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Abstract 2 

Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder characterized by 3 

frontal and temporal lobe atrophy, typically manifesting with behavioural or language 4 

impairment. Because of its heterogeneity and lack of available diagnostic laboratory tests there 5 

can be a substantial delay in diagnosis. Cell-free, circulating, microRNAs are increasingly 6 

investigated as biomarkers for neurodegeneration, but their value in FTD is not yet established.  7 

In this study, we investigate microRNAs as biomarkers for FTD diagnosis. We performed next 8 

generation small RNA sequencing on cell-free plasma from 52 FTD cases and 21 controls.  The 9 

analysis revealed the diagnostic importance of 20 circulating endogenous miRNAs in 10 

distinguishing FTD cases from controls. The study was repeated in an independent second cohort 11 

of 117 FTD cases and 35 controls. The combinatorial microRNA signature from the first cohort, 12 

precisely diagnosed FTD samples in a second cohort. To further increase the generalizability of 13 

the prediction, we implemented machine learning techniques in a merged dataset of the two 14 

cohorts, which resulted in a comparable or improved classification precision with a smaller panel 15 

of miRNA classifiers. In addition, there are intriguing molecular commonalities with cell free 16 

miRNA signature in ALS, a motor neuron disease that resides on a pathological continuum with 17 

FTD. However, the signature that describes the ALS-FTD spectrum is not shared with blood 18 

miRNA profiles of patients with multiple sclerosis. Thus, microRNAs are 19 

promising FTD biomarkers that might enable earlier detection of FTD and improve accurate 20 

identification of patients for clinical trials  21 

22 
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Introduction 23 

Frontotemporal dementia (FTD) is a clinically and neuroanatomically heterogeneous 24 

neurodegenerative disorder characterized by frontal and temporal lobe atrophy. It typically 25 

manifests between the ages of 50 and 70 with behavioral or language problems, and below the 26 

age of 65 is the second most common form of dementia, after Alzheimer’s disease  (1). 27 

 28 

Due to heterogeneity in clinical presentation FTD can be difficult to diagnose (2). Three main 29 

phenotypes are described: behavioral variant frontotemporal dementia (bvFTD), characterized by 30 

changes in social behaviour and conduct, semantic dementia (SD), characterized by the loss 31 

of semantic knowledge, leading to impaired word comprehension, and progressive non-fluent 32 

aphasia (PNFA), characterized by progressive difficulties in speech production (2, 3).  33 

 34 

FTD is also pathologically heterogeneous with inclusions seen containing hyperphosphorylated 35 

tau (4), TDP- 43 (5), or fused in sarcoma (FUS) (6, 7). Mutations in the genes encoding for these 36 

proteins, as well as in other genes such as progranulin (GRN), chromosome 9 open reading 37 

frame 72 (C9ORF72), valosin-containing protein (VCP), TANK-binding kinase 1 (TBK1) and 38 

charged multivesicular body protein 2B (CHMP2B) are also associated with FTD (8-11).     39 

 40 

FTD overlaps clinically, pathologically and genetically with several other degenerative disorders. 41 

In particular, there is often overlap with amyotrophic lateral sclerosis (ALS): one in 5 ALS 42 

patients meets the clinical criteria for a concomitant diagnosis of FTD, and one in eight FTD 43 

patients is also diagnosed with ALS. TDP-43 inclusions are observed in the brains of both people 44 
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with FTD and ALS, and genetic evidence supports that these diseases reside along a continuum 45 

(5, 12-14).  46 

 47 

Previous studies have aimed to develop cell-free biomarkers for FTD, including TDP-43 (15), 48 

tau (16), and neurofilament light chain (NfL) (17), but none of these have shown use for 49 

diagnosis. microRNAs (miRNAs), endogenous non-coding RNAs, can be quantified in biofluids 50 

(18), and have been shown previously to be dysregulated in amyotrophic lateral sclerosis (ALS) 51 

and in FTD (19). Furthermore, they may be biomarkers of disease progression in other brain 52 

diseases, including ALS (20). Previous studies have assessed the initial potential of microRNAs 53 

as diagnostic FTD biomarkers including miRNA analysis in plasma (21-23), CSF and serum 54 

