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ABSTRACT 

Gliomas are the most common primary brain tumors. High Grade Gliomas have a median 

survival of 18 months, while Low Grade Gliomas (LGG) have a median survival of ~7.3 years. 

Seventy-six percent of patients with LGG express mutated isocitrate dehydrogenase (mIDH1) 

enzyme (IDH1R132H). Survival of these patients ranges from 1-15 years, and tumor mutational 

burden ranges from 8 to 447 total somatic mutations per tumor. We tested the hypothesis that the 

tumor mutational burden would predict survival of patients with tumors bearing mIDH1R132H. 

We analyzed the effect of tumor mutational burden on patients’ survival using clinical and 

genomic data of 1199 glioma patients from The Cancer Genome Atlas and validated our results 

using the Chinese Glioma Genome Atlas. High tumor mutational burden negatively correlates 

with survival of patients with LGG harboring IDH1R132H (p<0.0001). This effect was significant 

for both Oligodendroglioma and Astrocytoma LGG-mIDH1 patients. In the TCGA data, median 

survival of the high mutational burden group was 76 months, while in the low mutational burden 

group it was 136 months; p<0.0001. There was no differential representation of frequently 

mutated genes (e.g., TP53, ATRX, CIC, FUBP) in either group. Gene set enrichment analysis 

revealed an enrichment in Gene Ontologies related to Cell cycle, DNA damage response in high 

vs low tumor mutational burden. Finally, we identified a 19 gene signature that predicts survival 

for patients from both databases. In summary, we demonstrate that tumor mutational burden is a 

powerful, robust, and clinically relevant prognostic factor of median survival in mIDH1 patients.  
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INTRODUCTION       

 Low grade gliomas (LGGs) are slow-growing brain tumors that occur in early adult life 

and can progress to high grade gliomas (1). Molecular characterizations coupled with the 

histological classification revealed that a mutation in isocitrate dehydrogenase (mIDH), 

IDH1R132H, is the main genetic lesion in LGG patients (2-5). Somatic mutation in IDH1, and far 

less common IDH2, results in excessive production of 2 hydroxyglutarate (2HG) (6-8). 2HG is a 

potent and competitive inhibitor of α-ketoglutarate (αKG) dependent dioxygenases, which 

responsible for demethylation of DNA and histones (4, 9). The ensuing hypermethylation 

phenotype triggers epigenetic reprogramming of the glioma cells’ transcriptome (3, 10-13).  

The consequences of mIDH1 in glioma cells contribute to cancer development and progression 

not only by disrupting cell metabolism but also by altering the epigenetic landscape. 

Metabolically, IDH1 is one of the enzymes that encodes an irreversible reaction in the Tricyclic 

acid (TCA) cycle. Disruption the IDH1 reaction results in defective mitochondrial oxidative 

phosphorylation, glutamine metabolism, lipogenesis, glucose sensing, and altering of cellular 

redox status (8, 14-18). IDH1 also inhibits glioma stem cell differentiation (4, 8), upregulates 

vascular endothelial growth factor (VEGF) to promote tumor microenvironment formation (19, 

20), and produces high levels of hypoxia-inducible factor-1α (HIF-1α) to promote glioma 

invasion (18, 21, 22), which ultimately leads to glioma progression. We have acquired a 

tremendous insight of the molecular mechanisms of genetic alterations associated with malignant 

transformation of IDH mutations. This includes activation of NOTCH1, RTK-RAS-PI3K, and 

Myc-RB1 signaling and/or deleted region of the CDKN2A/2B locus, all of which were found to 

be altered in progressed mIDH1 GBM samples compare to their lower grade counterparts (2, 23-

25). Nevertheless, the exact mechanism that impacts mIDH1 patient survival is still under 

debate.  
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In this regard, a significant advance in recent years has identified a set of genetic lesions 

that are characteristic of mIDH1 and correlate with clinical outcome. This was done in hopes for 

better prediction of tumor behavior and outcome, including identification of secondary 

mutations, genetic alterations, methylation patterns, and multivariate prognostic models (26-29). 

Within the group of IDH-mutant gliomas, presence of 1p/19q co-deletion (IDH-mutant–codel 

glioma) may present an additional prognostic marker separate from IDH-mutant glioma with 

intact 1p/19q chromosome arms (IDH-mutant–non-codel glioma). Other genetic alteration affect 

IDH1 glioma survival includes mutation of PIK3CA and PIK3R1, and deletion of CDKN2A in 

Astrocytoma mIDH1 (30, 31).  

