, as we previously showed52.  317 

We would like to put forward a few notable limitations of our study: First, patients in our cohorts 318 

were most likely recruited in different phases of the disease, which results in significant phenotypic 319 

heterogeneity. At the same time, since we had no record of disease severity, we could not stratify 320 

patients by their disease phase and depict stage-dependent changes in miRNAs. Additionally, we 321 

did not find any miRNAs, which can differentiate between FTD-Tau and FTD-TDP, which might 322 

result from small, underpowered subset cohorts or could highlight a wider role for these novel 323 

biomarkers within dementia syndromes. We hope that in the future, larger cohorts can be used to 324 

reveal such differences. Finally, a long route is expected from this initial study and until miRNA 325 

can be used in personalized diagnosis. These steps shall include prospective studies, quantitative 326 

calibration of absolute miRNA concentrations and simple bed-side methods for quantification of 327 

miRNAs.  328 

Unanswered questions 329 

It remains to be determined why our findings are discrepant with conclusions of past studies 53-330 
60,62.  For studies in other bodily fluids the answer might be trivially-related to the different biofluid 331 

composition53,57,60. Furthermore, we emphasize the progress we presented in our study in terms 332 

of power (larger cohort) and the unbiased analysis by next generation microRNA sequencing, that 333 

contrasts past biased choices of miRNA candidates. A second unanswered question is why 334 

defined nonlinear patterns are strongly predictive of disease states. Future works should address 335 

the differential diagnosis between FTD and other dementias, such as Alzheimer’s disease. Lastly, 336 

protein based markers, such as neurofilaments, lack specificity to particular neurodegenerative 337 

diseases. However, it is plausible that miRNAs might demonstrate a disease-specific pattern in 338 

the circulation. Future studies with large AD and FTD cohorts might address this hypothesis. 339 
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Recommendations  340 

In our study we took care to keep a held-out cohort for external validation. To substantiate our 341 

work and towards clinical diagnostic usage, it is warranted to validate the predictor by testing it 342 

on an independent cohort of different ethnicity and create means for quantification of absolute 343 

miRNA concentrations. In addition, miRNA levels should be compared in follow up works, and 344 

combined with other experimental circulating markers of neurodegeneration such as 345 

neurofilaments. In addition, miRNAs could be explored also as prognostic markers in FTD and in 346 

predicting disease severity.  347 

Availability of supporting data 348 

The data that support the findings of this study are available from the corresponding author upon 349 

reasonable request. 350 

Appendix 351 

IDs of 34 subjects removed due to age-based QC:  352 

'CTRL_rep9', 'CTRL_rep10', 'CTRL_rep13', 'CTRL_rep19', 'CTRL_rep16', 'CTRL_rep18', 353 

'CTRL_rep20', 'FTD30', 'CTRL_rep17', 'CTRL12', 'CTRL13', 'CTRL2', 'CTRL5', 'CTRL56', 354 

'CTRL57', 'CTRL58', 'CTRL68', 'CTRL100', 'CTRL111', 'CTRL20', 'CTRL22', 'CTRL23', 'CTRL24', 355 

'CTRL27', 'CTRL29', 'CTRL33', 'CTRL48', 'CTRL50', 'CTRL54', 'CTRL60','CTRL62', 'CTRL73', 356 

'CTRL82', 'CTRL83'.  357 
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Main figures and tables 714 
 