(24), and CSF exosomes (25) but no definitive markers have so far been found. We therefore 55 

aimed to study a large cohort of patients with different clinical phenotypes and pathological 56 

forms of FTD, to see whether they are able to reliably distinguish cases from controls, and 57 

different forms of FTD from each other. 58 

                 59 

Here, we provide an unbiased signature of plasma miRNAs that has good diagnostic power in a 60 

large and heterogeneous cohort of patients with FTD, which is further predictive in an 61 

independent second cohort and may contribute to FTD subtyping. Therefore, circulating 62 

miRNAs hold a fascinating potential as diagnostic biomarkers and as means for patient 63 

stratification in clinical trials.     64 

 65 

 66 

 67 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.22.20018408doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.22.20018408


 

 

Results 68 

A plasma miRNA classifier for FTD  69 

In order to characterize the potential of plasma miRNAs as biomarkers for FTD we assembled a 70 

cohort of 73 plasma samples (subject information in Table 1), purified RNA and performed next 71 

generation sequencing (NGS). As many as 2313 individual miRNA species were aligned to the 72 

human genome (GRCh37/hg19) across all samples. However, only 137 miRNA species 73 

exceeded a cut-off of ≥100 UMIs per sample averaged on all samples. Of the 137 detected 74 

miRNAs, 20 miRNA changed in a statistically significant manner in FTD plasma relative to 75 

control (p-value < 0.05, Wald test; Fig. 1A). Two miRNAs, whose levels decreased to the 76 

greatest extent in FTD compared to controls, namely, miR-379-5p and miR-654-3p (1.4 fold), 77 

remained significant after multiple hypothesis testing (Fig. 1B).   78 

 79 

We next studied miRNA capacity as binary disease classifiers, by generating receiver-operating 80 

characteristic (ROC) curves. ROC area under the curve (AUC) suggested modest predictive 81 

capacity for miR-379-5p and for miR-654-3p (AUC for both: 0.71±0.07, p<0.01; Fig. 1C). 82 

 83 

We further utilized the combinatorial signature of the 20 miRNAs that were differentially 84 

expressed between FTD patient plasma and control (Table S1). Using these, an ROC AUC of 85 

0.79±0.05 (p<0.0001, Fig. 1C) was found, which was superior to the prediction capacity of any 86 

individual miRNA. 87 

 88 

 89 
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Assessment of plasma miRNA classifier for FTD in a second cohort  90 

We then performed a replication study in an independent cohort of 117 FTD cases and 35 age-91 

matched controls (Table 1). In this study, the levels of 58 miRNAs decreased and 89 increased in 92 

a statistically significant manner in FTD, relative to control plasma (p-value <0.05, Wald test, 93 

Fig. 2A and Table S1). Noticeable miRNAs were miR-125b-2-3p (× 26 up, p = 1.4x10-25), miR-94 

34b-5p (× 23 up, adj. p = 9.8x10-23) and miR-379-5p (× 2.2 down, p = 1.9x10-14). 144 of the 147 95 

miRNAs further survived adjustment for multiple comparisons by Benjamini–Hochberg 96 

procedure (adjusted p-value < 0.05).  97 

 98 

The expression of the 20 miRNAs that were most differentially expressed in the first cohort 99 

correlated with their respective expression in the second cohort (Pearson R of log 2 fold-change 100 

= 0.75, p=0.0001, Fig. 2B). Furthermore, the combined predictive power of the 20 miRNAs, that 101 

were decided on as a classifier based on data of the first cohort, was slightly superior in the 102 

replication cohort, with an AUC of 0.82±0.04 (p<0.0001, Fig. 2C). 103 

 104 

In addition to external validation, by testing a second cohort, we sought to guarantee the 105 

generalizability by building a machine learning gradient boosting classifier on a unified cohort. 106 

and applying K-fold cross-validation, which is an internal validation technique to evaluate 107 

performance and prevent overfitting (26, 27). Towards this we divided the 225 datasets (from 56 108 

control and 169 FTD samples) randomly into three equal parts, or ‘folds’, of 75 datasets, each. A 109 

machine learning model was trained using each time 2 of the 3 data folds (150 samples) for 110 

building a prediction model and applying the prediction rule to estimate the prediction precision 111 

on the remaining 75 samples in the remaining third fold. This step was repeated k = 3 times 112 
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iteratively so all folds were used twice in training and once for the testing process. 136 miRNAs 113 

that were measured above noise levels in all cohorts were included, yielding the following 114 