Given the high level of inter-tumor heterogeneity inferred from the presence of variety of 

genetic lesions and the fact that the IDH1 mutant tumors are resistant to radiotherapy than the 

wtIDH1 (32, 33), it is tempting to speculate that tumor mutational burden may be a strong 

predictor for mIDH1 patient prognosis. In most solid cancers, the mutational load negatively 

impacts the patient survival (34) and it is used as indicator of rapid tumor progression.  

In the present study, we analyzed the publicly available TCGA and CGGA datasets in order to 

correlate the tumor mutational burden with overall survival in mIDH1 LGG subtypes. We found 

that increasing tumor mutational burden negatively impacts survival of LGG but not GBM. 

Further analysis of LGG patients revealed that the effect of tumor mutational burden on survival 

is unique for patients with mIDH1 but not wtIDH1. Moreover, based on the prognosis, we 

constructed a high-risk gene set that predict poor prognosis in patients with IDH mutation. These 

data suggest that tumor mutational burden is an independent prognostic factor for glioma patients 

with IDH1 mutation and can be used as a predictor of patient survival. 
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RESULTS 

Tumor mutational burden unexpectedly predicts increased aggressive clinical course only 

in LGG-mIDH1  

We analyzed the clinical data of 1199 patients form TCGA. Among the TCGA patients we used 

data from 799 patients for whom there are available complete mutational data. All patients’ 

clinical and mutational data are summarized in Table1 and Table2. We asked if the tumor 

mutational burden impacts glioma patients’ survival. We analyzed the tumor mutational burden 

in high grade glioma (HGG) and low grade glioma (LGG) in TCGA and validated our results 

utilizing the CGGA database. We classified all patients according to the tumor mutational burden 

into two groups (high vs low), based on the median number of mutations for all patients in a 

group. We found that overall mutational load was higher in HGG compare to the LGG, 

regardless of the IDH1 mutation (supplement 1A, B). We then applied the ‘life test’ procedure to 

compare the survival probabilities between patients with high vs low tumor mutational burden. 

Surprisingly, there was no differences in survival between HGG with high tumor mutational 

burden as compared to HGG with low tumor mutational burden (Fig 1A).  

In contrast, high tumor mutational burden significantly decreased the MS of LGG patients 

(supplement 2A). We stratified the LGG patients in terms of the IDH1 mutation and found no 

significant differences in MS between patients with tumors expressing wild type IDH1 and high 

number of mutations (LGG-wtIDH1high) as compared to patients with LGG-wtIDH1low tumors 

(Fig 1C).  Since the majority of LGG patients harbor a mutation in IDH1, that provides a strong 

survival benefit, we tested if the effect of a high tumor mutational burden on survival can be 

detected in LGG patients whose tumors harbor the IDH1 mutation. In the LGG-mIDH1 group, 
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high tumor mutational burden was negatively correlated with patients’ prognosis (Fig 1E). In 

HGG patients with mIDH1 tumors, tumor mutational burden was also negatively correlated with 

survival, even though the number of patients available to be studied was low (n=14) (supplement 

2A).  

Within the group of LGG patients, oligodendrogliomas (Oligo) have a better overall survival 

(OS) than astrocytomas (Astro). We therefore determined if the tumor mutational burden had an 

effect on survival in each LGG subtype. Tumor mutational burden negatively impacted the 

prognosis of both Oligo and Astro glioma patients (supplement 2C). There was also no 

correlation with patient age, gender, treatment or histological classification of LGG-mIDH1high 

vs LGG-mIDH1low on OS (Table 3). We validated these results by analyzing the role of tumor 

mutational burden through the web-based analytical tool, i.e., the cBioPortal database (35, 36). 

The results obtained confirm our analysis (supplement 3A-C).  

We further validated the effect of tumor mutational burden in LGG-mIDH1 using two 

approaches. 

First, we tested if there was a correlation between the survival rate and tumor burden in all three 

tumor types. We applied a linear regression model to see if we could predict the “days to death” 

(dependent variable) of glioma patients based on the tumor mutational burden (independent 

variable). Since an endpoint is required for linear regression, we only considered the deceased 

patients in this analysis. Linear regression modeling showed a significant dependency of patients 

“days to death” on tumor mutational burden only in patients with LGG-mIDH1 tumors (Fig 1B, 

D, F).  