715 
Figure 1. miRNA signature associated with FTD. MA plot of differential miRNA expression in plasma of 716 
patients with FTD vs non-neurodegenerative healthy controls in the (A) total cohort of FTD patients and 717 
controls (N=168 and N=125, respectively). (B) C9ORF72 mutations carriers only (N=18) vs healthy controls 718 
(N=125). (C) Female patients with FTD and healthy female controls (N=58 and N=85, respectively) (D) 719 
male patients with FTD and healthy male controls (N=110 and N=40, respectively). Log 2 transformed fold 720 
change (y-axis), against mean miRNA abundance (x-axis). Red: significantly changed miRNAs (adjusted 721 
p<0.05, Wald test). Black: miRNAs showing insignificant change.  722 
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723 
Figure 2: Diagnosis of FTD by a distinctive cell free miRNA signature.   (A) Mean accuracy under 3-724 
fold cross validation (AUC ROC, y-axis) as a function of the number of plasma miRNAs used in the FTD 725 
prediction model. Increasing numbers of miRNA features (x-axis) successively selected in the recursive 726 
feature elimination process reveals a saturation at 13 miRNA features (red line). Final model included 15 727 
features (including age and sex as covariates). (B) ROC curves in the training set: true positive rate (y-axis) 728 
vs. false positive rate (x-axis). Mean values and variance of data from 219 samples with 3-fold cross 729 
validation. Mean AUC 0.94 ± 0.02. 95% CI is 0.92-0.96. (C) Performance and generalizability on replication 730 
held-out data revealed by an ROC curve with AUC of 0.88. (D) Reliability diagram, plotting truly observed 731 
fraction of cases (upper plot, y-axis) vs. predicted probability by the prediction model (upper plot, x-axis), in 732 
five probability bins, reveals a sufficiently calibrated model on the held-out set. Lower plot shows the number 733 
of individuals at each of the five predicted probability bins. (E)  Confusion matrix showing the prediction 734 
errors on held out dataset. At a probability threshold of 0.6, we observed 0.92 Negative predictive value 735 
(NPV), 0.81 Positive Predictive Value (PPV/precision), 0.91 recall (sensitivity) and 0.83 specificity. In 736 
addition, a 0.17 False Positive Rate is obtained over 0.08 False Omission Rate and 0.19 false discovery 737 
rate.  (F) AUC ROC of a model trained with only a subset of top 15 most predictive features, reveals a 738 
stable performance with the selected final features.  739 
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740 
Figure 3: The contribution of individual miRNAs to the predictor of FTD diagnosis. (A) Mean absolute 741 
SHapley Additive exPlanations (SHAP) values break down the impact of specific miRNAs on FTD disease 742 
non-linear predictor output in the held-out cohort. (B) Illustration of the relationship between the miRNA 743 
levels (low – blue to high – red), SHAP values and the impact on the prediction in the held-out cohort. 744 
Positive or negative SHAP value lead the model to a more likely FTD or healthy control predictions, 745 
respectively. 746 
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747 
Figure 4. Distribution of the top 13 miRNA predictors in patients with FTD and controls. Box plots 748 
with complement scatter plots of the 13 miRNA features predicting FTD, depicting expression values of all 749 
cohort along with distribution of each miRNA. Blue dots represent the levels of a given miRNA measured 750 
in healthy control participants. Red dots represent the levels of a given miRNA measured in patients with 751 
FTD. Box – two central data quartiles, with a line at the median (Q2). Whiskers extend to show the rest of 752 
the distribution, except for points that are determined to be outliers using a method that is a function of the 753 
inter-quartile range. 754 
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 755 
Figure 5. AUC values for different miRNA classifiers for discriminating FTD vs controls in the held-756 
out data. The classifiers were either the 13 selected in the FTD model in our data, a combination of miR-757 
34a-5p, miR-345-5p, miR-200c-3p and miR-10a-3p [from ], or a combination of miR-335/let-7e, miR-99b/let-758 
7e and miR-9-3p/miR-181a [from ]; 759 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 6, 2023. ; https://doi.org/10.1101/2020.01.22.20018408doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.22.20018408


27 
 

 Control FTD 

Number of subjects (% males) 125 (32%) 168 (65.5%) 

UCL controls        48 (45.8%)  

Queen Mary Hospital controls        77 (23.4%)         

Age at enrolment 59.5±10.2 yr. 65.8±8.1 yr. 

UCL controls 65.6±7.3 yr.  

Queen Mary Hospital controls 55.7±10.0 yr  

Age of onset (1st reported symptoms)  60.3±8.3 yr. 

Disease duration at enrolment  5.5±3.4 yr. 

 FTD clinical subtype 
(bvFTD/PNFA/SD/FTD-ALS/others) 

 81/40/28/5/14 

FTD Mutation carriers (C9ORF72/MAPT/GRN/TBK1)  18/13/13/2 

Likely FTD pathology (TDP-43/Tau)  63/18 
 
Table 1. Summary of demographic and clinical characteristics of participants suffering from FTD 760 
and control samples. bvFTD: behavioural FTD; PNFA: progressive nonfluent aphasia; SD: semantic 761 
dementia. Mean±SD.  762 
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Predictor Single Feature AUC 
miR-423-5p 0.69 
miR-125b-5p 0.67 
miR-26a-5p 0.66 

sex 0.66 
miR-326 0.65 
miR-185-5p 0.64 
age 0.64 
miR-629-5p 0.63 
miR-484 0.62 
let-7d-3p 0.62 
miR-107 0.62 
let-7c-5p 0.61 
miR-361-5p 0.59 
miR-379-5p 0.56 

miR-378a-5p 0.54 
 
Table 2. Predictive power of selected miRNA features, when used as a single predictor for FTD on 763 
held-out data. Among the most predictive features are miRNAs expressed in the brain, such as miR-26a-764 
5p, miR-125b-5p and let-7c-5p.  765 
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Supplementary figure and tables  766 

 