AUCs: 0.90 for fold 1; 0.87 for fold 2; and 0.93 for fold 3, with an average AUC of 0.90 (Fig. 115 

2D). 116 

 117 

We next aimed to reduce the complexity of the measurements required for disease prediction by 118 

identifying the top 20 miRNA predictors per fold, i.e. the 20 miRNAs with the highest weighted 119 

importance in predicting disease status (Fig. 3A-C). We reduced the number of miRNAs 120 

gradually, starting from a 43 miRNA panel composed of the top 20 predictors in at least one fold 121 

(i.e., in one, two or three folds), which resulted in AUCs of 0.87, 0.87, 0.94 and an average AUC 122 

of 0.89 (Fig. 3D). We then utilized 13 miRNAs that were among the top 20 in at least two folds 123 

which resulted in AUCs of 0.85, 0.89 and 0.93, and an average of 0.89 (Fig. 3E). Finally, we 124 

used only four miRNAs - miR-26a-5p, miR-326, miR-203a-3p and miR-629-5p – that were 125 

among the top 20 predictors in all three folds.  Their combinatorial AUCs after cross-validation 126 

were 0.81, 0.83 and 0.89 and 0.85 on average (Fig. 3F). All panels of miRNAs used for the 127 

cross-validation are listed in Table S1.  128 

 129 

These measurements were comparable to the AUC obtained with 136 miRNAs (Fig. 2D), 130 

revealing that the diagnostic power was not compromised by a substantial reduction of the 131 

miRNA numbers. 132 

 133 

 134 

 135 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.22.20018408doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.22.20018408


 

 

 136 

Overlap between FTD miRNA signature and ALS miRNA signature  137 

FTD and ALS are two diseases on a neuropathology continuum. We aimed to determine whether 138 

the miRNA signatures found in FTD and in ALS reveal any molecular similarity. For this 139 

purpose, we sequenced and analyzed the differences between 115 ALS cases and 103 controls 140 

(see Table 2). We also sequenced 17 samples from patients with multiple sclerosis (MS), because 141 

this disease is mechanistically different from FTD and involves autoimmune-related 142 

demyelination, so molecular similarity to FTD is not expected to be seen. 161 miRNA species 143 

were differentially expressed in either one of the diseases (FTD, ALS or MS) vs controls. 144 

Differentially expressed miRNAs in either FTD or ALS were correlated in fold-change values 145 

between the diseases (Pearson R for log-transformed values = 0.35, p<0.0001, Fig. 4A), but no 146 

such correlation was found between FTD and MS (R= - 0.15, p=0.15, Fig. 4B).  Intriguingly, 147 

muscle-specific miR-206 robustly increases in ALS, in agreement with previous reports (28-31) 148 

with no change at all in FTD.  149 

 150 

We next tested the degree of overlap between miRNAs differentially expressed in FTD vs. ALS. 151 

Seven out of 20 miRNAs changed exclusively in FTD, and the remaining 13 miRNAs changed 152 

in a significant manner in both FTD and ALS (Fig. 4C; Table S1). Remarkably, the directionality 153 

of change for these miRNAs (increase/decrease) was consistent across diseases for all of the 154 

miRNAs but one, miR-29a-3p which decreased in FTD and increased in ALS (Fig. 4A). 155 

Moreover, the fold-change values in this subset of 13 miRNAs that have changed in both ALS 156 

and FTD, were highly correlated between the diseases (Pearson R = 0.90, p<0.0001). In contrast, 157 

only five out of the 20 miRNAs that changed in FTD, also changed in MS (Fig. 4D; Table S1). 158 
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Taken together, the miRNA signature in FTD plasma shows a similarity to the ALS plasma 159 

signature, but not to the MS signature, in accordance with pathological and clinical similarities 160 

between FTD and ALS. 161 

 162 

Finally, we employed the FTD predictor, based on 20 miRNAs that are changing in FTD on ALS 163 

and healthy control cohorts. The signature of 20 miRNAs was able to correctly call ALS from 164 

controls more than at random (ROC AUC = 0.63, p<0.001, Table S2), while the seven miRNAs 165 

that are exclusively changed in FTD were not able to distinguish between ALS and control in a 166 

statistically significant manner (ROC AUC = 0.57, p=0.06). Thus, miRNAs that are differentially 167 

expressed in FTD have a moderate capacity to predict ALS. 168 

 169 

miRNAs signature of FTD subtypes and FTD patients with different pathologies 170 

We next tested whether specific miRNAs changed in the main FTD subtypes, bvFTD, SD and 171 