We then validated our TCGA results by studying 286 patients from the CGGA database to 

further corroborate our hypothesis using a separate data set. In agreement with the results from 
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the TCGA, no difference in survival was seen between GBM-wtIDH1high and GBM-wtIDH1low 

nor LGG-wtIDH1high and LGG-wtIDH1low (Fig 2A, B). In patients with LGG-mIDH1 tumors, 

however, LGG-mIDH1high have significantly poorer prognosis compared to LGG-mIDH1low 

(Figure 2C). These data confirm the effects of tumor mutational burden on survival of patient 

with LGG expressing the IDH1 mutation, in two international unrelated databases. 

 

Association of genetic alterations with overall survival (OS) 

To determine if the differences in tumor mutational load could be explained by changes in the 

frequency of individual mutations, mutational signatures (COSMIC), or copy number variation, 

each of these was analyzed in detail. We found that nine out of the top ten most commonly 

mutated genes are present at the same frequency in both groups. These genes are (IDH1, TP53, 

ATRX, CIC, FUBP1, TTN, PIK3CA, MUC16, Notch1) (Fig 3A, B). None of these mutations 

impart a significant difference in OS between LGG-mIDH1high and LGG-mIDH1low (Fig 4A).  

The COSMIC database has categorized 30 reference mutation spectra signatures based on the 

analysis of 40 distinct types of human cancer (37). The genetic mutation signatures across all 

patients within the LGG-mIDH1high and LGG-mIDH1low groups were identical (Fig 3A, B, 

bottom plots). The most common signatures in either group were 1, 6, and 15 (Fig 3 A, B, 

supplement 4).  

We then investigated the effect of the most frequent copy number variations (CNVs) on LGG-

mIDH1high and LGG-mIDH1low. In all LGG-mIDH1, the most frequent CNVs are found in the 

following genes: CCND2, FGF6, FGF23, CHD4, ZNF384 (Fig 4B). All of these CNVs have a 

negative impact on the OS of LGG-mIDH1low (Figure 4B, C). However, these CNVs are all 

present in a small group of patients (5.5% of LGG-mIDH1low, and 6.5% of LGG-wtIDH1high). 
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Overall, these data suggest that tumor mutational burden is a unique and independent prognostic 

factor that negatively impacts LGG-mIDH1 patient survival.  

 

Unique gene ontology (GO) groups are enriched in the LGG-mIDH1high 

Since the hyper-mutational phenotype impacts LGG-mIDH1 but not the LGG-wtIDH1, we 

hypothesized that LGG-mIDH1high is associated with a differential gene expression profile, 

which could be used to predict patients’ outcome. We performed the differential gene analysis 

based on tumors with either high or low tumor mutational burden. Using an FDR of 0.01 as the 

lower limit of significance we identified 1585 genes that were upregulated, and 1865 genes that 

were downregulated in the LGG-mIDH1high. We then performed gene set enrichment analysis 

(GSEA) to evaluate the functional aspects of the differentially expressed genes. We compared 

the differences between significant GOs of LGG-wtIDH1high vs low and LGG-mIDH1high vs low. 

Results suggested that high tumor mutational burden was associated with upregulation of DNA 

repair, cell cycle-related processes, and chromosomal remodeling in LGG-wtIDH1high vs low (Fig 

5A, C, supplement 5). In LGG-mIDH1high vs low, there was enrichment in GO families belonging 

to regulation of cell cycle processes and DNA mismatch repair pathways (Fig 5D, supplement 6). 

Interestingly, there was a positive enrichment of GO families that belong to RNA and pre-RNA 

processing in LGG-mIDH1high vs low (Fig 5D). This is consistent with recent report highlighting 

the effect of enrichment in RNA processing associated GOs on LGG patients’ survival (38). We 

further validated the GSEA analysis using LGG-mIDH1high vs low from the Chinese Glioma 

Genome Atlas (http://www.cgga.org.cn/). Similar to the TCGA analysis, LGG-mIDH1high from 

CGGA were enriched in GO related to cell cycle, DNA damage response, and RNA processing 

(supplement 7). These data elucidate the molecular differences in the high tumor mutational 
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burden within LGG-mIDH1 tumors and suggest that GOs belonging to cell cycle regulation and 

RNA processing may be negatively correlated with mIDH1 patient survival.    

 

Identification of a set of genes that predict survival in LGG-mIDH1 patients 

We aimed to construct an expression gene set that could be used to predict survival in LGG-

mIDH1. To do so, we first eliminated ontologies that were enriched in both the LGG-wtIDH1high 

vs. low and LGG-mIDH1high vs. low. The resulting 38 gene sets reflect gene sets selectively enriched 

in LGG-mIDH1high. LGG-mIDH1high enriched ontologies were associated with DNA repair, cell 

cycle-related processes, and chromosomal remodeling. To determine if these gene sets correlate 

with survival, we used the ‘significance analysis of prognostic signatures’ (SAPS) test (39). 