 
Supplementary Figure 1. t-SNE analysis of control subjects from Queen Mary Hospital (blue) and 767 
from UCL (red). Similarity of the two control groups suggests they could have been taken from a single 768 
distribution which is justified further by an associated Kullback–Leibler divergence value of 0.293, a 769 
measure of the difference between two probability distributions. 770 
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771 
Supplementary Figure 2. miRNA signature associated with FTD patients with predicted pathology. 772 
MA plot of differential miRNA expression in plasma of patients with predcited TDP pathology (A; N=63) or 773 
Tau pathology (B; N=19) vs non-neurodegenerative healthy controls (N=125). Log 2 transformed fold 774 
change (y-axis), against mean miRNA abundance (x-axis). Red: significantly changed miRNAs (adjusted 775 
p<0.05, Wald test). Black: miRNAs showing insignificant change.  776 
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777 
Supplementary Figure 3. Diagnosis of FTD by age, sex and 95 differentially-expressed miRNA in a 778 
logistic regression model.  (A) ROC curves in the training set: true positive rate (y-axis) vs. false positive 779 
rate (x-axis). Mean values and variance of data from 219 samples with 3-fold cross validation. Mean AUC 780 
0.91 ± 0.05. 95% CI is 0.86-0.96. (B) Performance and generalizability on held-out data revealed by a ROC 781 
curve with AUC of 0.9. (C) Reliability diagram, plotting truly observed fraction of cases (upper plot, y-axis) 782 
vs. predicted probability by the prediction model (upper plot, x-axis), in five probability bins, reveals a 783 
sufficiently calibrated model on the held-out set. Lower plot shows the number of individuals at each of the 784 
five predicted probability bins. (D) Confusion matrix showing the prediction errors on held out dataset. At a 785 
probability threshold of 0.6, we observed 0.8 Negative predictive value (NPV), 0.83 Positive Predictive 786 
Value (PPV/precision), 0.73 recall (sensitivity) and 0.88 specificity. In addition, 0.12 False Positive Rate is 787 
obtained, over 0.2 False Omission Rate and 0.17 false discovery rate.   788 
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789 
Supplementary Figure 4. Levels of 13 miRNA predictors in different FTD subtypes. miRNA levels for 790 
PNFA (progressive nonfluent aphasia), SD (semantic dementia), behavioral FTD (bvFTD) and the following 791 
subtypes: primary progressive aphasia, corticobasal syndrome, progressive supranuclear palsy and FTD 792 
with motor neuron disease, commonly referred to as “Other”. Box plot with two central data quartiles, with 793 
a line at the median (Q2). Whiskers extend to show the rest of the distribution, except for points that are 794 
determined to be outliers using a method that is a function of the inter-quartile range. Data were analyzed 795 
by one-way ANOVA. Post-hoc Bonferroni was conducted only for miR-107 (C) and miR-26a-5p (F) which 796 
showed significant differences in ANOVA. Significant pairwise differences in miR-107 levels were found 797 
between other FTD subtypes and both bvFTD (p=0.01) and SD (p=0.02). Significant pairwise differences 798 
in miR-26a were found between other FTD subtypes and both bvFTD (p=0.04) and PNFA (p=0.02). 799 
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800 
Supplementary Figure 5. Levels of 13 miRNA predictors in mutations carriers. miRNA levels for FTD 801 
patients without known FTD mutations, or with mutations in C9ORF72, Progranulin (GRN), Tau (MAPT) 802 
and TBK1. Box plot with two central data quartiles, with a line at the median (Q2). Whiskers extend to show 803 
the rest of the distribution, except for points that are determined to be outliers using a method that is a 804 
function of the inter-quartile range. Data were analyzed by one-way ANOVA. 805 
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Supplementary Table 1. Age and sex characteristics of the cohort and exclusion by age of 34 individuals 806 
that were below 40 years of age during blood collection. 807 
  

 

 

 
 
 
 
 
 
 
 
 
 
  

 Before Exclusion After Exclusion 

Group Name Age [95% CI] Sex Mean Age Group Size Age [95% CI] Mean Age Group Size 

 
controls total (n=158)  

53.8±14.5, 
95% CI  

[51.5, 56.1] 

F 54.0 103 59.5±10.2, 
95% CI  

[57.7, 61.3] 

 58.4 85 

M 53.4 55 61.7 40 

      UCL controls (n=56) 61.0± 13.3,  
95% CI  

[57.4, 64.5] 

F 61.1 30 65.55± 7.3,  
95% CI  

[63.4, 67.7] 

 65.6  26 

M 60.8 26  65.5 22 

      Queen Mary Hospital 
controls (n=102) 

49.9±13.7, 
95% CI  

[47.2, 52.6] 

F 51.1 73 55.7±10.0, 
95% CI  

[53.4, 58.0] 

 55.3 59 

M 46.8 29 57.0 18 

FTD cases (n=169)  65.6± 8.3, 
95% CI  

[64.4, 67.0] 

F 66.8 59 65.8±8.1, 
95% CI  

[64.6, 67.0] 

 67.4 58 

M 65.0 110  65.0 110 
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