PNFA. After statistical adjustment for multiple comparisons, four miRNAs decreased in a 172 

significant manner in PNFA, and two miRNAs decreased and one miRNA increased 173 

significantly in bvFTD, whereas the small SD sample numbers (n=8) did not allow to depict 174 

microRNAs that are changed in a significant manner after adjustment for multiple comparisons 175 

(Fig. S1A-C).  176 

 177 

We calculated a decent combinatorial predictive power for the 20 miRNAs in distinguishing 178 

bvFTD / SD / PNFA from healthy controls: thus, for bvFTD vs. healthy controls in the original 179 

cohort we obtained an AUC of 0.85±0.06, p<0.0001; in the replication cohort AUC of 180 
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0.80±0.05, p<0.0001, Fig. S1D; for SD vs. controls, original cohort AUC was 0.86±0.08, 181 

p=0.003; replication cohort AUC was 0.79±0.06, p=0.0003 (Fig. S1E); for PNFA vs. controls, 182 

original cohort AUC was 0.81±0.08, p=0.002; replication cohort AUC was 0.81±0.05, p<0.0001 183 

(Fig. S1F). We concluded that the combinatorial 20 miRNAs signature distinguishes FTD and its 184 

subtypes from controls with comparable AUCs, for all three subtypes.  185 

 186 

The overlap of symptoms between subtypes of FTD poses a diagnostic challenge (32). We 187 

therefore tested whether FTD subtypes could be distinguished based on miRNA signature. We 188 

analyzed miRNA differential expression of PNFA cases vs. non-PNFA, which pooled together 189 

bvFTD and SD cases, due to a similar molecular signature of SD and bvFTD. Fourteen miRNAs 190 

changed in a significant manner in PNFA vs non-PNFA: miR-625-3p, miR-625-5p, miR-126-5p, 191 

miR-146a-5p, miR-146b-5p, miR-340-5p, miR-181a-5p (all increased in PNFA compared to 192 

non-PNFA) and miR-342-3p, let-7d-3p, miR-122-5p, miR-192-5p, miR-16-5p, miR-203a-3p 193 

(decreased; Fig. S1G). The combinatorial signature of these fourteen miRNAs yielded an AUC 194 

of 0.81±0.08 (Fig. S1H; p=0.0007), indicating that PNFA can be differentiated from other types 195 

of FTD with a high accuracy.  196 

 197 

We also tested whether specific miRNAs changed between FTD cases with different likely 198 

underlying pathologies, i.e. tau and TDP-43. 19 FTD cases with predicted Tau pathology based 199 

on genetics (4 in cohort I + 15 in cohort II) were compared to 63 cases with predicted TDP-43 200 

pathology (23 in cohort I + 40 in cohort II). Fourteen miRNAs changed in a statistically 201 

significant manner, but none remained significant after correction for multiple hypotheses (Fig. 202 

S2A). The combinatorial signature of these 14 miRNAs had a weak classification power, though 203 
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it was statistically significant (AUC of ROC = 0.7±0.06, p=0.009, Fig. S2B). Taken together, the 204 

miRNA profile in our dataset has limited diagnostic power for pathological subtypes of FTD, as 205 

opposed to FTD vs control and different clinical subtypes of FTD.  206 

 207 

208 
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Discussion 209 

Our study utilizes a large cohort of FTD blood samples. It is the first work that employs next 210 

generation sequencing technology for FTD biomarkers. We defined a signature, composed of 20 211 

miRNAs, that is able to classify FTD. This signature that was discovered in an initial cohort was 212 

informative when applied to a second cohort. These observations suggest that miRNAs can be 213 

potentially utilized in clinical sampling as diagnostic FTD markers, which is needed because of 214 

non-specific early symptoms and overlap with other degenerative and non-degenerative 215 

conditions. Ours is the largest cohort used for miRNA profile, and its use of unbiased exhaustive 216 

next generation sequencing can potentially explain the discrepancies from past studies with 217 

smaller cohorts and biased miRNA choices (21-25).   218 

A classifier panel of 20 miRNAs had ~80% chance to correctly call FTD in the first cohort. 219 