SAPS is a powerful tool that computes three p-values (Ppure, Prandom, and Penrichment) for candidate 

prognostic gene sets, and integrates the three p-values in the form of the SAPS q-value. Out of 

38 gene sets, only 12 gene sets had a significant SAPS score (q-value <0.01). Since these 12 

gene sets contain a total of 1483 genes, we performed the ‘least absolute shrinkage and selection 

operator’ (LASSO) (Fig 6A) to identify those genes within each gene set most associated with 

survival. From within those 1483 genes, LASSO selected 74 genes that are highly associated 

with the survival of patients with LGG-mIDH1 tumors (Fig 6A). Thus, using TCGA we identify 

74 genes within 12 gene sets which predict LGG-mIDH1 survival. 

We then validated the twelve gene sets obtained from our TCGA analysis using the CGGA 

database. LASSO testing of the CGGA database revealed that only six gene sets (37 genes) 

predicted survival of patients with LGG-mIDH1 tumors (Fig 6B-G).  

From these six gene sets, we selected the one that was most significant in both databases. This 

gene set contains 19 genes and predicts survival of patients with LGG-mIDH1 tumors with high 
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statistical significance (TCGA: P<0.0001, CGGA: P<0.00061). The majority of these genes 

belong to DNA repair pathway (Table 4). Therefore, we propose that this 19 genes’ signature 

could be utilized as a prognostic marker for survival of patients with LGG-mIDH1 tumors. 

DISCUSSION 

Expression of mIDH1 in LGG results in a hypermethylation phenotype and enhanced patients’ 

survival. In this study, we analyzed the tumor mutational burden, CNVs, mRNA expression, and 

clinical outcomes utilizing “The Cancer Genome Atlas (TCGA)” database. We validated the 

results using the Chinese Glioma Genome Atlas (CGGA) database. We propose that tumor 

mutational burden is a predictor of overall survival in patients with LGG-mIDH1 tumors. 

Further, based on gene expression levels, we constructed a list of “high-risk” genes which we 

propose could be used as a prognostic marker of overall survival.  

Although the total number of mutations in GBM and LGG-wtIDH1 tumors is higher than in 

LGG-mIDH1 tumor, the correlation of tumor mutational burden with patient outcome was 

specific to LGG-mIDH1. This suggests that genomic stability is an important contributor to 

survival in LGG-mIDH1 patients, albeit, the role of IDH1R132H on mutation rate in LGG tumors 

remains to be determined.  

Tumor mutational burden has been associated with better response to immunotherapy in many, 

but not all, tumor types (40). However, the tumor mutational burden can also give rise to intra-

tumor heterogeneity which increases treatment resistance, including resistance to immune 

therapy (41). As recurrent tumors contain an increased tumor mutational burden, and are also 

more resistant to treatment, and more aggressive than primary tumor (2, 23, 24), there exists a 

general correlation between tumor mutational burden and tumor progression and aggressiveness.  
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Previous studies have shown that mutation in PIK3CA and deletion of CDKN2A are associated 

with poor clinical outcome (30, 31) in LGG. We found that CDKN2A is only present in LGG-

wtIDH1 (less than 1% of LGG-mIDH1), and it was associated with poor clinical outcome in 

both LGG-wtIDH1high and LGG-wtIDH1low. Mutation in PIK3CA was present in approximately 

7% of LGG-mIDH1 patient, but it did not drive unfavorable prognosis in LGG-mIDH1high. 

Moreover, the frequency of these genetic lesions was not different in the high mutation vs. low 

mutation group.  

GSEA suggests that LGG-mIDH1high tumors have positive enrichments in cell cycle regulation 

and DNA repair GO groups as compare to LGG-mIDH1low. This is likely to be a result of 

genomic instability associated with high tumor mutational burden in LGG-mIDH1. These data 

are consistent with our recent study which showed that mIDH1 tumor is associated with 

epigenetic overexpression of genes involved in DNA repair pathway such as ATM (32). At this 

stage the activation of DNA repair mechanisms in tumors with high mutational burden could be 

a cause of increased mutation, or its consequence. Future experimental studies will need to 

address this issue. Another GO which was unique in LGG-mIDH1high vs LGG-mIDH1low but not 

in the LGG-wtIDH1 was ‘RNA and non-coding RNA processing’ (42-45). The role of changes 

in RNA processing, whether causal or effect of high levels of mutation, will also need to be 

evaluated in forthcoming studies.  

In summary, we propose that the tumor mutational burden could be used as a potentially highly 

reliable marker of overall survival in patients with LGG-mIDH1 tumors. Furthermore, we 

identified a sequence of 19 genes whose expression levels correlate significantly with the OS in 

this group of patients. As our data were established using the TCGA database and validated 

using the CGGA database, we propose that our results have high clinical statistical significance. 
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We believe our results are of clinical relevance for therapeutic decisions, and the stratification of 

patients for clinical trials. 
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METHODS 

Source of data and analyses 

All clinical, RNAseq, CNVs, and mutational TCGA data were downloaded from the broad 

institute firebrowse (46) (http://firebrowse.org/?cohort=GBMLGG&download_dialog=true#). 

CGGA data were downloaded from the CGGA website (http://www.cgga.org.cn/). Patients were 

categorized according to their mIDH1 status, tumor grade, and tumor mutational load (high vs 

low). cBioportal platform was used to validate the effect of mutation load on survival of patients 

with IDH1 mutation. The pan-cancer LGG or GBM cohort were selected and patients were 

screened for the IDH1 mutation. Classification of mutation load into four groups was done in a 

web-based analytical tool the cbioportal website. For mutations and CNVs frequency analysis, 

data from all patients were converted into matrix files and an in-house developed R-script was 

used to determine the frequency of each mutation in all the analyzed groups. 

Mutation analysis 

Mutation analysis was done through the Broad’s institute firebrowse stringent filtering and 

annotation pipeline to obtain a uniform set of mutation calls (46-49). In brief, the number of 

mutations and the number of covered bases for each gene were tabulated. The significant metric 

was calculated for each gene, using the lawrence et al methods (MutSigCV) which measure the 

significance of mutation burden (50). MutSigCV determines the P value for observing the given 

quantity of non-silent mutations in the gene, given the background model determined by silent 

(and noncoding) mutations in the same gene and the neighbouring genes of covariate space (49).  

Survival analysis 
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Survival data was censored at the last date the patient was known to be alive. Survival functions 

were estimated by the Kaplan-Meier method and compared using the log-rank test. The median 

survival time is calculated as the smallest survival time for which the survivor function is less 

than or equal to 0.5. Cox proportional hazards regression was used to assess the effect of 

mutation numbers and IDH mutation status on patient survival. In the Cox model, an interaction 

between the tumor mutational burden and IDH mutation is tested to estimate the effect of 

mutation numbers with and without the IDH mutation. The assumptions of proportional hazard 

and linear form of covariates were assessed by martingale residuals plots and the Kolmogorov-

type supremum test. All analyses for survival data were done using SAS 9.4 software. P < 0.05 

was considered significant. 

For regression analysis, only the deceased patients from each group were considered. Linear 

regression analysis was performed for the “days to death” as dependent variable vs the number 

of mutated genes per patient (independent variable). Analysis was done using STATA 15.1 

software. P < 0.05 was considered significant. 

For Significance Analysis of Prognostic Signatures (SAPS), significant gene sets enriched in 

LGG-mIDH1high were used to compute the true gene set that can predict survival. SAPS was ran 

using the Bioconductor R package “SAPS” https://rdrr.io/bioc/saps/man/saps.html.. All gene sets 

were compared in their ability to predict the survival based on the three P-values computed by 

SAPS (Ppure, Prandom, and Penrichment) (39). Only gene sets with integrated Q-value <0.01 were 

considered significant.  

GSEA analysis 

All patients were screened for the tumor grade, mutations load, and IDH1 status. Rank file was 

created by implementing R script from Bader lab (https://github.com/BaderLab/EM-tutorials-
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docker/blob/master/R_scripts/supplemental_protocol2_rnaseq.R). The gmt file downloaded from 

broad institute website (http://software.broadinstitute.org/gsea/index.jsp) and it contains all gene 

ontology (GO) sets to be included In the GSEA analysis. File for positively and negatively 

enriched groups were used as input files to create the enrichment map in cytoscape.  
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FIGURES LEGENDS 

Figure 1. Poor prognosis in mIDH1 patients from TCGA with high mutational burden. (A) 

Kaplan-Meier survival of GBM-wtIDH1 patients with high mutational burden (red) or low 

mutational burden (black) from TCGA. There was no significant difference in survival between 

groups (Hazard Ratio (HR)=0.925, CI [0.651-1.313]) (B) Linear regression model of patient’s 