Reassuringly, it was comparably informative in calling FTD correctly also on a second cohort. In 220 

addition to external (second cohort) validation, we applied machine learning to the whole dataset 221 

of 225 samples. Through iterative learning, we defined a signature created by 136 miRNAs that 222 

was able to call FTD correctly in 90% of cases. We then reduced the signature complexity to the 223 

usage of only 43 miRNAs with the highest classification power that kept a true FTD calling 224 

capacity of 90%. Toward clinical diagnostic usage it is warranted to test the predictor that was 225 

developed in machine learning on an independent cohort, preferentially of different ethnicity.  226 

 227 

Interestingly, the miRNA signatures of FTD is akin of ALS perhaps reflecting on a shared patho-228 

mechanism for these two neurodegenerative disorders on the ALS-FTD continuum. This 229 

similarity cannot be extended to multiple sclerosis, a disease that is driven by a different, 230 
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autoimmune, mechanism. Nonetheless, the two diseases are still two different entities and 231 

accordingly only 10% of the miRNAs that has changed in either disease were shared.  232 

 233 

In summary, we have characterized a large FTD plasma cohort for miRNA expression by next 234 

generation sequencing and found specific patterns of changes that can contribute to diagnosis of 235 

FTD. These patterns seem to involve the ALS-FTD continuum, alluding to differences and 236 

commonalities in the underlying mechanisms that drive molecular changes in ALS and FTD.  237 

 238 

239 
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Materials and Methods 240 

Standard protocol approvals, registrations, and patient consents 241 

Approvals were obtained from the local research ethics committee and all participants provided 242 

written consent (or gave verbal permission for a carer to sign on their behalf). For ALS samples, 243 

recruitment, sampling procedures and data collection have been performed according to Protocol 244 

(Protocol number 001, version 5.0 Final – 30th November 2015). 245 

Study design 246 

Based on power analysis, we found that about 20 control and 50 FTD samples are required to 247 

obtain an ROC of 0.7 with a power of 80% and a p-value of 0.05. We determined the sample size 248 

based on these calculations. Because sample processing was done in different batches, samples 249 

were randomly allocated to the batches and within each batch, the number of control and 250 

FTD/ALS/MS samples was balanced in order to reduce batch-associated bias.  251 

Participants and sampling 252 

Participants were enrolled in the longitudinal FTD cohort studies at UCL. Frozen plasma 253 

samples from the UCL FTD Biobank were shipped to the Weizmann Institute of Science for 254 

molecular analysis. Study cohort I: 52 FTD patients, 21 healthy controls. Study cohort II: 117 255 

FTD patients, 35 healthy controls. FTD patients were further assigned into two groups with 256 

predicted pathology of TDP-43 or tau, based on genetics and clinical phenotype. Patients 257 

positive for C9ORF72 repeats and progranulin (PRGN) mutations and/or presented with 258 

semantic dementia, were predicted to have TDP-43 pathology, while patients with MAPT 259 

mutations were predicted to have tau pathology. Demographic data are detailed in table 1.  260 

ALS and MS samples and their respective healthy controls (N = 115, 17 and 103, respectively) 261 

were obtained from the ALS biomarker study. ALS patients were diagnosed according to 262 
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standard criteria by experienced ALS neurologists (33). Healthy controls were typically spouses 263 

or relatives of patients. Demographic data are detailed in table 2.  264 

Plasma samples were stored in -800C until RNA extraction and subsequent small RNA next 265 

generation sequencing.  266 

 267 

Small RNA next generation sequencing  268 

Total RNA was extracted from plasma using the miRNeasy micro kit (Qiagen, Hilden, Germany) 269 

and quantified with Qubit fluorometer using RNA broad range (BR) assay kit (Thermo Fisher 270 

Scientific, Waltham, MA). For small RNA next generation sequencing (NGS), libraries were 271 

prepared from 7.5 ng of total RNA using the QIAseq miRNA Library Kit and QIAseq miRNA 272 

NGS 48 Index IL (Qiagen), by an experimenter who was blinded to the identity of samples. 273 