“days to death” vs mutational burden/patient in GBM-wtIDH1. There was no correlation 

between patients’ “days to death” and mutational load. (C) Kaplan-Meier curves of LGG-

wtIDH1 patients classified according to mutational burden and IDH1 mutation in TCGA. There 

is no difference in survival between LGG-wtIDH1
high

 and LGG-wtIDH1
low

 (HR=0.686, CI 

[0.393-1.196]) (D) Linear regression model of patient’s “days to death” vs mutation 

burden/patient in LGG-wtIDH1. There was no correlation between patients’ “days to death” and 

mutational load. (E) LGG-mIDH1
high

 have statistically significantly decreased median survival 

as compared to LGG-mIDH1
low

 (HR=0.486, CI [0.294-0.794]). (F) Linear regression model of 

patient’s “days to death” vs mutation burden/patient in LGG-mIDH1. There is a significant 

correlation between patients’ days to death and mutation load/patient in LGG-mIDH1 only (R=-

0.39, P<0.001).  

 

Figure 2. Poor prognosis in mIDH1 patients with high mutational burden in CGGA. 

(A) Kaplan-Meier survival of GBM-wtIDH1 patients with high mutational burden (red) or low 

mutational burden (black) in CGGA (HR=0.91, CI [0.651-1.18]). There is no statistically 

significant difference between both groups. (B) Kaplan-Meier of LGG-wtIDH1 patients 

classified according to mutational burden and IDH1 mutation in CGGA. There is no difference in 

survival between LGG-wtIDH1
high

 LGG-wtIDH1
low

 (HR=0.644, CI [0.329-1.18]). There is no 
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statistically significant difference between both groups. (C) Kaplan-Meier of LGG-mIDH1 

patients classified according to mutational burden and IDH1 mutation in CGGA. There is a 

statistically significant difference in survival between LGG-mIDH1
high

 vs LGG-mIDH1
low

 

(HR=0.236, CI [0.11-0.5]) (p<0.001). 

 

Figure 3. Somatic genetic alterations identified in LGG-mIDH1 according to the tumor 

mutational burden.  The upper plot shows the mutation rate for each tumor sample. Middle 

plot: Heatmap of most frequent somatic mutations identified in LGG-mIDH1high (A) vs LGG-

wtIDH1low (B). Mutation types are color-coded according to the legend. Lower plot: mutational 

signature analysis between LGG-mIDH1high vs LGG-mIDH1low, respectively.  

Figure 4. Mutations frequency and Hazard ratios (HRs) for OS in Cox regression model in 

LGG-mIDH1high vs LGG-mIDH1low. (A) HRs for OS in Cox regression model according to the 

presence or absence of the frequently mutated genes among the groups. (B) The most frequent 

CNVs in high vs low mutation in LGG-mIDH1. (C) HRs for OS in Cox regression model 

according to the presence or absence of the frequently CNVs among the groups.  

Figure 5. Gene set enrichment analysis (GSEA) of high vs low mutation load in LGG-

wtIDH1 and LGG-mIDH1. (A, B) Cytoscape map visualization of the positive (red) and 

negative (blue) enriched GO groups in high vs low mutation load in LGG-wtIDH1 (A) and 

LGG-mIDH1 (B). (C, D) Enrichment plots of the top significantly altered GO in the high vs low 

mutation load in LGG-wtIDH1 and LGG-mIDH1. 

Figure 6. Kaplan-Meier survival of the high risk and low risk genes in LGG-mIDH1. (A) 

Flow chart illustrating the construction of high-risk gene set in LGG-mIDH1. Significant gene 

sets in LGG-mIDH1 were selected based om GSEA analysis. SAPS analysis was done to test the 
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significant prognostic gene sets. Finally, LASSO was performed to predict the genes that mostly 

impact survival. (B-G) Kaplan-Meier of the high-risk vs low risk patients based on the 37 

candidate genes that predict survival in all 6 gene sets in TCGA (training) and CGGA 

(validation) dataset. We propose the sequence of 19 genes in B as a predictor of survival in LGG-

mIDH1. 
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Table 1. Clinical Characteristic of TCGA patients 

  
LGG GBM 

Descriptors 
wtIDH1 
High 

wtIDH1 
Low 

mIDH1 
High 

mIDH1 
Low 

wtIDH1 
High 

wtIDH1 
Low 

Gender, 
n(%) 

Male 30 (51.72) 34 (59.65) 121 (60.5) 100 (50) 
79 
(56.43) 

100 
(71.43) 

Female 28 (48.28) 23 (40.35) 79 (39.5) 100 (50) 
61 
(43.57) 

40 
(28.57) 

Age, 
median 
(25th- 
75th) 

 
58 (49-63) 41 (29-57) 44 (37-55) 

34 (29-
41) 

58 (50-
67) 

65 (58-
73) 

Radiation 
Therapy, 
n(%) 

Yes 45 (77.59) 30 (52.63) 123 (61.5) 98 (49) 
106 
(75.71) 

111 
(79.29) 

No 8 (13.79) 21 (36.84) 67 (33.5) 90 (45) 
22 
(15.71) 

24 
(17.14) 

NA 5 (8.62) 6 (10.53) 10 (5) 12 (6) 
12 
(8.57) 

5 (3.57) 

TMZ, n 
(%) 

 21 (36) 25 (43) 52 (26) 42 (21) 41 (29) 44 (31) 

Race, 
n(%) 

Asian 1 (1.72) 1 (1.75) 5 (2.5) 1 (0.5) 
2 
(1.43) 

3 (2.14) 

Race, 
n(%) 
 

Black or African 
American 

5 (8.62) 4 (7.02) 7 (3.5) 5 (2.5) 
10 
(7.14) 

7 (5) 

White 52 (89.66) 49 (85.96) 187 (93.5) 
187 
(93.5) 

126 
(90) 

126 (90) 

Other 0 (0) 3 (5.26) 1 (0.05) 7 (3.5) 
2 
(1.43) 

4 (2.86) 

Median 
Survival 
(days) 

 
686 1578 2282 4084 427 414 

Histology 
(LGG), 
n(%) 
 

Astrocytoma 32 (55.17) 26 (45.61) 67 (33.5) 69 (34.5) NA NA 
Oligoastrocytoma 12 (20.69) 9 (15.79) 50 (25) 59 (29.5) NA NA 

Oligodendroglioma 14 (24.14) 22 (38.6) 83 (41.5) 72 (36) NA NA 

Histology 
(GBM), 
n(%) 

Glioblastoma 
Multiforme (GBM) NA NA NA NA 

8 
(5.71) 

3 (2.14) 

Treated Primary 
GBM NA NA NA NA 

1 
(0.71) 

3 (2.14) 

Untreated Primary 
(De Novo) GBM NA NA NA NA 

131 
(93.57) 

134 
(95.71) 

1P 19Q  
n(%)  

3 (5.17) 13 (22.81) 78 (39.00) 77 (38.5) 0 (0) 0 (0) 
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LGG: Low grade glioma, mIDH: mutation in isocitrate dehydrogenase. TMZ: Temazolamide 

 

 

Table 2. Clinical Characteristic of CGGA patients 

  LGG GBM 
Descriptors wtIDH1 

High 
wtIDH1 
Low 

mIDH1 
High 

mIDH1 
Low 

wtIDH1 
High 

wtIDH1 
Low 

Gender, n(%) Male 
17 (47.22) 

22 
(61.11) 

30 
(53.57) 

44 (78.57) 
22 
(55.00) 

20 
(50.00) 

Female 
19 (42.88) 

14 
(38.99) 

26 
(46.43) 

12 (21.43) 
18 
(45.00) 

20 
(28.57) 

Age at Diagnosis, 
median (25th and 75th 
percentile) 

 
40 
(34-48) 

38 
(28-43) 

42 
(35-45) 

36 
(31-42) 

56 
(45-63) 

49 
(34-60) 

Radiation Therapy, 
n(%) 

Yes 
27 (75) 27 (75) 

37 
(66.07) 

41 (73.21) 
28 
(63.64) 

31 
(77.5) 

No 
5 (13.89) 

5 
(13.89) 

8 
(14.29) 

8 (14.29) 3 (6.82) 
4 
(10) 

NA 
4 (11.11) 4 (11.1) 

11 
(19.64) 

7 (12.5) 
9 
(20.45) 

5 
(12.5) 

Median Survival 
(days) 

 
1342 2210 2982 Undefined 310 765 

Histological Type, 
n(%) 
 

 

Astrocytoma 
12 (33.33) 

16 
(44.44) 

17 
(30.36) 

7 (12.5) NA NA 

Oligoastrocytoma 
20 (55.56) 

17 
(47.22) 

29 
(51.79) 

33 (58.93) NA NA 

Oligodendroglioma 
4 (11.11) 3 (8.33) 