Following 3’ and 5’ adapter ligation, small RNA was reverse transcribed, using unique 274 

molecular identifier (UMI), primers of random 12-nucleotide sequences. This way, precise linear 275 

quantification miRNA is achieved, overcoming potential PCR-induced biases (18). cDNA 276 

libraries were amplified by PCR for 22 cycles, with a 3’ primer that includes a 6-nucleotide 277 

unique index. Following size selection and cleaning of libraries with magnetic beads, quality 278 

control was performed by measuring library concentration with Qubit fluorometer using dsDNA 279 

high sensitivity (HS) assay kit (Thermo Fisher Scientific, Waltham, MA) and confirming library 280 

size with Tapestation D1000 (Agilent). Libraries with different indices were multiplexed and 281 

sequenced on a single NextSeq 500/550 v2 flow cell (Illumina), with 75bp single read and 6bp 282 

index read. Fastq files were demultiplexed using the User-friendly Transcriptome Analysis 283 

Pipeline (UTAP) developed at the Weizmann Institute (34). Sequences were mapped to the 284 

human genome using Qiagen GeneGlobe analysis web tool. 285 
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 286 

Statistical analysis and machine learning 287 

Plasma samples with ≥40,000 total miRNA UMIs were included. miRNA with average 288 

abundance of ≥100 UMIs per sample, across all samples, were considered above noise levels. 289 

miRNA NGS data was analyzed via DESeq2 package in R Project for Statistical Computing (35, 290 

36), under the assumption that miRNA counts followed negative binomial distribution and data 291 

were corrected for library preparation batch in order to reduce its potential bias. Ratio of 292 

normalized FTD counts to the normalized control counts presented after logarithmic 293 

transformation on base 2. P values were calculated by Wald test (36, 37) and adjusted for 294 

multiple testing according to Benjamini and Hochberg (38). For binary classification by 295 

miRNAs, receiver operating characteristic (ROC) curves for individual miRNAs or combinations 296 

of miRNAs were plotted based on voom transformation of gene expression data in R (39). 297 

Graphs were generated with GraphPad Prism 5.  298 

Machine learning approach was performed to build a Gradient Boosting classifier with 136 299 

miRNAs. Cohorts were merged and case-control number imbalance was mitigated by applying 300 

ADASYN algorithm (https://imbalanced-learn.readthedocs.io/en/stable/api.html), which 301 

simulates synthetic new healthy sample data from the existing data. Then, K-Fold cross 302 

validation was performed on the pooled data set with K=3. An ROC was generated for each of 303 

the three folds and individual and mean AUCs were calculated.  304 

 305 

306 
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 445 

Table 1. Summary of demographic and clinical characteristics of FTD Cohorts I and II and 446 

control samples. bvFTD: behavioural FTD; PNFA: progressive nonfluent aphasia; SD: semantic 447 

dementia 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

Magen et al Table 1 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.22.20018408doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.22.20018408


 

 

 464 

 465 

Table 2. Summary of demographic and clinical characteristics of ALS, MS and control samples. 466 

ALSFRS-R: ALS functional rating scale. Demographic data recognizes that male ratio and age 467 

of first phlebotomy was significantly different between ALS cohort I and controls (proportion 468 

test: p<0.0001; t-test: p<0.001, respectively).  469 
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 490 

 491 

 492 

Figure 1. Predictive value of differential miRNA expression in FTD plasma. (A) MA plot of 493 

differential miRNA expression in FTD (n=52) and heathy control (n=21 plasma samples). Log-2 494 

transformed fold-change, against the mean miRNA abundance. Red -significantly changed 495 

miRNAs (p-value 0.05). (B) A volcano plot of differentially expressed miRNAs between FTD 496 

(n=52) and heathy control (n=21 plasma samples). Each dot represents a single miRNA, plotted 497 

according to log 2 fold-change (FC) in FTD vs control (X-axis), and the negative log 10 498 

transformation of p-value (Y-axis). Black horizontal line demarcates p<0.05 and dots denote 499 

miRNAs with statistically significant differential expression in FTD plasma; green - increased in 500 

FTD; blue - decreased in FTD. (C) Receiver operating characteristic (ROC) curves demonstrate 501 

the capacity of miR-379-5p (blue, AUC=0.71, p=0.005), miR-654-3p (green, AUC=0.71, 502 

p=0.006) and of a combinatorial signature of 20 miRNAs, whose differential expression is 503 

significant (red, AUC=0.79, p<0.0001; miRNAs listed in Table S1), to distinguish between FTD 504 

and healthy controls. True positive rate (sensitivity) as a function of the false positive rate (1-505 

specificity) for different cut-off values. P-values are calculated given null hypothesis of area 506 

under the curve (AUC) =0.5.  507 
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 516 

 517 

Figure 2. Replication of miRNA signature in a second cohort. (A) MA plot of differential 518 

miRNA expression in a second cohort of FTD (n=117) and a second heathy control cohort (n=35 519 

plasma samples). Log-2 transformed fold-change, against the mean miRNA abundance. Red -520 

significantly changed miRNAs (p-value 0.05).  (B). Scatter plot of correlation between fold 521 

change of 20 miRNAs, which classify FTD, between the first and second cohorts. (C) ROC 522 

curve of a combinatorial signature of 20 miRNAs, whose differential expression is significant in 523 

the first cohort, distinguishes between FTD and healthy controls of the second cohort. True 524 

positive rate (sensitivity) as a function of the false positive rate (1-specificity) for different cut-525 

off values. P-values are calculated given null hypothesis of area under the curve (AUC) =0.5. (D) 526 

ROC curves of Gradient Boosting Classifier based on K-fold cross validation with K=3 for a 527 

merged data set of 136 miRNA expression in both the discovery and the replication cohort (169 528 

FTD cases and 56 healthy controls). Red, ROC for fold 1; blue, ROC for fold 2; green, ROC for 529 

fold 3.   530 
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 537 

 538 

Figure 3. Most important miRNA predictors in gradient boosting classifier. Top 20 miRNA 539 

classifiers in (A) cross-validation fold 1 (B) fold 2 and (C) fold 3. (D-F) ROC curves based on 540 

K-fold cross validation with K=3 for a merged data set including both the discovery and the 541 

replication cohort (169 FTD cases and 56 healthy controls), when (D) ROC curves of Gradient 542 

Boosting Classifier with only 43 miRNAs depicted as "top 20" in at least one fold (all of the 543 

miRNAs shown in panels A-C) are selected for classification. (E) 13 miRNAs depicted as “top 544 

20” in at least two folds are selected and (F) only the four miRNAs depicted as “top 20” in all 545 

three folds are selected.  Red, ROC for fold 1; blue, ROC for fold 2; green, ROC for fold 3.   546 
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 556 

Figure 4. Differential miRNA expression in ALS vs. FTD plasma. (A) Scatter plot of 557 

correlation between ALS/control ratio and FTD/control ratio. (B) Scatter plot of correlation 558 

between MS/control ratio and FTD/control ratio. (C) Venn diagram of comparison between ALS 559 

and FTD with 13 shared miRNAs in the black portion. (D) Venn diagram of comparison between 560 

MS and FTD with 5 shared miRNAs in the black portion. 561 
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Supplementary figures  563 

 564 

Figure S1. miRNA profiles of FTD subtypes. (A) MA plots of differential miRNA expression 565 

in bvFTD patients (n=25), (B) SD patient (n=8) and (C) PNFA patients (n=15) compared to 566 

healthy controls (n=21). Log-2 transformed fold-change, against mean miRNA abundance. Red -567 

significantly changed miRNAs (p-value 0.05). ROC curve of a combinatorial signature of 20 568 

miRNAs, whose differential expression is significant in the first cohort, distinguishes (D) bvFTD 569 

(E) SD and (F) PNFA from healthy controls, in the first (black) and second (red) studies. True 570 

positive rate (sensitivity) as a function of the false positive rate (1-specificity) for different cut-571 

off values. P-values are calculated given null hypothesis of area under the curve (AUC) =0.5.  572 

(G) MA plot for differential miRNA expression between PNFA (n=15) and non-PNFA FTD 573 

cases (bvFTD + SD (n=33)). Red- significantly changed miRNAs (p<0.05). (H) ROC curve 574 

based on combinatorial signature of 14 significant miRNAs for distinguishing PNFA and non-575 

PNFA FTD cases. 576 
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 578 

Figure S2. miRNA profiles associated with FTD neuropathologies. (A) MA plots of 579 

differential miRNA expression in FTD patients with predicted Tau pathology (n=19) vs patients 580 

with predicted TDP-43 pathology (n=63) from both cohorts used in the study. Log-2 transformed 581 

fold-change, against mean miRNA abundance. Red -significantly changed miRNAs (p-value 582 

0.05). (B) ROC curve based on combinatorial signature of 14 significant miRNAs for 583 

distinguishing FTD cases with Tau pathology from those with TDP-43 pathology. 584 
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