10 
(17.86) 

16 (28.57) NA NA 

Subtype, n(%) Glioblastoma 
Multiforme (GBM) 

NA NA NA NA 24 (60) 20 (50) 

Primary GBM NA NA NA NA 16 (40) 20 (50) 
Primary 

23 (63.89) 
25 
(69.44) 

27 
(48.21) 

51 (91.07) 16 (40) 20 (50) 

Recurrent 
13 (36.11) 

11 
(30.56) 

29 
(51.79) 

5 (8.93) 24 (60) 20 (50) 

       
LGG: Low grade glioma, mIDH1: mutation in isocitrate dehydrogenase.  

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.20.20016766doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.20.20016766


27 
 

 

 

 

Table 3. Univariate Cox analysis in TCGA LGG-mIDH1 

 LGG-mIDH1low LGG-mIDH1high 
 Mean Upper Lower Mean Upper Lower 
Gender 1.176 

 

2.399 0.576 0.8065 1.501 0.4335 
Age 0.7026 1.91 0.2585 0.8382 1.578 0.4452 
Radiotherapy 1.655 3.569 0.7676 1.352 2.615 0.699 
Oligodendro 0.5396 1.13 0.2576 1.285 2.391 0.6901 
Oligoastro 1.26 2.86 0.5553 0.5971 1.108 0.2452 
Astro 1.676 3.774 0.7444 1.387 2.683 0.7167 
1P 19Q Co-
deletion 

0.7042 1.494 0.3320 0.8084 1.517 0.4307 

TMZ 0.9604 2.078 0.4438 1.746 3.145 0.8928 
LGG: Low grade glioma, Oigodendro: Oligodendroglioma, Astro: Astrocytoma, Oligoastro: 

Oligoastrocytoma, mIDH1: mutation in isocitrate dehydrogenase. TMZ: Temazolamide 
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Table 4. 19-genes signature that predicts survival in LGG-mIDH1 

Gene ID Gene symbol Gene Name Pathway 

994 CDC25B cell division cycle 25B 
DNA damage-induced cell 
cycle checkpoints 

1019 CDK4 cyclin dependent kinase 4 DNA Damage Response 

7161 TP73 tumor protein p73 
DNA Damage Response 
(only ATM dependent) 

144455 E2F7 E2F transcription factor 7 Gene Expression 

1908 EDN3 endothelin 3 
Class A/1 (Rhodopsin-like 
receptors) 

983 CDK1 cyclin dependent kinase 1 DNA Damage Response 

1647 GADD45A 
growth arrest and DNA 
damage inducible alpha 

DNA Damage Response 

51379 CRLF3 cytokine receptor like factor 3 DNA/Protein Binding 

55023 PHIP 
pleckstrin homology domain 
interacting protein 

Protein Binding 

55544 RBM38 RNA binding motif protein 38 RNA Binding 

11113 CIT 
citron rho-interacting 
serine/threonine kinase 

G13 Signaling Pathway 

85456 TNKS1BP1 tankyrase 1 binding protein 1 Deadenylation of mRNA 

219736 STOX1 storkhead box 1 NA 

58525 WIZ WIZ zinc finger NA 

153090 DAB2IP DAB2 interacting protein ARMS-mediated activation 

7027 TFDP1 transcription factor Dp-1 
Activation of BH3-only 
proteins 

23019 CNOT1 
CCR4-NOT transcription 
complex subunit 1 

RNA degradation 

10397 NDRG1 
N-myc downstream regulated 
1 

Gene Expression 

2810 SFN stratifin DNA Damage Response 
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ABBREVIATIONS 

IDH1 Isocitrate Dehydrogenase1 

MS Median Survival 

LGG-mIDH1high Low Grade glioma patients with IDH1 mutation and high mutational 
burden 

LGG-mIDH1low Low Grade glioma patients with IDH1 mutation and low mutational 
burden 

OS Overall Survival 

2HG 2-Hydroxy glutarate 

αKG α-ketoglutarate 

VEGF Vascular endothelial growth factor 

HIF-1α hypoxia-inducible factor-1α 

PIK3CA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit 
Alpha 

CDKN2A Cyclin Dependent Kinase Inhibitor 2A 

LGG Low Grade Glioma 

HGG High Grade Glioma 

GBM Glioblastoma Multiforme 

TCGA The Cancer Genome Atlas 

CGGA Chinese Glioma Genome Atlas 

Oligo oligodendrogliomas 

Astro astrocytoma 
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